Applications of Stochastics - Isolated vertices
 in the Erdős-Rényi random graph $G(n, p)$

Gábor Pete

http://www.math.bme.hu/~gabor
September 25, 2020

Let $I=\sum_{i=1}^{n} I_{i}$ be the number of isolated vertices in $G(n, p)$, with $I_{i}:=\mathbf{1}_{\{\text {vertex } i \text { is isolated }\}}$. Clearly, $\mathbf{P}\left[I_{i}=1\right]=(1-p)^{n-1}$, hence $\mathbf{E}_{n, p}[I]=n(1-p)^{n-1}$. To understand the size of this expectation, here is a lemma, immensely useful in probabilistic combinatorics:
Lemma 1. If $\epsilon_{n} \rightarrow 0$ and $\left\{a_{n}\right\}$ are two positive sequences with $\epsilon_{n}^{2} a_{n} \rightarrow 0$, then

$$
\left(1-\epsilon_{n}\right)^{a_{n}} \sim \exp \left(-\epsilon_{n} a_{n}\right) .
$$

Proof. The Taylor series of $\exp (x)$ gives us that $\exp \left(-\epsilon_{n}\right)=1-\epsilon_{n}+O\left(\epsilon_{n}^{2}\right)$ if $\epsilon_{n} \rightarrow 0$, and in fact, $\exp \left(-\epsilon_{n}-O\left(\epsilon_{n}^{2}\right)\right)<1-\epsilon_{n}<\exp \left(-\epsilon_{n}\right)$. Therefore,

$$
\exp \left(\left(-\epsilon_{n}-O\left(\epsilon_{n}^{2}\right)\right) a_{n}\right)<\left(1-\epsilon_{n}\right)^{a_{n}}<\exp \left(-\epsilon_{n} a_{n}\right)
$$

and the lemma follows.
Let us fix $\epsilon \in \mathbb{R}$, and consider $p=p_{n}=(1+\epsilon) \frac{\log n}{n} \rightarrow 0$. Then

$$
\mathbf{E}_{n, p}[I] \sim n \exp (-p n)=n \cdot n^{-(1+\epsilon)} \rightarrow \begin{cases}0 & \text { if } \epsilon>0 \\ \infty & \text { if } \epsilon<0\end{cases}
$$

So, with probability tending to 1 , we do not have isolated vertices when $\epsilon>0$ is fixed. To get isolated vertices for $\epsilon<0$ fixed, we will use the Second Moment Method:

$$
\begin{aligned}
\operatorname{Var}_{n, p}[I]=\sum_{i, j=1}^{n} \operatorname{Cov}\left[I_{i}, I_{j}\right] & =n \operatorname{Var}\left[I_{1}\right]+n(n-1) \operatorname{Cov}\left[I_{1}, I_{2}\right] \\
& =n\left((1-p)^{n-1}-(1-p)^{2(n-1)}\right)-n(n-1)\left((1-p)^{2 n-3}-(1-p)^{2(n-1)}\right) \\
& <n(1-p)^{n-1}+n(n-1)(1-p)^{2 n-3}\left(1-(1-p)^{2}\right) \\
& \sim n \cdot n^{-(1+\epsilon)}+n^{2} \cdot n^{-2(1+\epsilon)} 2 p \\
& <n^{-\epsilon}+2 \frac{\log n}{n^{1+2 \epsilon}} ;
\end{aligned}
$$

to get the second line, we used the observation that for two fixed vertices to be both isolated, we need $2 n-3$ edges to be closed. To use Chebyshev's inequality, we now want that this is $\ll \mathbf{E}_{n, p}[I]^{2} \sim n^{-2 \epsilon}$. For $\epsilon<0$ fixed, this is indeed the case, and we get, for any $\lambda<1$ fixed, that

$$
\mathbf{P}_{n, p}\left[I>\lambda n^{-\epsilon}\right] \rightarrow 1
$$

as we wanted.

