Applications of Stochastics — Isolated vertices in the Erdős-Rényi random graph G(n, p)

Gábor Pete

http://www.math.bme.hu/~gabor

September 25, 2020

Let $I = \sum_{i=1}^{n} I_i$ be the number of isolated vertices in G(n, p), with $I_i := \mathbf{1}_{\{\text{vertex } i \text{ is isolated}\}}$. Clearly, $\mathbf{P}[I_i = 1] = (1 - p)^{n-1}$, hence $\mathbf{E}_{n,p}[I] = n(1 - p)^{n-1}$. To understand the size of this expectation, here is a lemma, immensely useful in probabilistic combinatorics:

Lemma 1. If $\epsilon_n \to 0$ and $\{a_n\}$ are two positive sequences with $\epsilon_n^2 a_n \to 0$, then

 $(1-\epsilon_n)^{a_n} \sim \exp\left(-\epsilon_n a_n\right).$

Proof. The Taylor series of $\exp(x)$ gives us that $\exp(-\epsilon_n) = 1 - \epsilon_n + O(\epsilon_n^2)$ if $\epsilon_n \to 0$, and in fact, $\exp(-\epsilon_n - O(\epsilon_n^2)) < 1 - \epsilon_n < \exp(-\epsilon_n)$. Therefore,

$$\exp\left(\left(-\epsilon_n - O(\epsilon_n^2)\right)a_n\right) < (1 - \epsilon_n)^{a_n} < \exp\left(-\epsilon_n a_n\right),$$

and the lemma follows.

Let us fix $\epsilon \in \mathbb{R}$, and consider $p = p_n = (1 + \epsilon) \frac{\log n}{n} \to 0$. Then

$$\mathbf{E}_{n,p}[I] \sim n \exp(-pn) = n \cdot n^{-(1+\epsilon)} \rightarrow \begin{cases} 0 & \text{if } \epsilon > 0, \\ \infty & \text{if } \epsilon < 0. \end{cases}$$

So, with probability tending to 1, we do not have isolated vertices when $\epsilon > 0$ is fixed. To get isolated vertices for $\epsilon < 0$ fixed, we will use the Second Moment Method:

$$\begin{aligned} \operatorname{Var}_{n,p}[I] &= \sum_{i,j=1}^{n} \operatorname{Cov}[I_i, I_j] = n \operatorname{Var}[I_1] + n(n-1) \operatorname{Cov}[I_1, I_2] \\ &= n \left((1-p)^{n-1} - (1-p)^{2(n-1)} \right) - n(n-1) \left((1-p)^{2n-3} - (1-p)^{2(n-1)} \right) \\ &< n \left(1-p \right)^{n-1} + n(n-1) \left(1-p \right)^{2n-3} \left(1-(1-p)^2 \right) \\ &\sim n \cdot n^{-(1+\epsilon)} + n^2 \cdot n^{-2(1+\epsilon)} 2p \\ &< n^{-\epsilon} + 2 \frac{\log n}{n^{1+2\epsilon}}; \end{aligned}$$

to get the second line, we used the observation that for two fixed vertices to be both isolated, we need 2n - 3 edges to be closed. To use Chebyshev's inequality, we now want that this is $\ll \mathbf{E}_{n,p}[I]^2 \sim n^{-2\epsilon}$. For $\epsilon < 0$ fixed, this is indeed the case, and we get, for any $\lambda < 1$ fixed, that

$$\mathbf{P}_{n,p}\big[I > \lambda n^{-\epsilon}\big] \to 1\,,$$

as we wanted.