Diszkrét Véletlen Strukturak, 2016 tavasz
Hazi feladatok

PETE GABOR
http://www.math.bme.hu/~gabor

Bocsanat, de néha angolul, néha magyarul vannak a feladatok. Akit nagyon zavar, széljon. A vizsgara
négy megoldast hozzatok, de biztonsdgosabb, ha elébb adjatok be, mert ha hibds, akkor lehet javitani. A
csillagos * példak kettot érnek.

1 Véletlen grafok és egyéb konstrukcidk

Exercise 1. Let G = (V, E) be a bipartite graph with n vertices and a list S(v) of more than log, n colors
associated with each vertex v € V. Prove that there is a proper coloring of G assigning to each vertex v a

color from its list S(v).

Exercise 2.* Vegyiink R"-ben tobb mint Mk darab paronként meréleges egységvektort, és vetitsiik le ket
egy adott R¥ altérre (mondjuk vegyiik az elsé k koordinatéjukat). Igazoljuk, hogy van olyan vetitett, aminek
a hossza kisebb mint 1/v/ M. Példaval mutassuk, hogy Mk = 2" darab vektor esetén ez még nem igaz.

Exercise 3. For any monotone increasing event A on n bits, we define p/ := inf {p:P,[A] > t}.
Prove the Bollobas-Thomason threshold theorem: for any sequence of monotone increasing events
A = A, and any e there is C. < oo such that |pf* (n) — p2(n)| < Ce (pA(n) A (1 — p{.(n)). (Hint: take

many independent copies of low density to get success with good probability at a larger density.)

Exercise 4. Find the order of magnitude of the threshold function p;/;(n) for the random graph G(n,p)
containing a copy of the cycle Cy. (Hint: compute the first and second moments of the number of Cy copies,

and use Chebyshev’s inequality.)
Exercise 5. Igazoljuk a Lovasz Lokalis Lemma segitségével, hogy R(k,4) > Eb5/2+0(1),

Exercise 6. Igazoljuk, hogy minden € > 0-hoz létezik § > 0, hogy tetszéleges n-re a G,y q uniform péros
d-reguldris véletlen graf Cheeger-konstansa legaldbb 1 — e valdszintiséggel 6. (Tipp: ki kell szdmolni az olyan
(S,T) C [n] x [n] részhalmaz-parok varhaté szdmét, S a jobb, T a bal oldalon, |S| < n/2és |T| < (1+7)]5|,
ahol S Osszes szomszédja, d fiiggetlen teljes parositast kovetve, T-ben van. Ha v elég kicsi, akkor ez kicsi
lesz, igy annak a valdszinlisége, hogy van ilyen, 0-hoz tart. Ebbdl kénnyen kovetkezik, hogy G, n.q nagy

valésziniiséggel expander.)

Exercise 7.* A graph is called t-tough if for every m > 2 we need to delete at least tm vertices to get at
least m connected components. For instance, any graph possessing a Hamiltonian cycle is 1-tough. On the
other hand, ¢t-tough graphs have independence number a(G) < n/(t + 1), since otherwise we could delete
less than ¢n/(t + 1) vertices and get more than n/(t + 1) isolated vertices.

Show that for every ¢ there is a d = d(t) such that the d-regular uniform random graph Ga,, 4 is t-tough
with large probability.
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2 Grafok, csoportok geometriaja

> Exercise 8.* Consider the standard hexagonal lattice. Show that if you are given a bound B < oo, and
can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

> Exercise 9. Recall that being non-amenable means satisfying the strong isoperimetric inequality IP.
(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of
“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, I P . implies I P.)
(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP,
recurrent for the simple random walk on it, and has p. = 1 for Bernoulli percolation.

> Exercise 10.* Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling
paradoxical decomposition: two injective maps «, 8 : V. — V such that «(V) U B(V) = V is a disjoint
union, and both maps are at a bounded distance from the identity, or wobbling: sup,cy d(z, a(x)) < oco.
(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called

the Hall-Rado theorem.)
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Figure 2: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group
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If we denote by X,Y, Z the matrices given by the three permutations of the entries 1,0,0 for z,y, z, then
Hs(Z) is given by the presentation

(X,Y,Z|[X,Z2]=1,[Y,Z] = 1,[X,Y] = Z).

Exercise 11. Show that the discrete Heisenberg group has 4-dimensional volume growth.

Exercise 12.
(a) Show that the Diestel-Leader graph DL(k, ¢) is amenable iff k = ¢.
(b) Show that the Cayley graph of the lamplighter group I' = Zy ! Z with generating set S = {R,Rs, L,sL}
is the Diestel-Leader graph DL(2,2). How can we obtain DL(p, p) from Z, Z?

Figure 3: The Diestel-Leader graph DL(3,2), with a path: (u,a), (v,b), (w,c), (v,b), (u,d’), (¢, z), (v',a’).

Exercise 13. Show that amenable transitive graphs are unimodular (that is, they satisfy the Mass Transport
Principle).

3 Grafok spektruma, lokalitas, bolyongasok

Exercise 14.*

(a) Show that the Markov operator on the d-regular tree T4 with d > 2 (i.e., including Z) has no eigen-
vectors \f = Pf with f € (%(Ty), for any A € R. (Hint: assuming there is one, show that there
would also be one whose values depend only on the distance from the root; then exclude this by direct
computation.)

(b) Show that the quasi-transitive tree T that has degree 3 and degree 2 vertices alternately does have an

0?(T)-eigenvector, with eigenvalue 0.

Exercise 15 (The spectral measure of Z). Show that for the SRW Markov operator on Z, the Kesten
spectral measure is do, ,(t) = ﬁl[—lﬂ (t)dt. (Hint: you could do this in at least two ways: either from
the spectrum of the cycle C,,, or from computing return probabilities and moments explicitly, and arguing

that the spectral measure is determined by its moments.)

Exercise 16. Ha korldtos foku grafokra egy G — ¢(G) graf-paraméter folytonos a Benjamini-Schramm
lokélis topolégidban, azaz G, BSch (G,0) esetén ¢(G,,) konvergél, akkor az lokdlisan tesztelheté: minden
D < 00 és € > 0 esetén létezik N (e, D) és K (e, D) végesek, hogy ha G egy tetszbleges véges D max-fokd graf
legalabb IV cstcson, akkor K darab uniform véletlen csicsnak megnézve a K sugard kornyezetét G-ben, ezen
kornyezetek alapjan (ami csak korldtos sok infé) tudunk egy ¢* tippet mondani, ami a ¢(G)-nek e sugart

kornyezetében lesz legalabb 1 — e valdszintiséggel.

Exercise 17. Legyen m(-) reverzibilis valszin mérték a p(-,-) Markov ldnchoz a V' allapottéren, és

s

doo(n) := sup
eV




Igazoljuk, hogy
doo(n +m) < doo(n) doo(m) .

> Exercise 18. Show that if the chain (V, P) is transitive, then
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For instance, assuming the spectrum of the lazy SRW on the hypercube {0, 1}* from class, deduce the bound
d(1/2kInk +ck) < e72¢/2 for ¢ > 1 on the TV distance. (This is sharp even regarding the constant 1/2 in
front of klnk. Why? Think of the coupon collector’s problem.) Also, deduce that t1Y (C,) = O(n?) for the
n-cycle.

> Exercise 19. Why it is hard to construct large expanders:

(a) If @ — G is a covering map of infinite graphs, then the spectral radii satisfy p(G’) < p(G), i.e.,
the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then p(G) >
p(Ty) = 2k£ (The last equality we have not seen and is not an exercise now.)

(b) If G’ — G is a covering map of finite graphs, then A2(G’) > A2(G), i.e., the larger graph is a worse

expander.

> Exercise 20. You may accept here that transitive expanders exist. Give a sequence of d-regular transitive
graphs G, = (V,,, E,,) with |V,,| — oo that mix rapidly, 1Y (1/4) = O(log|V5,|), but do not form an expander
sequence.

> Exercise 21. A simple version of the Tetris game (with no player): on the discrete cycle of length K,
unit squares with sticky corners are falling from the sky, at places [¢,7 + 1] chosen uniformly at random
(i=0,1,...,K — 1, mod K). Let R; be the size of the roof after ¢ squares have fallen: those squares of the

current configuration that could have been the last to fall. Show that lim;—,., ER; = K/3.
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Figure 4: Sorry, this picture is on the segment, not on the cycle.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when
falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to
do with the speed of the SRW. Here, for K > 4, the expected limiting size of the roof is already less than
0.32893 K, but this is far from trivial. What’s the situation for K = 37

The next lemma was used in the evolving sets method:

> Exercise 22. If Var[X] > ¢ (EX)? then E[\/Y} < (1 - )VEX, where ¢ > 0 depends only on ¢ > 0.



4 Perkolacié tipusu folyamatok

Exercise 23. Let G(V, E) be an infinite transitive graph, and ~,, be the number of minimal edge cutsets of
size n separating an origin o € V from infinity. Show, using a union bound, that if v,, < exp(Cn) for some
C < o0, then p.(G) < 1 for Bernoulli bond percolation on G.

Exercise 24. Assume that 7 : G’ — G is a topological covering between infinite graphs, or in other words,
G is a factor graph of G’. Show that p.(G') < p.(G).

Exercise 25.
(a) Give a translation invariant and ergodic percolation on Z? with infinitely many oo clusters.

(b) Give a translation invariant and ergodic percolation on Z? with exactly two oo clusters.

Exercise 26. As in the lecture, a furcation point of an infinite cluster is a vertex whose removal breaks the
cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem:
if € denotes the union of all the infinite clusters in some percolation on G, and U C V(G) is finite, then
the size of €o NOYMU is at least the number of trifurcation points of € in U, plus 2.

Exercise 27.
(a) In an invariant percolation process on a unimodular transitive graph G, show that almost surely the
number of ends of each infinite cluster is 1 or 2 or continuum.
(b) Give an invariant percolation on a non-unimodular transitive graph that has infinite clusters with more

than two but finitely many ends.

Exercise 28. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.
Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure
on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an
explicit monotone coupling between the two measures (i.e., with UST C UST + 1).

Question. Is there such a monotone coupling for every finite graph?

Exercise 29. Using Wilson’s algorithm that generates a UST of a finite graph G using Loop Erased Random

Walks, now for G = K,,, prove Cayley’s formula: the number of trees on n labeled vertices is n™" 2.

Exercise 30.* Using Wilson’s algorithm as above, prove the following limit law for distances in a uniform
random tree T, on n labeled vertices: if z # y are two uniformly chosen random vertices, then their graph

distance satisfies
lim P[dr, (z,y) > tv/n] = exp(—t/2).
n— o0
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