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0 Introduction and Preliminaries

0.1 The subject of complexity theory

The need to be able to measure the complexity of a problem, algorithm or structure,
and to obtain bounds and quantitive relations for complexity arises in more and more
sciences: besides computer science, the traditional branches of mathematics, statistical
physics, biology, medicine, social sciences and engineering are also confronted more and
more frequently with this problem. In the approach taken by computer science, com-
plexity is measured by the quantity of computational resources (time, storage, program,
communication) used up by a particualr task. These notes deal with the foundations of
this theory.

Computation theory can basically be divided into three parts of different character.
First, the exact notions of algorithm, time, storage capacity, etc. must be introduced. For
this, different mathematical machine models must be defined, and the time and storage
needs of the computations performed on these need to be clarified (this is generally
measured as a function of the size of input). By limiting the available resources, the
range of solvable problems gets narrower; this is how we arrive at different complexity
classes. The most fundamental complexity classes provide an important classification
of problems arising in practice, but (perhaps more surprisingly) even for those arising
in classical areas of mathematics; this classification reflects the practical and theoretical
difficulty of problems quite well. The relationship between different machine models also
belongs to this first part of computation theory.

Second, one must determine the resource need of the most important algorithms
in various areas of mathematics, and give efficient algorithms to prove that certain
important problems belong to certain complexity classes. In these notes, we do not
strive for completeness in the investigation of concrete algorithms and problems; this is
the task of the corresponding fields of mathematics (combinatorics, operations research,
numerical analysis, number theory). Nevertheless, a large number of concrete algorithms
will be described and analyzed to illustrate certain notions and methods, and to establish
the complexity of certain problems.

Third, one must find methods to prove “negative results”, i.e. for the proof that
some problems are actually unsolvable under certain resource restrictions. Often, these
questions can be formulated by asking whether certain complexity classes are different
or empty. This problem area includes the question whether a problem is algorithmically
solvable at all; this question can today be considered classical, and there are many
important results concerining it; in particular, the decidability or undecidablity of most
concrete problems of interest is known.

The majority of algorithmic problems occurring in practice is, however, such that
algorithmic solvability itself is not in question, the question is only what resources must
be used for the solution. Such investigations, addressed to lower bounds, are very difficult
and are still in their infancy. In these notes, we can only give a taste of this sort of results.
In particular, we discuss complexity notions like communication complexity or decision
tree complexity, where by focusing only on one type of rather special resource, we can
give a more complete analysis of basic complexity classes.

It is, finally, worth noting that if a problem turns out to be “difficult” to solve, this
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is not necessarily a negative result. More and more areas (random number generation,
communication protocols, cryptography, data protection) need problems and structures
that are guaranteed to be complex. These are important areas for the application of
complexity theory; from among them, we will deal with random number generation and
cryptography, the theory of secret communication.

0.2 Some notation and definitions

A finite set of symbols will sometimes be called an alphabet. A finite sequence formed
from some elements of an alphabet Σ is called a word. The empty word will also be
considered a word, and will be denoted by ∅. The set of words of length n over Σ is
denoted by Σn, the set of all words (including the empty word) over Σ is denoted by
Σ∗. A subset of Σ∗, i.e. , an arbitrary set of words, is called a language.

Note that the empty language is also denoted by ∅ but it is different, from the
language {∅} containing only the empty word.

Let us define some orderings of the set of words. Suppose that an ordering of the
elements of Σ is given. In the lexicographic ordering of the elements of Σ∗, a word α
precedes a word β if either α is a prefix (beginning segment) of β or the first letter which
is different in the two words is smaller in α. (E.g., 35244 precedes 35344 which precedes
353447.) The lexicographic ordering does not order all words in a single sequence: for
example, every word beginning with 0 precedes the word 1 over the alphabet {0, 1}. The
increasing order is therefore often preferred: here, shorter words precede longer ones and
words of the same length are ordered lexicographically. This is the ordering of {0, 1}∗
we get when we write up the natural numbers in the binary number system.

The set of real numbers will be denoted by R, the set of integers by Z and the set
of rational numbers (fractions) by Q. The sign of the set of non-negative real (integer,
rational) numbers is R+ (Z+, Q+). When the base of a logarithm will not be indicated
it will be understood to be 2.

Let f and g be two real (or even complex) functions defined over the natural numbers.
We write

f = O(g)

if there is a constant c > 0 such that for all n large enough we have |f(n)| ≤ c|g(n)|.
We write

f = o(g)

if f is 0 only at a finite number of places and f(n)/g(n) → 0 if n → ∞. We will also
use sometimes an inverse of the big O notation: we write

f = Ω(g)

if g = O(f). The notation
f = Θ(g)

means that both f = O(g) and g = O(f) hold, i.e. there are constants c1, c2 > 0 such
that for all n large enough we have c1g(n) ≤ f(n) ≤ c2g(n). We will also use this
notation within formulas. Thus,

(n+ 1)2 = n2 +O(n)
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means that (n+1)2 can be written in the form n2 +R(n) where R(n) = O(n2). Keep in
mind that in this kind of formula, the equality sign is not symmetrical. Thus, O(n) =
O(nn) but O(n2) 6= O(n). When such formulas become too complex it is better to go
back to some more explicit notation.

Exercise 0.1 Is it true that 1 + 2 + · · · + n = O(n3)? Can you make this statement
sharper?

1 Models of Computation

1.1 Introduction

In this section, we will treat the concept of “computation” or
algorithm. This concept is fundamental for our subject, but we will
not define it formally. Rather, we consider it an intuitive notion,
which is amenable to various kinds of formalization (and thus,
investigation from a mathematical point of view).
An algorithm means a mathematical procedure serving for a
computation or construction (the computation of some function), and
which can be carried out mechanically, without thinking. This is not
really a definition, but one of the purposes of this course is to
demonstrate that a general agreement can be achieved on these matters.
(This agreement is often formulated as Church’s thesis.) A
program in the Pascal (or any other) programming language is a good
example of an algorithm specification. Since the “mechanical”
nature of an algorithm is its most important feature, instead of the
notion of algorithm, we will introduce various concepts of a
mathematical machine.
Mathematical machines compute some output from some input.
The input and output can be a word (finite sequence) over a fixed
alphabet. Mathematical machines are very much like the real computers
the reader knows but somewhat idealized: we omit some inessential
features (e.g. hardware bugs), and add an infinitely expandable memory.
Here is a typical problem we often solve on the computer: Given a list
of names, sort them in alphabetical order. The input is a string
consisting of names separated by commas: Bob, Charlie, Alice. The
output is also a string: Alice, Bob, Charlie. The problem is to
compute a function assigning to each string of names its
alphabetically ordered copy.
In general, a typical algorithmic problem has infinitely many
instances, whci then have arbitrarily large size. Therefore we
must consider either an infinite family of finite computers of growing
size, or some idealized infinite computer. The latter approach has the
advantage that it avoids the questions of what infinite families are
allowed.
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Historically, the first pure infinite model of computation was the
Turing machine, introduced by the English mathematician
Turing in 1936, thus before the invention of programable
computers. The essence of this model is a central part that is
bounded (with a structure independent of the input) and an infinite
storage (memory). (More exactly, the memory is an infinite
one-dimensional array of cells. The control is a finite automaton
capable of making arbitrary local changes to the scanned memory cell
and of gradually changing the scanned position.) On Turing machines,
all computations can be carried out that could ever be carried out on
any other mathematical machine-models. This machine notion is used
mainly in theoretical investigations. It is less appropriate for the
definition of concrete algorithms since its description is awkward,
and mainly since it differs from existing computers in several
important aspects.
The most important weakness of the Turing machine in comparison
real computers is that its memory is not accessible immediately: in
order to read a distant memory cell, all intermediate cells must also
be read. This is remedied by the Random Access Machine (RAM).
The RAM can reach an arbitrary memory cell in a single step. It can
be considered a simplified model of real world computers along with the
abstraction that it has unbounded memory and the capability to store
arbitrarily large integers in each of its memory cells. The RAM can
be programmed in an arbitrary programming language. For the
description of algorithms, it is practical to use the RAM since this
is closest to real program writing. But we will see that the Turing
machine and the RAM are equivalent from many points of view; what is
most important, the same functions are computable on Turing machines
and the RAM.
Despite their seeming theoretical limitations, we will consider logic
circuits as a model of computation, too. A given logic circuit allows
only a given size of input. In this way, it can solve only a finite
number of problems; it will be, however, evident, that for a fixed
input size, every function is computable by a logical circuit. If we
restrict the computation time, however, then the difference between
problems pertaining to logic circuits and to Turing-machines or the
RAM will not be that essential. Since the structure and work of logic
circuits is the most transparent and tractable, they play very
important role in theoretical investigations (especially in the proof
of lower bounds on complexity).
If a clock and memory registers are added to a logic circuit we arrive
at the interconnected finite automata that form the typical
hardware components of today’s computers.
Let us note that a fixed finite automaton, when used on inputs of
arbitrary size, can compute only very primitive functions, and is not
an adequate computation model.
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One of the simplest models for an infinite machine is to connect an
infinite number of similar automata into an array. This way
we get a cellular automaton.
The key notion used in discussing machine models is simulation.
This notion will not be defined in full generality, since it refers
also to machines or languages not even invented yet. But its meaning
will be clear. We will say that machine M simulates machine N if
the internal states and transitions of N can be traced by machine
M in such a way that from the same inputs, M computes the same
outputs as N .

1.2 Finite automata

A finite automaton is a very simple and very general computing device. All we assume
that if it gets an input, then it changes its internal state and issues an output. More
exactly, a finite automaton has

• an input alphabet, which is a finite set Σ,

• an output alphabet, which is another finite set Σ′, and

• a set Γ of internal states, which is also finite.

To describe a finite automaton, we need to specify, for every input a ∈ Σ and state
s ∈ Γ, the output α(a, s) ∈ Σ′ and the new state ω(a, s) ∈ Γ. To make the behavior of
the automata well-defined, we specify a starting state START.

At the beginning of a computation, the automaton is in state s0 = START. The
input to the computation is given in the form of a string a1a2 . . . an ∈ Σ∗. The first
input letter a1 takes the automaton to state s1 = ω(a1, s0); the next input letter takes
it into state s2 = ω(a2, s1) etc. The result of the computation is the string b1b2 . . . bn,
where bk = α(ak, sk−1) is the output at the k-th step.

Thus a finite automaton can be described as a 6-tuple 〈Σ,Σ′,Γ, α, ω, s0〉, where
Σ,Σ′,Γ are finite sets, α : Σ×Γ → Σ′ and ω : Σ×Γ → Γ are arbitrary mappings, and
START ∈ Γ.

Remarks. 1. There are many possible variants of this notion, which are essentially
equivalent. Often the output alphabet and the output signal are omitted. In this case,
the result of the computation is read off from the state of the automaton at the end of
the computation.

In the case of automata with output, it is often convenient to assume that Σ′ contains
the blank symbol ∗; in other words, we allow that the automaton does not give an output
at certain steps.

2. Your favorite PC can be modelled by a finite automaton where the input alphabet
consists of all possible keystrokes, and the output alphabet consists of all texts that it
can write on the screen following a keystroke (we ignore the mouse, ports, floppy drives
etc.) Note that the number of states is more than astronomical (if you have 1 GB of disk

space, than this automaton has something like 21010

states). At the cost of allowing so
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(b,y)

aabcabc

(c,x)START

Figure 1: A finite automaton

many states, we could model almost anything as a finite automaton. We’ll be interested
in automata where the number of states is much smaller - usually we assume it remains
bounded while the size of the input is unbounded.

Every finite automaton can be described by a directed graph. The nodes of this
graph are the elements of Γ, and there is an edge labelled (a, b) from state s to state s′

if α(a, s) = b and ω(a, s) = s′. The computation performed by the automaton, given an
input a1a2 . . . an, corresponds to a directed path in this graph starting at node START,
where the first labels of the edges on this path are a1, a2, . . . , an. The second labels of
the edges give the result of the computation (figure 1).

Example 1.1 Let us construct an automaton that corrects quotation marks in a text
in the following sense: it reads a text character-by-character, and whenever it sees
a quotation like ” . . . ”, it replaces it by “. . . ”. All the automaton has to remember
is whether it has seen an even or an odd number of ” symbols. So it will have two
states: START and OPEN (i.e., quotation is open). The input alphabet consists of
whatever characters the text uses, including ”. The output alphabet is the same, except
that instead of ” we have two symbols “ and ”. Reading any character other than ”,
the automaton outputs the same symbol and does not change its state. Reading ”, it
outputs “ if it is in state START and outputs ” if it is in state OPEN; and it changes
its state (figure 2).

Exercise 1.1 Construct a finite automaton with a bounded number of states that re-
ceives two integers in binary and outputs their sum. The automaton gets alternatingly
one bit of each number, starting from the right. If we get past the first bit of one of
the inputs numbers, a special symbol • is passed to the automaton instead of a bit; the
input stops when two consecutive • symbols are occur.
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Figure 2: An automaton correcting quotation marks

Exercise 1.2 Construct a finite automaton with as few states as possible that receives
the digits of an integer in decimal notation, starting from the left, and the last output
is YES if the number is divisible by 7 and NO if it is not.

Exercise 1.3 (a) For a fixed positive integer n, construct a finite automaton that reads
a word of length 2n, and its last output is YES if the first half of the word is the same
as the second half, and NO otherwise. (b) Prove that the automaton must have at least
2n states.

Exercise 1.4 Prove that there is no finite automaton that, for an input in {0, 1}∗
starting with a “1”, would decide if this binary number is a prime.

1.3 The Turing machine

1.3.1 The notion of a Turing machine

Informally, a Turing machine is a finite automaton equipped with an unbounded memory.
This memory is given in the form of one or more tapes, which are infinite in both
directions. The tapes are divided into an infinite number of cells in both directions.
Every tape has a distinguished starting cell which we will also call the 0th cell. On
every cell of every tape, a symbol from a finite alphabet Σ can be written. With the
exception of finitely many cells, this symbol must be a special symbol ∗ of the alphabet,
denoting the “empty cell”.

To access the information on the tapes, we supply each tape by a read-write head.
At every step, this sits on a field of the tape.

The read-write heads are connected to a control unit, which is a finite automaton.
Its possible states form a finite set Γ. There is a distinguished starting state “START”
and a halting state “STOP”. Initially, the control unit is in the “START” state, and the
heads sit on the starting cells of the tapes. In every step, each head reads the symbol in
the given cell of the tape, and sends it to the control unit. Depending on these symbols
and on its own state, the control unit carries out three things:

• it sends a symbol to each head to overwrite the symbol on the tape (in particular,
it can give the direction to leave it unchanged);
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• it sends one of the commands “MOVE RIGHT”, “MOVE LEFT” or “STAY” to
each head;

• it makes a transition into a new state (this may be the same as the old one);

Of course, the heads carry out these commands, which completes one step of the
computation. The machine halts when the control unit reaches the “STOP” state.

While the above informal description uses some engineering jargon, it is not difficult
to translate it into purely mathematical terms. For our purposes, a Turing machine
is completely specified by the following data: T = 〈k,Σ,Γ, α, β, γ〉, where k ≥ 1 is a
natural number, Σ and Γ are finite sets, ∗ ∈ Σ START, STOP ∈ Γ, and α, β, γ are
arbitrary mappings:

α :Γ × Σk → Γ,

β :Γ × Σk → Σk,

γ :Γ × Σk → {−1, 0, 1}k.

Here α specifiess the new state, β gives the symbols to be written on the tape and γ
specifies how the heads move.

In what follows we fix the alphabet Σ and assume that it contains, besides the blank
symbol ∗, at least two further symbols, say 0 and 1 (in most cases, it would be sufficient
to confine ourselves to these two symbols).

Under the input of a Turing machine, we mean the k words initially written on the
tapes. We always assume that these are written on the tapes starting at the 0 field.
Thus, the input of a k-tape Turing machine is an ordered k-tuple, each element of which
is a word in Σ∗. Most frequently, we write a non-empty word only on the first tape for
input. If we say that the input is a word x then we understand that the input is the
k-tuple (x, ∅, . . . , ∅).

The output of the machine is an ordered k-tuple consisting of the words on the tapes.
Frequently, however, we are really interested only in one word, the rest is “garbage”. If
we say that the output is a single word and don’t specify which, then we understand
the word on the last tape.

It is practical to assume that the input words do not contain the symbol ∗. Otherwise,
it would not be possible to know where is the end of the input: a simple problem like
“find out the length of the input” would not be solvable: no matter how far the head
has moved, it could not know whether the input has already ended. We denote the
alphabet Σ \ {∗} by Σ0. (Another solution would be to reserve a symbol for signalling
“end of input” instead.) We also assume that during its work, the Turing machine reads
its whole input; with this, we exclude only trivial cases.

Turing machines are defined in many different, but from all important points of view
equivalent, ways in different books. Often, tapes are infinite only in one direction; their
number can virtually always be restricted to two and in many respects even to one;
we could assume that besides the symbol ∗ (which in this case we identify with 0) the
alphabet contains only the symbol 1; about some tapes, we could stipulate that the
machine can only read from them or can only write onto them (but at least one tape
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Figure 3: A Turing maching with three tapes

must be both readable and writable) etc. The equivalence of these variants (from the
point of view of the computations performable on them) can be verified with more or less
work but without any greater difficulty. In this direction, we will prove only as much as
we need, but this should give a sufficient familiarity with the tools of such simulations.

Exercise 1.5 Construct a Turing machine that computes the following functions: (a)

x1 . . . xm 7→ xm . . . x1.
(b) x1 . . . xm 7→ x1 . . . xmx1 . . . xm.
(c) x1 . . . xm 7→ x1x1 . . . xmxm.
(d) for an input of length m consisting of all 1’s, the binary form of m; for all other
inputs, for all other inputs, it never halts.

Exercise 1.6 Assume that we have two Turing machines, computing the functions f :
Σ∗

0 → Σ∗
0 and g : Σ∗

0 → Σ∗
0. Construct a Turing machine computing the function f ◦ g.

Exercise 1.7 Construct a Turing machine that makes 2|x| steps for each input x.

Exercise 1.8 Construct a Turing machine that on input x, halts in finitely many steps
if and only if the symbol 0 occurs in x.

1.3.2 Universal Turing machines

Based on the preceding, we can notice a significant difference between Turing machines
and real computers: for the computation of each function, we constructed a separate
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Turing machine, while on real program-controlled computers, it is enough to write an
appropriate program. We will now show that Turing machines can also be operated
this way: a Turing machine can be constructed on which, using suitable “programs”,
everything is computable that is computable on any Turing machine. Such Turing
machines are interesting not just because they are more like programable computers but
they will also play an important role in many proofs.

Let T = 〈k + 1,Σ,ΓT , αT , βT , γT 〉 and S = 〈k,Σ,ΓS, αS , βS , γS〉 be two Turing ma-
chines (k ≥ 1). Let p ∈ Σ∗

0. We say that T simulates S with program p if for arbitrary
words x1, . . . , xk ∈ Σ∗

0, machine T halts in finitely many steps on input (x1, . . . , xk, p) if
and only if S halts on input (x1, . . . , xk) and if at the time of the stop, the first k tapes
of T each have the same content as the tapes of S.

We say that a (k+1)-tape Turing machine is universal (with respect to k-tape Turing
machines) if for every k-tape Turing machine S over Σ, there is a word (program) p with
which T simulates S.

Theorem 1.1 For every number k ≥ 1 and every alphabet Σ there is a (k + 1)-tape
universal Turing machine.

Proof. The basic idea of the construction of a universal Turing machine is that on
tape k+1, we write a table describing the work of the Turing machine S to be simulated.
Besides this, the universal Turing machine T writes it up for itself, which state of the
simulated machine S is currently in (even if there is only a finite number of states, the
fixed machine T must simulate all machines S, so it “cannot keep in its head” the states
of S). In each step, on the basis of this, and the symbols read on the other tapes, it
looks up in the table the state that S makes the transition into, what it writes on the
tapes and what moves the heads make.

First, we give the construction using k + 2 tapes. For the sake of simplicity, assume
that Σ contains the symbols “0”, “1”, and “–1”. Let S = 〈k,Σ,ΓS , αS , βS , γS〉 be an
arbitrary k-tape Turing machine. We identify each element of the state set ΓS \{STOP}
with a word of length r over the alphabet Σ∗

0. Let the “code” of a given position of
machine S be the following word:

gh1 . . . hkαS(g, h1, . . . , hk)βS(g, h1, . . . , hk)γS(g, h1, . . . , hk)

where g ∈ ΓS is the given state of the control unit, and h1, . . . , hk ∈ Σ are the symbols
read by each head. We concatenate all such words in arbitrary order and obtain so the
word aS . This is what we write on tape k + 1; while on tape k + 2, we write a state of
machine S, initially the name of the START state.

Further, we construct the Turing machine T ′ which simulates one step or S as follows.
On tape k + 1, it looks up the entry corresponding to the state remembered on tape
k + 2 and the symbols read by the first k heads, then it reads from there what is to
be done: it writes the new state on tape k + 2, then it lets its first k heads write the
appropriate symbol and move in the appropriate direction.

For the sake of completeness, we also define machine T ′ formally, but we also make
some concession to simplicity in that we do this only for the case k = 1. Thus,
the machine has three heads. Besides the obligatory “START” and “STOP” states,
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let it also have states NOMATCH-ON, NOMATCH-BACK-1, NOMATCH-BACK-2,
MATCH-BACK, WRITE, MOVE and AGAIN. Let h(i) denote the symbol read by
the i-th head (1 ≤ i ≤ 3). We describe the functions α, β, γ by the table in Figure 4
(wherever we do not specify a new state the control unit stays in the old one).

In the typical run in Figure 5, the numbers on the left refer to lines in the above
program. The three tapes are separated by triple vertical lines, and the head positions
are shown by underscores.

Now return to the proof of Theorem 1.1. We can get rid of the (k + 2)-nd tape
easily: its contents (which is always just r cells) will be placed on cells −1,−2, . . . ,−r.
It seems, however, that we still need two heads on this tape: one moves on its positive
half, and one on the negative half (they don’t need to cross over). We solve this by
doubling each cell: the original symbol stays in its left half, and in its right half there is
a 1 if the corresonding head would just be there (the other right half cells stay empty).
It is easy to describe how a head must move on this tape in order to be able to simulate
the movement of both original heads. �

Exercise 1.9 Write a simulation of a Turing machine with a doubly infinite tape by a
Turing machine with a tape that is infinite only in one direction.

Exercise 1.10 Show that if we simulate a k-tape machine on the (k+1)-tape universal
Turing machine, then on an arbitrary input, the number of steps increases only by a
multiplicative factor proportional to the length of the simulating program.

Exercise 1.11 Let T and S be two one-tape Turing machines. We say that T simulates
the work of S by program p (here p ∈ Σ∗

0) if for all words x ∈ Σ∗
0, machine T halts on

input p ∗ x in a finite number of steps if and only if S halts on input x and at halting,
we find the same content on the tape of T as on the tape of S. Prove that there is a
one-tape Turing machine T that can simulate the work of every other one-tape Turing
machine in this sense.

1.3.3 More tapes versus one tape

Our next theorem shows that, in some sense, it is not essential, how many tapes a Turing
machine has.

Theorem 1.2 For every k-tape Turing machine S there is a one-tape Turing machine
T which replaces S in the following sense: for every word x ∈ Σ∗

0, machine S halts in
finitely many steps on input x if and only if T halts on input x, and at halt, the same
is written on the last tape of S as on the tape of T . Further, if S makes N steps then T
makes O(N2) steps.

Proof. We must store the content of the tapes of S on the single tape of T . For
this, first we “stretch” the input written on the tape of T : we copy the symbol found
on the i-th cell onto the (2ki)-th cell. This can be done as follows: first, starting from
the last symbol and stepping right, we copy every symbol right by 2k positions. In the

11



START:

1: if h(2) = h(3) 6= ∗ then 2 and 3 moves right;

2: if h(2), h(3) 6= ∗ and h(2) 6= h(3) then “NOMATCH-ON” and 2,3 move right;

8: if h(3) = ∗ and h(2) 6= h(1) then “NOMATCH-BACK-1” and 2 moves right,
3 moves left;

9: if h(3) = ∗ and h(2) = h(1) then “MATCH-BACK”, 2 moves right and 3
moves left;

18: if h(3) 6= ∗ and h(2) = ∗ then “STOP”;

NOMATCH-ON:

3: if h(3) 6= ∗ then 2 and 3 move right;

4: if h(3) = ∗ then “NOMATCH-BACK-1” and 2 moves right, 3 moves left;

NOMATCH-BACK-1:

5: if h(3) 6= ∗ then 3 moves left, 2 moves right;

6: if h(3) = ∗ then “NOMATCH-BACK-2”, 2 moves right;

NOMATCH-BACK-2:

7: “START”, 2 and 3 moves right;

MATCH-BACK:

10: if h(3) 6= ∗ then 3 moves left;

11: if h(3) = ∗ then “WRITE-STATE” and 3 moves right;

WRITE:

12: if h(3) 6= ∗ then 3 writes the symbol h(2) and 2,3 moves right;

13: if h(3) = ∗ then “MOVE”, head 1 writes h(2), 2 moves right and 3 moves
left;

MOVE:

14: “AGAIN”, head 1 moves h(2);

AGAIN:

15: if h(2) 6= ∗ and h(3) 6= ∗ then 2 and 3 move left;

16: if h(2) 6= ∗ but h(3) = ∗ then 2 moves left;

17: if h(2) = h(3) = ∗ then “START”, and 2,3 move right.

Figure 4: A universal Turing machine
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line Tape 3 Tape 2 Tape 1
1 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
2 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
3 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
4 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
5 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
6 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
7 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
1 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
8 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
9 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗

10 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
11 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
12 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
13 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
14 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
15 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
16 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
17 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
1 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗

18 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗

Figure 5: Example run of the universal Turing machine

q q q H1 s5 t5 s6 t6 H2 s7 t7

6

simulated
head 1

?

simulates 5th cell
of first tape

6

simulated
head 2

?

simulates 7th cell
of second tape

qqq

Figure 6: One tape simulating two tapes
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meantime, we write ∗ on positions 1, 2, . . . , 2k − 1. Then starting from the last symbol,
it moves every symbol in the last block of nonblanks 2k positions to right, etc.

Now, position 2ki+ 2j− 2 (1 ≤ j ≤ k) will correspond to the i-th cell of tape j, and
position 2k + 2j − 1 will hold a 1 or ∗ depending on whether the corresponding head of
S, at the step corresponding to the computation of S, is scanning that cell or not. Also,
let us mark by a 0 the first even-numbered cell of the empty ends of the tapes. Thus,
we assigned a configuration of T to each configuration of the computation of S.

Now we show how T can simulate the steps of S. First of all, T “keeps in its head”
which state S is in. It also knows what is the remainder of the number of the cell modulo
2k scanned by its own head. Starting from right, let the head now make a pass over
the whole tape. By the time it reaches the end it knows what are the symbols read by
the heads of S at this step. From here, it can compute what will be the new state of
S what will its heads write and wich direction they will move. Starting backwards, for
each 1 found in an odd cell, it can rewrite correspondingly the cell before it, and can
move the 1 by 2k positions to the left or right if needed. (If in the meantime, it would
pass beyond the beginning or ending 0, then it would move that also by 2k positions in
the appropriate direction.)

When the simulation of the computation of S is finished, the result must still be
“compressed”: the content of cell 2ki must be copied to cell i. This can be done
similarly to the initial “stretching”.

Obviously, the above described machine T will compute the same thing as S. The
number of steps is made up of three parts: the times of “stretching”, the simulation and
“compression”. Let M be the number of cells on machine T which will ever be scanned
by the machine; obviously, M = O(N). The “stretching” and “compression” need time
O(M2). The simulation of one step of S needs O(M) steps, so the simulation needs
O(MN) steps. All together, this is still only O(N2) steps. �

As we have seen, the simulation of a k-tape Turing machine by a 1-tape Turing
machine is not completely satisfactory: the number of steps increases quadratically.
This is not just a weakness of the specific construction we have described; there are
computational tasks that can be solved on a 2-tape Turing machine in some N steps but
any 1-tape Turing machine needs N2 steps to solve them. We describe a simple example
of such a task.

A palindrome is a word (say, over the alphabet {0, 1}) that does not change when
reversed; i.e., x1 . . . xn is a palindrome iff xi = xn−i+1 for all i. Let us analyze the task
of recognizing a palindrome.

Theorem 1.3 (a) There exists a 2-tape Turing machine that decides whether the input
word x ∈ {0, 1}n is a palindrome in O(n) steps. (b) Every one-tape Turing machine that

decides whether the input word x ∈ {0, 1}n is a palindrome has to make Ω(n2) steps in
the worst case.

Proof. Part (a) is easy: for example, we can copy the input on the second tape in n
steps, then move the first head to the beginning of the input in n further steps (leave
the second head at the end of the word), and compare x1 with xn, x2 with xn−1, etc.,
in another n steps. Altogether, this takes only 3n steps.
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Part (b) is more difficult to prove. Consider any one-tape Turing machine that
recognizes palindromes. To be specific, say it ends up with writing a “1” on the starting
field of the tape if the input word is a palindrome, and a “0” if it is not. We are going to
argue that for every n, on some input of length n, the machine will have to make Ω(n2)
moves.

It will be convenient to assume that n is divisible by 3 (the argument is very similar
in the general case). Let k = n/3. We restrict the inputs to words in which the middle
third is all 0, i.e., to words of the form x1 . . . xk0 . . . 0x2k+1 . . . xn. (If we can show that
already among such words, there is one for which the machine must work for Ω(n2) time,
we are done.)

Fix any j such that k ≤ j ≤ 2k. Call the dividing line between fields j and j + 1 of
the tape the cut after j. Let us imagine that we have a little deamon sitting on this, and
recording the state of the central unit any time the head passes between these fields. At
the end of the computation, we get a sequence g1g2 . . . gt of elements of Γ (the length t
of the sequence may be different for different inputs), the j-log of the given input. The
key to proof is the following observation.

Lemma. Let x = x1 . . . xk0 . . . 0xk . . . x1 and y = y1 . . . yk0 . . . 0yk . . . y1 be two different
palindromes and k ≤ j ≤ 2k. Then their j-logs are different.

Proof of the lemma. Suppose that the j-logs of x and y are the same, say g1 . . . gt.
Consider the input z = x1 . . . xk0 . . . 0yk . . . y1. Note that in this input, all the xi are to
the left from the cut and all the yi are to the right.

We show that the machine will conclude that z is a palindrome, which is a contra-
diction.

What happens when we start the machine with input z? For a while, the head will
move on the fields left from the cut, and hence the computation will proceed exactly
as with input x. When the head first reaches field j + 1, then it is in state g1 by the
j-log of x. Next, the head will spend some time to the right from the cut. This part of
the computation will be indentical with the corresponding part of the computation with
input y: it starts in the same state as the corresponding part of the computation of y
does, and reads the same characters from the tape, until the head moves back to field j
again. We can follow the computation on input z similarly, and see that the portion of the
computation during itsm-th stay to the left of the cut is identical with the corresponding
portion of the computation with input x, and the portion of the computation during
its m-th stay to the right of the cut is identical with the corresponding portion of the
computation with input y. Since the computation with input x ends with writing a “1”
on the starting field, the computation with input z ends in the same way. This is a
contradiction.

Now we return to the proof of the theorem. For a given m, the number of different
j-logs of length less than m is at most

1 + |Γ| + |Γ|2 + · · · + |Γ|m−1 =
|Γ|m − 1

|Γ| − 1
< 2|Γ|m−1.
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This is true for any choice of j; hence the number of palindromes whose j-log for some
j has length less than m is at most

2(k + 1)|Γ|m−1.

There are 2k palindromes of the type considered, and so the number of palindromes for
whose j-logs have length at least m for all j is at least

2k − 2(k + 1)|Γ|m−1. (1)

So if we choose m so that this number is positive, then there will be a palindrome for
which the j-log has length at least m for all j. This implies that the deamons record at
least (k + 1)m moves, so the computation takes at least (k + 1)(m+ 1) steps.

It is easy to check that the choice m = n/(6 log |Γ|) makes (1) positive, and so we
have found an input for which the computation takes at least (k + 1)m > n2/(6 log |Γ|)
steps. �

Exercise 1.12 In the simulation of k-tape machines by one-tape machines given above
the finite control of the simulating machine T was somewhat bigger than that of the
simulated machine S: moreover, the number of states of the simulating machine depends
on k. Prove that this is not necessary: there is a one-tape machine that can simulate
arbitrary k-tape machines.

Exercise 1.13 * Show that every k-tape Turing machine can be simulated by a two-
tape one in such a way that if on some input, the k-tape machine makes N steps then
the two-tape one makes at most O(N logN).

[Hint: Rather than moving the simulated heads, move the simulated tapes! (Hennie-
Stearns)]

Exercise 1.14 Two-dimensional tape. (a) Define the notion of a Turing machine with
a two-dimensional tape.
(b) Show that a two-tape Turing machine can simulate a Turing machine with a two-
dimensional tape. [Hint: Store on tape 1, with each symbol of the two-dimensional tape,
the coordinates of its original position.]
(c) Estimate the efficiency of the above simulation.

Exercise 1.15 * Let f : Σ∗
0 → Σ∗

0 be a function. An online Turing machine contains,
besides the usual tapes, two extra tapes. The input tape is readable only in one
direction, the output tape is writeable only in one direction. An online Turing machine
T computes function f if in a single run, for each n, after receiving n symbols x1, . . . , xn,
it writes f(x1 . . . xn) on the output tape, terminated by a blank.

Find a problem that can be solved more efficiently on an online Turing machinw with
a two-dimensional working tape than with a one-dimensional working tape.

[Hint: On a two-dimensional tape, any one of n bits can be accessed in
√
n steps. To

exploit this, let the input represent a sequence of operations on a “database”: insertions
and queries, and let f be the interpretation of these operations.]
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Exercise 1.16 Tree tape. (a) Define the notion of a Turing machine with a tree-like
tape.
(b) Show that a two-tape Turing machine can simulate a Turing machine with a tree-
like tape. [Hint: Store on tape 1, with each symbol of the two-dimensional tape, an
arbitrary number identifying its original position and the numbers identifying its parent
and children.]
(c) Estimate the efficiency of the above simulation.
(d) Find a problem which can be solved more efficiently with a tree-like tape than with
any finite-dimensional tape.

1.4 The Random Access Machine

Trying to design Turing machines for different tasks, one notices that a Turing machine
spends a lot of its time by just sending its read-write heads from one end of the tape to
the other. One might design tricks to avoid some of this, but following this line we would
drift farther and farther away from real-life computers, which have a “random-access”
memory, i.e., which can access any field of their memory in one step. So one would like
to modify the way we have equipped Turing machines with memory so that we can reach
an arbitrary memory cell in a single step.

Of course, the machine has to know which cell to access, and hence we have to assigne
addresses to the cells. We want to retain the feature that the memory is unbounded;
hence we allow arbitrary integers as addresses. The address of the cell to access must
itself be stored somewhere; therefore, we allow arbitrary integers to be stored in each cell
(rather than just a single element of a fintie alphabet, as in the case of Turing machines).

Finally, we make the model more similar to everyday machines by making it pro-
grammable (we could also say that we define the analogue of a universal Turing machine).
This way we get the notion of a Random Access Machine or RAM machine.

Now let us be more precise. The memory of a Random Access Machine is a doubly
infinite sequence . . . x[−1], x[0], x[1], . . . of memory registers. Each register can store
an arbitrary integer. At any given time, only finitely many of the numbers stored in
memory are different from 0.

The program store is a (one-way) infinite sequence of registers called lines. We write
here a program of some finite length, in a certain programming language similar to the
assembly language of real machines. It is enough, for example, to permit the following
statements:

x[i]:=0; x[i]:=x[i]+1; x[i]:=x[i]-1;
x[i]:=x[i]+x[j]; x[i]:=x[i]-x[j];
x[i]:=x[x[j]]; x[x[i]]:=x[j];
IF x[i]≤ 0 THEN GOTO p.

Here, i and j are the addresses of memory registers (i.e. arbitrary integers), p is the
address of some program line (i.e. an arbitrary natural number). The instruction before
the last one guarantees the possibility of immediate access. With it, the memory behaves
as an array in a conventional programming language like Pascal. The exact set of basic
instructions is important only to the extent that they should be sufficiently simple to
implement, expressive enough to make the desired computations possible, and their
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number be finite. For example, it would be sufficient to allow the values −1,−2,−3
for i, j. We could also omit the operations of addition and subtraction from among the
elementary ones, since a program can be written for them. On the other hand, we could
also include multiplication, etc.

The input of the Random Access Machine is a finite sequence of natural numbers
written into the memory registers x[0], x[1], . . .. The Random Access Machine carries
out an arbitrary finite program. It stops when it arrives at a program line with no
instruction in it. The output is defined as the content of the registers x[i] after the
program stops.

It is easy to write RAM subroutines for simple tasks that repeatedly occur in pro-
grams solving more difficult things. Several of these are given as exercises. Here we
discuss three tasks that we need later on in this chapter.

Example 1.2 (Value assignment) Let i and j be two integers. Then the assignment

x[i]:=j

can be realized by the RAM program

x[i]:=0
x[i]:=x[i]+1;
...

x[i]:=x[i]+1;











j times

if j is positive, and

x[i]:=0
x[i]:=x[i]-1;
...

x[i]:=x[i]-1;











|j| times

if j is negative.

Example 1.3 (Addition of a constant) Let i and j be two integers. Then the state-
ment

x[i]:=x[i]+j

can be realized in the same way as in the previous example, just omitting the first row.

Example 1.4 (Multiple branching) Let p0, p1, . . . , pr be indices of program rows,
and suppose that we know that the contents of register i satisfies 0 ≤ x[i] ≤ r. Then
the statement

GOTO px[i]

can be realized by the RAM program
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IF x[i]≤0 THEN GOTO p0;

x[i]:=x[i]-1:
IF x[i]≤0 THEN GOTO p1;

x[i]:=x[i]-1:
...

IF x[i]≤0 THEN GOTO pr.

(Attention must be paid when including this last program segment in a program, since
it changes the content of xi. If we need to preserve the content of x[i], but have a
“scratch” register, say x[−1], then we can do

x[-1]:=x[i];

IF x[-1]≤0 THEN GOTO p0;

x[-1]:=x[-1]-1:

IF x[-1]≤0 THEN GOTO p1;

x[-1]:=x[-1]-1:

...

IF x[-1]≤0 THEN GOTO pr.

If we don’t have a scratch register than we have to make room for one; since we
won’t have to go into such details, we leave it to the exercises.

Now we show that the RAM and Turing machines can compute essentially the same
functions, and their running times do not differ too much either. Let us consider (for
simplicity) a 1-tape Turing machine, with alphabet {0, 1, 2}, where (deviating from
earlier conventions but more practically here) let 0 stand for the blank space symbol.

Every input x1 . . . xn of the Turing machine (which is a 1–2 sequence) can be in-
terpreted as an input of the RAM in two different ways: we can write the numbers n,
x1, . . . , xn into the registers x[0], . . . , x[n], or we could assign to the sequence x1 . . . xn a
single natural number by replacing the 2’s with 0 and prefixing a 1. The output of the
Turing machine can be interpreted similarly to the output of the RAM.

We will consider the first interpretation first.

Theorem 1.4 For every (multitape) Turing machine over the alphabet {0, 1, 2}, one
can construct a program on the Random Access Machine with the following properties.
It computes for all inputs the same outputs as the Turing machine and if the Turing ma-
chine makes N steps then the Random Access Machine makes O(N) steps with numbers
of O(logN) digits.

Proof. Let T = 〈1, {0, 1, 2},Γ, α, β, γ〉. Let Γ = {1, . . . , r}, where 1 = START and r
= STOP. During the simulation of the computation of the Turing machine, in register
2i of the RAM we will find the same number (0,1 or 2) as in the i-th cell of the Turing
machine. Register x[1] will remember where is the head on the tape, and the state of
the control unit will be determined by where we are in the program.

Our program will be composed of parts Qij simulating the action of the Turing
machine when in state i and reading symbol j (1 ≤ i ≤ r − 1, 0 ≤ j ≤ 2) and lines Pi
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that jump to Qi,j if the Turing machine is in state i and reads symbol j. Both are easy
to realize. Pi is simply

GOTO Qi,x[1];

for 1 ≤ i ≤ i − 1; the program part Pr consists of a single empty program line. The
program parts Qij are only a bit more complicated:

x[x[1]]:= β(i, j);
x[1]:=x[1]+2γ(i, j);
GOTO Pα(i,j);

The program itself looks as follows.

x[1]:=0;

P1

P2

...

Pr

Q1,0

...

Qr−1,2

With this, we have described the simulation of the Turing machine by the RAM. To
analyze the number of steps and the size of the number used, it is enough to note that
in N steps, the Turing machine can write anything in at most O(N) registers, so in each
step of the Turing machine we work with numbers of length O(logN). �

Another interpretation of the input of the Turing machine is, as mentioned above, to
view the input as a single natural number, and to enter it into the RAM as such. This
number a is thus in register x[0]. In this case, what we can do is to compute the digits
of a with the help of a simple program, write these (deleting the 1 in the first position)
into the registers x[0], . . . , x[n − 1], and apply the construction described in Theorem
1.4.

Remark 1.1 In the proof of Theorem 1.4, we did not use the instruction x[i] := x[i] +
x[j]; this instruction is needed when computing the digits of the input. Even this could
be accomplished without the addition operation if we dropped the restriction on the
number of steps. But if we allow arbitrary numbers as inputs to the RAM then, without
this instruction the running time the number of steps obtained would be exponential
even for very simple problems. Let us e.g. consider the problem that the content a
of register x[1] must be added to the content b of register x[0]. This is easy to carry
out on the RAM in a bounded number of steps. But if we exclude the instruction
x[i] := x[i] + x[j] then the time it needs is at least min{|a|, |b|}.

Let a program be given now for the RAM. We can interpret its input and output
each as a word in {0, 1,−,#}∗ (denoting all occurring integers in binary, if needed with
a sign, and separating them by #). In this sense, the following theorem holds.
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Theorem 1.5 For every Random Access Machine program there is a Turing machine
computing for each input the same output. If the Random Access Machine has running
time N then the Turing machine runs in O(N2) steps.

Proof. We will simulate the computation of the RAM by a four-tape Turing machine.
We write on the first tape the content of registers x[i] (in binary, and with sign if it is
negative). We could represent the content of all registers (representing, say, the content
0 by the symbol “*”). This would cause a problem, however, because of the immediate
(“random”) access feature of the RAM. More exactly, the RAM can write even into the
register with number 2N using only one step with an integer of N bits. Of course, then
the content of the overwhelming majority of the registers with smaller indices remains
0 during the whole computation; it is not practical to keep the content of these on the
tape since then the tape will be very long, and it will take exponential time for the head
to walk to the place where it must write. Therefore we will store on the tape of the
Turing machine only the content of those registers into which the RAM actually writes.
Of course, then we must also record the number of the register in question.

What we will do therefore is that whenever the RAM writes a number y into a
register x[z], the Turing machine simulates this by writing the string ##y#z to the end
of its first tape. (It never rewrites this tape.) If the RAM reads the content of some
register x[z] then on the first tape of the Turing machine, starting from the back, the
head looks up the first string of form ##u#z; this value u shows what was written in
the z-th register the last time. If it does not find such a string then it treats x[z] as 0.

Each instruction of the “programming language” of the RAM is easy to simulate by
an appropriate Turing machine using only the three other tapes. Our Turing machine
will be a “supermachine” in which a set of states corresponds to every program line.
These states form a Turing machine which carries out the instruction in question, and
then it brings the heads to the end of the first tape (to its last nonempty cell) and to
cell 0 of the other tapes. The STOP state of each such Turing machine is identified
with the START state of the Turing machine corresponding to the next line. (In case of
the conditional jump, if x[i] ≤ 0 holds, the “supermachine” goes into the starting state
of the Turing machine corresponding to line p.) The START of the Turing machine
corresponding to line 0 will also be the START of the supermachine. Besides this, there
will be yet another STOP state: this corresponds to the empty program line.

It is easy to see that the Turing machine thus constructed simulates the work of the
RAM step-by-step. It carries out most program lines in a number of steps proportional
to the number of digits of the numbers occurring in it, i.e. to the running time of the
RAM spent on it. The exception is readout, for wich possibly the whole tape must be
searched. Since the length of the tape is N , the total number of steps is O(N2). �

Exercise 1.17 Write a program for the RAM that for a given positive number a (a)
determines the largest number m with 2m ≤ a;
(b) computes its base 2 representation;

Exercise 1.18 Let p(x) = a0+a1x+· · ·+anx
n be a polynomial with integer coefficients

a0, . . . , an. Write a RAM program computing the coefficients of the polynomial (p(x))2
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from those of p(x). Estimate the running time of your program in terms of n and
K = max{|a0|, . . . , |an|}.

Exercise 1.19 Prove that if a RAM is not allowed to use the instruction x[i] := x[i] +
x[j], then adding the content a of x[1] to the content b of x[2] takes at least min{|a|, |b|}
steps.

Exercise 1.20 Since the RAM is a single machine the problem of universality cannot be
stated in exactly the same way as for Turing machines: in some sense, this single RAM
is universal. However, the following “self-simulation” property of the RAM comes close.
For a RAM program p and input x, let R(p, x) be the output of the RAM. Let 〈p, x〉
be the input of the RAM that we obtain by writing the symbols of p one-by-one into
registers 1,2,. . ., followed by a symbol # and then by registers containing the original
sequence x. Prove that there is a RAM program u such that for all RAM programs p
and inputs x we have R(u, 〈p, x〉) = R(p, x).

Exercise 1.21 [Pointer Machine.] After having seen finite-dimensional tapes and a
tree tape, we may want to consider a machine with a more general directed graph its
storage medium. Each cell c has a fixed number of edges, numbered 1, . . . , r, leaving it.
When the head scans a certain cell it can move to any of the cells λ(c, i) (i = 1, . . . , r)
reachable from it along outgoing edges. Since it seems impossible to agree on the best
graph, we introduce a new kind of elementary operation: to change the structure of
the storage graph locally, around the scanning head. Arbitrary transformations can be
achieved by applying the following three operations repeatedly (and ignoring nodes that
become isolated): λ(c, i) := New, where New is a new node; λ(c, i) := λ(λ(c, j)) and
λ(λ(c, i)) := λ(c, j). A machine with this storage structure and these three operations
added to the usual Turing machine operations will be called a Pointer Machine.

Let us call RAM’ the RAM from which the operations of addition and subtraction
are omitted, only the operation x[i] := x[i] + 1 is left. Prove that the Pointer Machine
is equivalent to RAM’, in the following sense.

For every Pointer Machine there is a RAM’ program computing for each input the
same output. If the Pointer Machine has running time N then the RAM’ runs in O(N)
steps.

For every RAM’ program there is a Pointer Machine computing for each input the
same output. If the RAM’ has running time N then the Pointer Machine runs in O(N)
steps.

Find out what Remark 1.1 says for this simulation.

1.5 Boolean functions and Boolean circuits

A Boolean function is a mapping f : {0, 1}n → {0, 1}. The values 0,1 are sometimes
identified with the values False, True and the variables in f(x1, . . . , xn) are sometimes
called Boolean variables, Boolean variables or bits. In many algorithmic problems, there
are n input Boolean variables and one output bit. For example: given a graph G with
N nodes, suppose we want to decide whether it has a Hamiltonian cycle. In this case,
the graph can be described with

(

N
2

)

Boolean variables: the nodes are numbered from
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1 to N and xij (1 ≤ i < j ≤ N) is 1 if i and j are connected and 0 if they are not. The
value of the function f(x12, x13, . . . , xn−1,n) is 1 if there is a Hamilton cycle in G and
0 if there is not. Our problem is the computation of the value of this (implicitly given)
Boolean function.

There are only four one-variable Boolean functions: the identically 0, identically 1,
the identity and the negation: x → x = 1 − x. We also use the notation ¬x. There
are 16 Boolean functions with 2 variables (because there are 24 mappings of {0, 1}2 into
{0, 1}). We describe only some of these two-variable Boolean functions: the operation
of conjunction (logical AND):

x ∧ y =

{

1, if x = y = 1,

0, otherwise,

this can also be considered the common, or mod 2 multiplication, the operation of
disjunction (logical OR)

x ∨ y =

{

0, if x = y = 0,

1, otherwise,

the binary addition (logical exclusive OR of XOR)

x⊕ y = x+ y mod 2.

Among Boolean functions with several variables, one has the logical AND, OR and XOR
defined in the natural way. A more interesting function is MAJORITY, which is defined
as follows:

MAJORITY(x1, . . . , xn) =

{

1, if at least n/2 of the variables is 1;

0, otherwise.

These bit-operations are connected by a number of useful identities. All three op-
erations AND, OR and XOR are associative and commutative. There are several dis-
tributivity properties:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

and
x ∧ (y ⊕ z) = (x ∧ y) ⊕ (x ∧ z)

The DeMorgan identities connect negation with conjunction and disjunction:

x ∧ y = x ∨ y,
x ∨ y = x ∧ y

Expressions composed using the operations of negation, conjunction and disjunction are
called Boolean polynomials.

Lemma 1.6 Every Boolean function is expressible as a Boolean polynomial.
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Proof. Let a1, . . . , an ∈ {0, 1}. Let

zi =

{

xi, if ai = 1,

xi, if ai = 0,

and Ea1,...,an(x1, . . . , xn) = z1 ∧ · · · ∧ zn. Notice that Ea1,...,an(x1, . . . , xn) = 1 holds if
and only if (x1, . . . , xn) = (a1, . . . , an). Hence

f(x1, . . . , xn) =
∨

f(a1,...,an)=1

Ea1,...,an(x1, . . . , xn).

�

The Boolean polynomial constructed in the above proof has a special form. A
Boolean polynomial consisting of a single (negated or unnegated) variable is called a
literal. We call an elementary conjunction a Boolean polynomial in which variables and
negated variables are joined by the operation “∧”. (As a degenerate case, the constant
1 is also an elementary conjunction, namely the empty one.) A Boolean polynomial is a
disjunctive normal form if it consists of elementary conjunctions, joined by the operation
“∨”. We allow also the empty disjunction, when the disjunctive normal form has no
components. The Boolean function defined by such a normal form is identically 0. In
general, let us call a Boolean polynomial satisfiable if it is not identically 0. As we see,
a nontrivial disjunctive normal form is always satisfiable.

By a disjunctive k-normal form, we understand a disjunctive normal form in which
every conjunction contains at most k literals.

Example 1.5 Here is an important example of a Boolean function expressed by disjunc-
tive normal form: the selection function. Borrowing the notation from the programming
language C, we define it as

x?y : z =

{

y, if x = 1,

z, if x = 0.

It can be expressed as x?y : z = (x ∧ y) ∨ (¬x ∧ z). It is possible to construct the
disjunctive normal form of an arbitrary Boolean function by the repeated application of
this example.

Interchanging the role of the operations “∧” and “∨”, we can define the elementary
disjunction and conjunctive normal form. The empty conjunction is also allowed, it is
the constant 1. In general, let us call a Boolean polynomial a tautology if it is identically
1.

We found that all Boolean functions can be expressed by a disjunctive normal form.
From the disjunctive normal form, we can obtain a conjunctive normal form, applying
the distributivity property repeatedly. We have seen that this is a way to decide whether
the polynomial is a tautology. Similarly, an algorithm to decide whether a polynomial
is satisfiable is to bring it to a disjunctive normal form. Both algorithms can take very
long time.
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In general, one and the same Boolean function can be expressed in many ways as a
Boolean polynomial. Given such an expression, it is easy to compute the value of the
function. However, most Boolean functions can be expressed only by very large Boolean
polynomials; this may even be so for Boolean functions that can be computed fast.

Example 1.6 [Majority Function] Let f(x1, . . . , xn) = 1 if and only if at least half of
the variables are 1.

One reason why a computation might be much faster than the size of the Boolean
polynomial is that the size of a Boolean polynomial does not reflect the possibility
of reusing partial results. This deficiency is corrected by the following more general
formalism.

Let G be a directed graph with numbered nodes that does not contain any directed
cycle (i.e. is acyclic). The sources, i.e. the nodes without incoming edges, are called
input nodes. We assign a literal (a variable or its negation) to each input node. The
sinks of the graph, i.e. those of its nodes without outgoing edges, will be called output
nodes. (In what follows, we will deal most frequently with circuits that have a single
output node.)

Each node v of the graph that is not a source, i.e. which has some degree d = d+(v) >
0, computes a Boolean function Fv : {0, 1}d → {0, 1}. The incoming edges of the node
are numbered in some increasing order and the variables of the function Fv are made to
correspond to them in this order. Such a graph is called a circuit.

The size of the circuit is the number of gates (including the input gates); its depth
is the maximal length of paths leading from input nodes to output nodes.

Every circuit H determines a Boolean function. We assign to each input node the
value of the assigned literal. This is the input assignment, or input of the computation.
From this, we can compute to each node v a value x(v) ∈ {0, 1}: if the start nodes
u1, . . . , ud of the incoming edges have already received a value then v receives the value
Fv(x(u1), . . . , x(ud)). The values at the sinks give the output of the computation. We
will say about the function defined this way that it is computed by the circuit H .

Exercise 1.22 Prove that in the above definition, the circuit computes a unique output
for every possible input assignment.

Example 1.7 A NOR circuit computing x⇒ y. We use the formulas

x⇒ y = ¬(¬x NOR y), ¬x = xNOR x.

If the states of the input lines of the circuit are x and y then the state of the output
line is x ⇒ y. The assignment can be computed in 3 stages, since the longest path has
3 edges. See Figure 7.

Example 1.8 For a natural number n we can construct a circuit that will simultane-
ously compute all the functions Ea1,...,an(x1, . . . , xn) (as defined above in the proof of
Lemma 1.6) for all values of the vector (a1, . . . , an). This circuit is called the decoder
circuit since it has the following behavior: for each input x1, . . . , xn only one output
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Figure 7: A NOR circuit computing x⇒ y, with assignment on edges

node, namely Ex1,...,xn will be true. If the output nodes are consecutively numbered
then we can say that the circuit decodes the binary representation of a number k into
the k-th position in the output. This is similar to addressing into a memory and is
indeed the way a “random access” memory is addressed. Suppose that a decoder circuit
is given for n. To obtain one for n+ 1, we split each output y = Ea1,...,an(x1, . . . , xn) in
two, and form the new nodes

Ea1,...,an,1(x1, . . . , xn+1) = y ∧ xn+1,

Ea1,...,an,0(x1, . . . , xn+1) = y ∧ ¬xn+1,

using a new copy of the input xn+1 and its negation.

Of course, every Boolean function is computable by a trivial (depth 1) circuit in
which a single (possibly very complicated) gate computes the output immediately from
the input. The notion of circuits is interesting if we restrict the gates to some simple
operations (AND, OR, exclusive OR, implication, negation, etc.). If each gate is a
conjunction, disjunction or negation then using the DeMorgan rules, we can push the
negations back to the inputs which, as literals, can be negated variables anyway. If all
gates are disjunctions or conjunctions then the circuit is called Boolean.

The in-degree of the nodes is is called fan-in. This is often restricted to 2 or to some
fixed maximum. Sometimes, bounds are also imposed on the out-degree, or fan-out.
This means that a partial result cannot be “freely” distributed to an arbitrary number
of places.

Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function and let

f(x1, . . . , xn) = E1 ∨ · · · ∨ EN

be its representation by a disjunctive normal form. This representation corresponds to a
depth 2 circuit in the following manner: let its input points correspond to the variables
x1, . . . , xn and the negated variables x1, . . . , xn. To every elementary conjunction Ei,
let there correspond a vertex into wich edges run from the input points belonging to the
literals occurring in Ei, and which computes the conjunction of these. Finally, edges
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lead from these vertices into the output point t which computes their disjunction. Note
that this circuit has large fan-in and fan-out.

We can consider each Boolean circuit as an algorithm serving to compute some
Boolean function. It can be seen immediately, however, that circuits “can do” less than
e.g. Turing machines: a circuit can deal only with inputs and outputs of a given size.
It is also clear that (since the graph is acyclic) the number of computation steps is
bounded. If, however, we fix the length of the input and the number of steps then
by an appropriate circuit, we can already simulate the work of every Turing machine
computing a single bit. We can express this also by saying that every Boolean function
computable by a Turing machine in a certain number of steps is also computable by a
suitable, not too big, Boolean circuit.

Theorem 1.7 For every Turing machine T and every pair n,N ≥ 1 of numbers there
is a Boolean circuit with n inputs, depth O(N), indegree at most 2, that on an input
(x1, . . . , xn) ∈ {0, 1}n computes 1 if and only if after N steps of the Turing machine T ,
on the 0’th cell of the first tape, there is a 1.

(Without the restrictions on the size and depth of the Boolean circuit, the statement
would be trivial since every Boolean function can be expressed by a Boolean circuit.)

Proof. Let us be given a Turing machine T = 〈k,Σ, α, β, γ〉 and n,N ≥ 1. For
simplicity, let us assume k = 1. Let us construct a directed graph with vertices v[t, g, p]
and w[t, p, h] where 0 ≤ t ≤ N , g ∈ Γ, h ∈ Σ and −N ≤ p ≤ N . An edge runs into
every point v[t+ 1, g, p] and w[t+ 1, p, h] from the points v[r, g′, p+ ε] and w[r, p+ ε, h′]
(g′ ∈ Γ, h′ ∈ Σ, ε ∈ {−1, 0, 1}). Let us take n input points s0, . . . , sn−1 and draw an
edge from si into the points w[0, i, h] (h ∈ Σ). Let the output point be w[N, 0, 1].

In the vertices of the graph, the logical values computed during the evaluation of the
Boolean circuit (which we will denote, for simplicity, just like the corresponding vertex)
describe a computation of the machine T as follows: the value of vertex v[t, g, p] is true
if after step t, the control unit is in state g and the head scans the p-th cell of the tape.
The value of vertex w[t, p, h] is true if after step t, the p-th cell of the tape holds symbol
h.

Certain ones among these logical values are given. The machine is initially in the
state START, and the head starts from cell 0:

v[0, g, p] = 1 ⇔ g = START ∧ p = 0,

further we write the input onto cells 0, . . . , n− 1 of the tape:

w[0, p, h] = 1 ⇔ ((p < 0 ∨ p ≥ n) ∧ h = ∗) ∨ (0 ≤ p ≤ n− 1 ∧ h = xp).

The rules of the Turing machine tell how to compute the logical values corresponding
to the rest of the vertices:

v[t+ 1, g, p] = 1 ⇔∃g′ ∈ Γ, ∃h′ ∈ Σ : α(g′, h′) = g ∧ v[t, g′, p− γ(g′, h′)] = 1

∧ w[t, p− γ(g′, h′), h′] = 1.

w[t+ 1, p, h] = 1 ⇔(∃g′ ∈ Γ, ∃h′ ∈ Σ : v[t, g′, p] = 1 ∧ w[t, p, h′] = 1 ∧ β(g′, h′) = h)

∨ (w[t, p, h] = 1 ∧ ∀g′ ∈ Γ : w[t, g′, p] = 0).
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It can be seen that these recursions can be taken as logical functions which turn the
graph into a Boolean circuit computing the desired functions. The size of the circuit will
be O(N2), its depth O(N). Since the in-degree of each point is at most 3|Σ| · |Γ| = O(1),
we can transform the circuit into a Boolean circuit of similar size and depth. �

Remark 1.2 Our construction of a universal Turing machine in Theorem 1.1 is ineffi-
cient and unrealistic. For most commonly used transition functions α, β, γ, a table is a
very inefficient way to store the description. A Boolean circuit (with a Boolean vector
output) is often a vastly more economical representation. It is possible to construct a
universal one-tape Turing machine V1 taking advantage of such a representation. The
beginning of the tape of this machine would not list the table of the transition function
of the simulated machine, but would rather describe the Boolean circuit computing it,
along with a specific state of this circuit. Each stage of the simulation would first sim-
ulate the Boolean circuit to find the values of the functions α, β, γ and then proceed as
before.

Exercise 1.23 Consider that x1x0 is the binary representation of an integer x = 2x1 +
x0 and similarly, y1y0 is a binary representation of a number y. Let f(x0, x1, y0, y1, z0, z1)
be the Boolean formula which is true if and only if z1z0 is the binary representation of
the number x+ y mod 4.

Express this formula using only conjunction, disjunction and negation.

Exercise 1.24 Convert into disjunctive normal form the following Boolean functions.
(a) x+ y + z mod 2,
(b) x+ y + z + t mod 2

Exercise 1.25 Convert into conjunctive normal form the formula (x∧y ∧ z) ⇒ (u∧v).

Exercise 1.26 Prove that for every Boolean circuit of size N , there is a Boolean circuit
of size at most N2 with indegree 2, computing the same Boolean function.

Exercise 1.27 Prove that for every Boolean circuit of size N and indegree 2 there is
a Boolean circuit of size O(N) and indegree at most 2 computing the same Boolean
function.

Exercise 1.28 Prove that the Boolean polynomials are in one-to-one correspondence
with those Boolean circuits that are trees.

Exercise 1.29 Monotonic Boolean functions. A Boolean function is monotonic if its
value does not decrease whenever any of the variables is increased. Prove that for
every Boolean circuit computing a monotonic Boolean function there is another one
that computes the same function and uses only nonnegated variables and constants as
inputs.
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Exercise 1.30 Universal circuit. For each n, construct a Boolean circuit whose gates
have indegree ≤ 2, which has size O(2n) with 2n +n inputs and which is universal in the
following sense: that for all binary strings p of length 2n and binary string x of length
n, the output of the circuit with input xp is the value, with argument x, of the Boolean
function whose table is given by p. [Hint: use the decoder circuit of Example 1.8.]

Exercise 1.31 Circuit size. The gates of the Boolean circuits in this exercise are as-
sumed to have indegree ≤ 2. (a) Prove the existence of a constant c such that for all n,
there is a Boolean function such that each Boolean circuit computing it has size at least
c · 2n/n. [Hint: count the number of circuits of size k.]
(b)* For a Boolean function f with n inputs, show that the size of the Boolean circuit
needed for its implementation is O(2n/n).
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2 Algorithmic decidability

2.1 Introduction

In this chapter, we study the question: which problems can be solved by any algorithm
(or computing device) at all?

Until the 1930’s, it was the consensus among mathematicians — mostly not spelled
out precisely — that every mathematical question that can be formulated precisely, can
also be solved. This statement has two interpretations. We can talk about a single yes-
or-no question (say: is every planar graph 4-colorable? is every even integer larger than 2
the sum of two primes?), and then the decision means that it can be proved or disproved
from the axioms of set theory (which were, and still are, generally accepted as the axioms
of mathematics). This belief was destroyed by the the Austrian mathematician Kurt
Gödel, who published a famous result in 1931. According to this, there are perfectly
well formulated mathematical questions that cannot be answered from the axioms of set
theory.

Now one could think that this is a weakness of this particular system of axioms:
perhaps by adding some generally accepted axioms (which had been overlooked) one
could get a new system that would allow us to decide the truth of every well-formulated
mathematical statement. Gödel proved that this hope was also vain: no matter how we
extend the axiom system of set theory (allowing even infinitely many axioms, subject to
some reasonable restrictions: no contradiction should be derivable and that it should be
possible to decide about a statement whether it is an axiom or not), still there remain
unsolvable problems.

The second meaning of the question of decidability is when we are concerned with
a family of questions and are looking for an algorithm that decides each of them. In
1936, Church formulated a family of problems for which he could prove that they are
not decidable by any algorithm. For this statement to make sense, the mathematical
notion of an algorithm had to be created. Church used tools from logic, the notion of
recursive functions, to formalize the notion of algorithmic solvability.

Similarly as in connection with Gödel’s Theorem, it seems quite possible that one
could define algorithmic solvability in a different way, or extend the arsenal of algorithms
with new tools, allowing the solution of new problems. In the same year when Church
published his work, Turing created the notion of a Turing machine. Nowadays we call
something algorithmically computable if it can be computed by some Turing machine.
But it turned out that Church’s original model is equivalent to the Turing machine in
the sense the same computational problems can be solved by them. We have seen in
the previous chapter that the same holds for the Random Access Machine. Many other
computational models have been proposed (some are quite different from the Turing
machine, RAM, or any real-life computer, like quantum computing or DNA computing),
but nobody found a machine model that could solve more computational problems than
the Turing machine.

Church in fact anticipated this by formulating the so-called Church Thesis, according
to which every “calculation” can be formalized in the system he gave. Today we state
this hypothesis in the form that all functions computable on any computing device are
computable on a Turing machine. As a consequence of this thesis (if we accept it) we can
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simply speak of computable functions without referring to the specific type of machine
on which they are computable.

(One could perhaps make one exception from the Church Thesis for algorithms using
randomness. These can solve algorithmically unsolvable computational problems so that
the answer is correct with large probability. See Chapter 7 on Information Complexity.)

2.2 Recursive and recursively enumerable languages

Let Σ be a finite alphabet that contains the symbol “∗”. We will allow as input for
a Turing machine words that do not contain this special symbol: only letters from
Σ0 = Σ \ {∗}.

We call a function f : Σ∗
0 → Σ∗

0 recursive or computable if there exists a Turing
machine that for any input x ∈ Σ∗

0 will stop after finite time with f(x) written on its
first tape. (We have seen in the previous section that we can assume without loss of
generality that the Turing machine has only one tape.)

The notions of recursive, as well as that of “recursively enumerable” and “partial
recursive” defined below can be easily extended, in a unique way, to functions and sets
over some countable sets different from Σ∗

0, like the set of natural numbers, the set N∗

of finite strings of natural numbers, etc. The extension goes with help of some standard
coding of, e.g., the set of natural numbers by elements of Σ∗

0. Therefore even though we
define these notions only over Σ∗

0, we sometimes use them in connection with function
defined over other domains. This is a bit sloppy but does not lead to any confusion.

We call a language L recursive if its characteristic function

fL(x) =

{

1, if x ∈ L,

0, otherwise,

is recursive. Instead of saying that a language L is recursive, we can also say that the
property defining L is decidable. If a Turing machine calculates this function then we
say that it decides the language. It is obvious that every finite language is recursive.
Also if a language is recursive then its complement is also recursive.

Remark 2.1 It is obvious that there is a continuum of languages (and so uncountably
many) but only countably many Turing machines. So there must exist non-recursive
languages. We will see some concrete languages that are non-recursive.

We call the language L recursively enumerable if L = ∅ or there exists a recursive
function f such that the range of f is L. This means that we can enumerate the elements
of L: L = {f(w0), f(w1), . . .}, when Σ∗

0 = {w0, w1, . . .}. Here, the elements of L do not
necessarily occur in increasing order and repetition is also allowed.

We give an alternative definiton of recursively enumerable languages through the
following lemma.

Lemma 2.1 A language L is recursively enumerable iff there is a Turing machine T
such that if we write x on the first tape of T the machine stops iff x ∈ L.
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Proof. Let L be recursively enumerable. We can assume that it is nonempty. Let L
be the range of f . We prepare a Turing machine which on input x calculates f(y) in
increasing order of y ∈ Σ∗

0 and it stops whenever it finds a y such that f(y) = x.
On the other hand, let us assume that L contains the set of words on which T stops.

We can assume that L is not empty and a ∈ L. We construct a Turing machine T0

that, when the natural number i is its input it simulates T on input x which is the
(i− ⌊

√
i⌋)2-th word of Σ∗

0, for i steps. If the simulated T stops then T0 ouputs x. Since
every word of Σ∗

0 will occur for infinitely many values of i the range of T0 will be L. �

There is nothing really tricky about the function (i− ⌊
√
i⌋)2; all we need is that for

i = 0, 1, 2, . . . its value assumes every non-negative integer infinitely many times. The
technique used in this proof, that of simulating infinitely many computations by a single
one, is sometimes called “dovetailing”.

Now we study the relationship between recursive and recursively enumerable lan-
guages.

Lemma 2.2 Every recursive language is recursively enumerable.

Proof. This is clear if the language L is empty. We can change the Turing machine
that decides f to output the input if the intended output is 1, and to output some
arbitrary fixed a ∈ L if the intended output is 0. �

The next theorem characterizes the relation of recursively enumerable and recursive
languages.

Theorem 2.3 A language L is is recursive iff both languages L and Σ∗
0\L are recursively

enumerable.

Proof. If L is recursive then its complement is also recursive, and by the previous
lemma, it is recursively enumerable.

On the other hand, let us assume that both L and its complement are recursively
enumerable. We can construct two machines that enumerate them, and a third one
simulating both that detects if one of them lists x. Sooner or later this happens and
then we know where x belongs. �

Let us call a language co-recursively enumerable if its complement is ecursively enu-
merable. Figure 8 is worth to remember: it shows the relationship between the classes
of recursive, recursively enumerable and co-recursively enumerable. But is this picture
correct, i.e., do the four areas shown all contain languages? It is clear that the class of
recursively enumerable languages is countable, so there must be languages that are nei-
ther recursively enumerable nor co-recursively enumerable (see also exercise 2.3. What
is much less obvious is that there are recursively enumerable languages that are not
recursive, since both classes are countable. The construction of a such a language is our
next goal.

Let T be a Turing machine with k tapes, and let LT be the set of those words x ∈ Σ∗
0

words for which T stops when we write x on all of its tapes.

32



recursive

co-
recursively

enum

recursively

enum

Figure 8: The classes of recursive, recursively enumerable and co-recursively enumerable
languages

Theorem 2.4 If T is a universal Turing machine with k+1 tapes then LT is recursively
enumerable, but it is not recursive.

Proof. The first statement follows from Lemma 2.2. We prove the second statement,
for simplicity, for k = 1.

Let us assume, by way of contradiction, that LT is recursive. Then Σ∗
0 \LT would be

recursively enumerable, so there would exist a 1-tape Turing machine T1 that on input x
would stop iff x 6∈ LT . The machine T1 can be simulated on T by writing an appropriate
program p on the second tape of T . Then writing p on both tapes of T , it would stop
if T1 would stop because of the simulation. The machine T1 was defined, on the other
hand, to stop on p if and only if T does not stop with input p on both tapes (i.e. when
p 6∈ LT ). This is a contradiction. �

This proof uses the so called diagonalization technique originating from set theory
(where it was used by Cantor to show that the set of all real numbers is not countable).
The technique forms the basis of many proofs in logic, set-theory and complexity theory.
We will see more of these in what follows.

There is a number of variants of the previous result, asserting the undecidability of
similar problems.

Let T be a Turing machine. The halting problem for T is the problem to decide,
for all possible inputs x, whether T halts on x. Thus, the decidability of the halting
problem of T means the decidability of the set of those x for which T halts. We can
also speak about the halting problem in general, which means that a pair (T, x) is given
where T is a Turing machine (given by its transition table) and x is an input.

Theorem 2.5 There is a 1-tape Turing machine whose halting problem is undecidable.

Proof. Suppose that the halting problem is decidable for all one-tape Turing machines.
Let T be a 2-tape universal Turing machine and let us construct a 1-tape machine T0

similarly to the proof of Theorem (0.2) (with k = 2), with the difference that at the
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start, we write the i-th letter of word x not only in cell 4i but also in cell 4i− 2. Then
on an input x, machine T0 will simulate the work of T , when the latter starts with x on
both of its tapes. Since it is undecidable whether T halts for a given input (x, x), it is
also undecidable about T0 whether it halts on a given input x. �

The above proof, however simple it is, is the prototype of a great number of unde-
cidability proofs. These proceed by taking any problem P1 known to be undecidable
(in this case, membership in LT ) and showing that it can be reduced to the problem
P2 at hand (in this case, the halting problem of T0). The reduction shows that if P2 is
decidable then so is P1. But since we already know that P1 is undecidable, we conclude
that P2 is undecidable as well. The reduction of a problem to some seemingly unrelated
problem is, of course, often very tricky.

A description of a Turing machine is the listing of the sets Σ, Γ (where, as before,
the elements of Γ are coded by words over the set Σ0), and the table of the functions
α, β, γ.

Corollary 2.6 It is algorithmically undecidable whether a Turing machine (given by its
description) halts on the empty input.

Proof. Let T be a Turing machine whose halting problem is undecidable. We show
that its halting problem can be reduced to the general halting problem on the empty
input. Indeed, for each input x, we can construct a Turing machine Tx which, when
started with an empty input, writes x on the input tape and then simulates T . If we
could decide whether Tx halts then we could decide whether T halts on x. �

Corollary 2.7 It is algorithmically undecidable whether for a one-tape Turing machine
T (given by its description), the set LT is empty.

Proof. For a given machine S, let us construct a machine T that does the following: it
first erases everything from the tape and then turns into the machine S. The description
of T can obviously be easily constructed from the description of S. Thus, if S halts on
the empty input in finitely many steps then T halts on all inputs in finitely many steps,
hence LT = Σ∗

0 is not empty. If S works for infinite time on the empty input then T
works infinitely long on all inputs, and thus LT is empty. Therefore if we could decide
whether LT is empty we could also decide whether S halts on the empty input, which
is undecidable. �

Obviously, just as its emptyness, we cannot decide any other property P of of LT

either if the empty language has it and Σ∗
0 has not, or vice versa. Even a more general

negative result is true. We call a property of a language trivial if either all languages
have it or none.

Theorem 2.8 Rice’s Theorem For any non-trivial language-property P , it is undecid-
able whether the language LT of an arbitrary Turing machine T (given by its description)
has this property.
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Thus, it is undecidable on the basis of the description of T whether LT is finite,
regular, contains a given word, etc.

Proof. We can assume that the empty language does not have property P (otherwise,
we can consider the negation of P ). Let T1 be a Turing machine for which LT1 has
property P . For a given Turing machine S, let us make a machine T as follows: for
input x, first it simulates S on the empty input. When the simulated S stops it simulates
T1 on input x. Thus, if S does not halt on the empty input then T does not halt on
any input, so LT is the empty language. If S halts on the empty input then T halts on
exactly the same inputs as T1, and thus LT = LT1 . Thus if we could decide whether LT

has property P we could also decide whether S halts on empty input. �

2.3 Other undecidable problems

2.3.1 The tiling problem

All undecidable problems discussed so far concerned Turing machines; and their unde-
cidability could be attributed to the fact that we were trying to decide something about
Turing machines using Turing machines. Could it be that if we get away from this
dangerous are of self-referencing, all problems that we want to decide will be decidable?

Unfortunately, the answer is negative, and there are quite “normal” questions, arising
in all sorts of mathematical studies, that are algorithmically undecidable. In this section
we describe a few of these, and prove the undecidability of te first one. (For the others,
the proof of undecidability is too involved to be included in this book.)

First we discuss a problem of geometrical nature. A tile, or domino, is a square,
divided into four triangles by ts two diagonals, so tha each of these triangles is colored
with some color. A kit is a finite set of different tiles, one of which is a distinguished
“favorite tile”. We have an infinite supply of each tile in the kit.

Given a kit K, a tiling of whole plane with K (if it exists) assigns to each position
with integer coordinates a tile which is a copy of a tile in K, in such a way that

• neighboring dominoes have the same color on their adjacent sides;

• the favorite domino occurs at least once.

It is easy to give a kit of dominoes with which the plane can be tiled (e.g. a single
square that has the same color on each side) and also a kit with which this is impossible
(e.g., a single square that has different colors on each side). It is, however, a surprising
fact that it is algorithmically undecidable whether a kit allows the tiling of the whole
plane!

For the exact formulation, let us describe each kit by a word over Σ0 = {0, 1,+}.
This can be done, for example, by describing each color by a positive integer in binary
notation, describing each tile in the kit by writing down the numbers representing the
colors of the four triangles, separated by the symbol “+”, beginning at the top side,
clockwise, and then we join the expressions obtained this way with “+” signs, starting
with the favorite domino. (but the details of this encoding are of course not important.)
Let LTLNG [LNTLNG] be the set of codes of those kits which tile the plane [resp. do not
tile the plane].
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Theorem 2.9 The tiling problem is undecidable, i.e. the language LTLNG is not recur-
sive.

Accepting, for the moment, this statement, we can conclude by Theorem 2.3 that
either the tiling or the nontiling kits must form a language that is not recursively enu-
merable. Which one? At first look, we might think that LTLNG is recursive: the fact
that the plane is tileable by a kit can be “proved” by exhibiting the tiling. This is,
however, not a finite proof, and in fact the truth is just the opposite:

Theorem 2.10 The language LNTLNG is recursively enumerable.

Taken together with Theorem 2.9, we see that LTLNG can not even be recursively
enumerable.

In the proof of Theorem 2.10, the following lemma will play important role.

Lemma 2.11 The plane can be tiled by a kit if and only if the (2n+1)× (2n+1) square
can be tiled with the favorite tile in the center.

Proof. The “only if” part of the statement is trivial. For the proof of the “if”
part, consider a sequence N1, N2, . . . of tilings of squares such that they all have odd
sidelength and their sidelength tends to infinity. We will construct a tiling of the whole
plane. Without loss of generality, we may assume that the center of each square is at
the origin, so that the origin is covered by tha favorite tile.

Let us consider the 3 × 3 square centered at the origin. This is tiled in some way in
each Ni. Since it can only be tiled in finite number of ways, there is an infinite number
of tilings Ni in which it is tiled in the same way. Let us keep only these tilings and throw
away the rest. So we get an infinite sequence of tilings of larger and larger squares such
that the 3× 3 square in the middle is tiled in the same way in each Ni. These nine tiles
can now be fixed.

Proceeding in a simlar fashion, assume that the sequence has been “thinned out” so
that in every remaining tiling Ni, the (2k + 1) × (2k + 1) square centered at the origin
is tiled in the same way. We fix these (2k + 1)2 tiles. Then in the remaining tilings Ni,
the (2k + 3) × (2k + 3) square centered at the origin is tiled only in a finite number of
ways, and therefore one of these tilings occurs an infinite number of times. If we keep
only these tilings Ni, then every remaining tiling tiles the (2k + 3) × (2k + 3) square
centered at the origin in the same way, and this tiling contains the tiles fixed previously.
Now we can fix the new tiles around the perimeter of of the bigger square.

Every tile will be fixed sooner or later, i.e. we have obtained a tiling of the whole
plane. Since the condition imposed on the covering is “local”, i.e. it refers only to two
tiles dominoes, the tiles will be correctly matched in the final tiling, too. �

Proof of Theorem 2.10 Let us construct a Turing machine that does the following.
For a word x ∈ Σ∗

0, it first of all decides whether the word encodes a kit (this is easy); if
not then it goes into an infinite cycle. If yes, then with this set, it tries to tile the squares
1 × 1, 2 × 2, 3 × 3, one after the other etc. For each concrete square, it is decidable in
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Figure 9: Tiling resulting from a particular computation

a finite number of steps, whether it is tileable, since the sides can only be numbered in
finitely many ways by the numbers occurring in the kit, and it is easy to verify whether
among the tilings obtained this way there is one for which every tile comes from the
given kit. If the machine finds a square not tileable by the given kit then it halts.

It is obvious that if x ∈ LTLNG, i.e. x either does not code a kit or codes a kit
which tiles the plane then this Turing machine does not stop. On the other hand, if
x ∈ LNTLNG, i.e. x codes a kit that does not tile the plane then according to Lemma
2.11, for a large enough k already the square k × k is not tileable either, and therefore
the Turing machine stops after finitely many steps. Thus, according to Lemma 2.1, the
language LNTLNG is recursively enumerable. �

Proof of Theorem 2.9 Let T = 〈k,Σ, α, β, γ〉 be an arbitrary Turing machine; we
will construct from it (using its description) a kit K which can tile the plane if and only
if T does not start on the empty input. This is, however, undecidable due to Corollary
2.6, so it is also undecidable whether the constructed kit can tile the plane.

In defining the kit, we will write symbols, rather than numbers on the sides of the
tiles; these are easily changed to numbers. For simplicity, assume k = 1. Assume that
T does not halt on the empty input.

From the machine’s computation, we construct a tiling (see Figure 9). We lay down
the tape before the first step, to get an infinite strip of squares; we put below it the tape
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Figure 10: Tiles in line 0 (b-d) and above (a). S stands for the START state. Tile c) is
my favorite.

before the second step, below it the time before the third step, etc. We can think of the
upper half of the plane as filled by white tapes.

Now we color each square as follows. Each symbol in Σ as well as each state of the
controll unit corresponds to a color. Moreover, we need colors for pairs gh, where g ∈ Γ
and h ∈ Σ. Finally, there are five additional colors, which we call WHITE, RIGHT,
LEFT, Right, and Left.

If it content of a square is a symbol h, and the head is not in this cell before the
corresponding step, then we color the bottom triangle of the cell, as well as the top
triangle of the cell below it with color h. If the head scans this cell a cell before a given
step, and the control unit is in state g, then we color the top triangle of the square as
well as the bottom triangle of the square above it with color gh. If at this step, the
head moves from one cell to an adjacent cell, we color the two triangles adjacent to the
edge crossed with color g. All triangles in this row adjacent to vertical edges to the left
of the head are colored LEFT, and those adjacent to vertical edges to the right of the
head are colored RIGHT, except in row #0, where instead the colors Left and Right are
used, and in rows with negative index, where color WHITE is used. Also WHITE is the
color of all upper triangles in row #0.

Figures 10, 11 and 12 show the kinds of tiles that occur in this tiling. Note that this
kit is constructed from the description of the Turing machine easily; in fact, only one
type is dependent on the transition rules of the machine.

We thus obtain a kit KT , with a favorite tile as marked. Our contruction shows that
if T runs an infinite number of steps on the empty input, then the plane can be tiled
with this kit. Conversely, assume that the plane can be tiled with the kit KT . The
favorite tile must occur by definition; left and right we can only continue with colors
Left and Right, and above, with all-white. Moving down row-by-row we can see that
the covering is unique and corresponds to a computation of machine T on empty input.

Since we have covered the whole plane, this computation is infinite. �

Remark 2.2 The tiling problem is undecidable even if we do not distinguish an initial
domino. But the proof of this is much harder.

2.3.2 Famous undecidable problems in mathematics

We mention some more algorithmically undecidable problems without showing the proof
of undecidability. The proof is in each case a complicated encoding of the halting problem
into the problem at hand.
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Figure 12: The most important tiles: the head reading h and in state g, writes h′, goes
to state h′, and (a) moves right, (b) stays, (c) moves left.

In 1900, Hilbert formulated 23 problems that he considered then the most exciting
in mathematics. These problems had a great effect on the development of the mathemat-
ics of the century. (It is interesting to note that Hilbert thought: some of his problems
will resist science for centuries; until today, essentially all of them are solved.) One of
these problems was the following:

2.12 Diophantine equation Given a polynomial p(x1, . . . , xn) with integer coefficients
and n variables, decide whether the equation p = 0 has integer solutions.

(An equation is called Diophantine if we are looking for its integer solutions.)
In Hilbert’s time, the notion of algorithms was not formalized but he thought that a

universally acceptable and always executable procedure could eventually be found that
decides for every Diophantine equation whether it is solvable. After the clarification of
the notion of algorithms and the finding of the first algorithmically undecidable prob-
lems, it became more probable that this problem is algorithmically undecidable. Davis,

Robinson and Myhill reduced this conjecture to a specific problem of number theory
which was eventually solved by Mat’iyasevich in 1970. It was found therefore that
the problem of solvability of Diophantine equations is algorithmically undecidable.

Next, an important problem from algebra. Let us be given n symbols: a1, . . . , an.
The free group generated from these symbols is the set of all finite words formed from
the symbols a1, . . . , an, a−1

1 , . . . , a−1
n in which the symbols ai and a−1

i never follow each
other (in any order). We multiply two such words by writing them after each other and
repeatedly erasing any pair of the form aia

−1
i or a−1

i ai whenever they occur. It takes
some, but not difficult, reasoning to show that the multiplication defined this way is
associative. We also permit the empty word, this will be the unit element of the group.
If we reverse a word and change all symbols ai in it to a−1

i (and vice versa) then we
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obtain the inverse of the word. In this very simple structure, the following problem is
algorithmically undecidable.

2.13 Word problem of groups In the free group generated by the symbols a1, . . . , an, we
are given n+ 1 words: α1, . . . , αn and β. Is β in the subgroup generated by α1, . . . , αn?

Finally, a problem from the field of topology. Let e1, . . . , en be the unit vectors of the
n-dimensional Euclidean space. The convex hull of the points 0, e1, . . . , en is called the
standard simplex. The faces of this simplex are the convex hulls of subsets of the set
{0, e1, . . . , en}. A polyhedron is the union of an arbitrary set of faces of the standard
simplex. Here is a fundamental topological problem concerning a polyhedron P :

2.14 Contractability of polyhedra Can a given polyhedron be contracted to a single point
(continuously, staying within itself)?

We define this more precisely, as follows: we mark a point p in the polyhedron first
and want to move each point of the polyhedron in such a way within the polyhedron
(say, from time 0 to time 1) that it will finally slide into point p and during this, the
polyhedron “is not teared”. Let F (x, t) denote the position of point x at time t for
0 ≤ t ≤ 1. The mapping F : P × [0, 1] → P is thus continuous in both of its variables
together, having F (x, 0) = x and F (x, 1) = p for all x. If there is such an F then we
say that P is “contractable”. For example, a triangle, taken with the area inside it, is
contractable. The perimeter of the triangle (the union of the three sides without the
interior) is not contractable. (In general, we could say that a polyhedron is contractable
if no matter how a thin circular rubber band is tied on it, it is possible to slide this rubber
band to a single point.) The property of contractability turns out to be algorithmically
undecidable.

2.4 Computability in logic

2.4.1 Godel’s incompleteness theorem

Mathematicians have long held the conviction that a mathematical proof, when written
out in all detail, can be checked unambiguously. Aristotle made an attempt to for-
malize the rules of deduction but the correct formalism was found only by Frege and

Russell at the end of the ninetieth century. It was championed as a sufficient foun-
dation of mathematics by Hilbert. We try to give an overview of the most important
results concerning decidability in logic.

Mathematics deals with sentences, statements about some mathematical objects.
All sentences will be strings in some finite alphabet. We will always assume that the
set of sentences (sometimes also called a language) is decidable: it should be easy
to distinguish (formally) meaningful sentences from nonsense. Let us also agree that
there is an algorithm computing from each sentence ϕ, an other sentence ψ called its
negation.

Example 2.1 Let L1 be the language consisting of all expressions of the form “l(a, b)”
and “l′(a, b)” where a, b are natural numbers (in their usual, decimal representation).
The sentences l(a, b) and l′(a, b) are each other’s negations.
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A proof of some sentence T is a finite string P that is proposed as an argument
that T is true. A formal system, or theory F is an algorithm to decide, for any pairs
(P, T ) of strings whether P is an acceptable proof T . A sentence T for which there is a
proof in F is called a theorem of the theory F.

Example 2.2 Here is a simple theory T1 based on the language L1 of the above Example
2.1. Let us call axioms all “l(a, b)” where b = a+ 1. A proof is a sequence S1, . . . , Sn

of sentences with the following property. If Si is in the sequence then either it is an
axiom or there are j, k < i and integers a, b, c such that Sj =“l(a, b)”, Sk=“l(b, c)” and
Si = l(a, c). This theory has a proof for all formulas of the form l(a, b) where a < b.

A theory is called consistent if for no sentence can both it and its negation be a
theorem. Inconsistent theories are uninteresting, but sometimes we do not know whether
a theory is consistent.

A sentence S is called undecidable in a theory T if neither S nor its negation is a
theorem in T . A consistent theory is complete if it has no undecidable sentences.

The toy theory of Example 2.2 is incomplete since it will have no proof of either l(5, 3)
nor l′(5, 3). But it is easy to make it complete e.g. by adding as axioms all formulas of
the form l′(a, b) where a, b are natural numbers and a ≥ b.

Incompleteness simply means that the theory formulates only certain properties of
a kind of system: other properties depend exactly on which system we are considering.
Completeness is therefore not always even a desireable goal with certain theories. It is,
however, if the goal of our theory is to describe a certain system as completely as we
can. We may want e.g. to have a complete theory of the set of natural numbers in which
all true sentences have proofs. Also, complete theories have a desirable algorithmic
property, as shown by the theorem below: this shows that if there are no (logically)
undecidable sentences in a theory then the truth of all sentences (with respect to that
theory) is algorithmically decidable.

Theorem 2.15 If a theory T is complete then there is an algorithm that for each sen-
tence S finds in T a proof either for S or for the negation of S.

Proof. The algorithm starts enumerating all possible finite strings P and checking
whether P is a proof for S or a proof for the negation of S. Sooner or later, one of the
proofs must turn up, since it exists. Consistency implies that if one turns up the other
does not exist. �

Suppose that we want to develop a complete a theory of natural numbers. Since
all sentences about strings, tables, etc. can be encoded into sentences about natural
numbers this theory must express all statements about such things as well. In this way,
in the language of natural numbers, one can even speak about Turing machines, and
about when a Turing machine halts.

Let L be some fixed r.e. set of integers that is not recursive. An arithmetical theory
T is called minimally adequate if for numbers n, the theory contains a sentence ϕn

expressing the statement “n ∈ L”; moreover, this statement is a theorem in T if and
only if it is true.
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It is reasonable to expect that a theory of natural numbers with a goal of completeness
be minimally adequate, i.e. that it should provide proofs for at least those facts that are
verifiable anyway directly by computation, as “n ∈ L” indeed is. (In the next subsection,
we will describe a minimally adequate theory.) Now we are in a position to prove one of
the most famous theorems of mathematics which has not ceased to exert its fascination
on people with philosophical interests:

Theorem 2.16 Gödel’s incompleteness theorem Every minimally adequate theory is in-
complete.

Proof. If the theory were complete then, according to Theorem 2.15 it would give a
procedure to decide all sentences of the form n ∈ L, which is impossible. �

Remark 2.3 Looking more closely into the last proof, we see that for any adequate the-
ory T there is a natural number n such that though the sentence “n 6∈ L” is expressible
in T and true but is not provable in T . There are other, more interesting sentences that
are not provable, if only the theory T is assumed strong enough: Gödel proved that the
assertion of the consistency of T is among these. This so-called Second Incompleteness
Theorem of Gödel is beyond our scope.

Remark 2.4 Historically, Gödel’s theorems preceded the notion of computability by
3-4 years.

2.4.2 First-order logic

Formulas Let us develop the formal system found most adequate to describe mathe-
matics. A first-order language uses the following symbols:

• An infinite supply of variables: x, y, z, x1, x2, . . ., to denote elements of the universe
(the set of objects) to which the language refers.

• Some function symbols like f, g, h,+, ·, f1, f2, . . . , where each function symbol has
a property called “arity” specifying the number of arguments of the function it
will represent. A function of arity 0 is called a constant. It refers to some fixed
element of the universe. Some functions, like +, · are used in infix notation.

• Some predicate symbols like <,>,⊂,⊃, P,Q,R, P1, P2, . . ., also of different arities.
A predicate symbol with arity 0 is also called a propositional symbol. Some
predicate symbols, like <, are used with infix notation. The equality “=” is a
distinguished predicate symbol.

• Logical connectives: ¬,∨,∧,⇒,⇔, . . ..

• Quantifiers: ∀, ∃.

• Punctuation: (,).
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A term is obtained by taking some constants and variables and applying function
symbols to them a finite number of times: e.g. (x + 2) + y or f(f(x, y), g(c)) are terms
(here, 2 is a constant).

An atomic formula has the form P (t1, . . . , tk) where P is a predicate symbol and
ti are terms: e.g. x+ y < (x · x) + 1 is an atomic formula.

A formula is formed from atomic formulas by applying repeatedly the Boolean
operations and the adding of prefixes of the form ∀x and ∃x: e.g. ∀x(x < y) ⇒ ∃zg(c, z)
or x = x ∨ y = y are formulas. In the formula ∃y(∀x(F ) ⇒ G), the subformula F is
called the scope of the x-quantifier. An occurrence of a variable x in a formula is said
to be bound if it is in the scope of an x-quantifier; otherwise the occurrence is said to
be free. A formula with no free (occurrences of) variables is said to be a sentence;
sentences make formulas which under any given “interpretation” of the language, are
either true of false.

Let us say that a term t is substitutable for variable x in formula A if no variable
y occurs in t for which some free occurrence of x in A is in the scope of some quantifier
of y. If t is substitutable for x in A then we write A[t/x] for the result of substituting
t into every free occurrence of x in A: e.g. if A = (x < 3 − x) and t = (y2) then
A[t/x] = (y2 < 3 − y2).

From now on, all our formal systems are some language of first-order logic, so they
only differ in what function symbols and predicate symbols are present.

There are natural ways to give interpretation to all terms and formulas of a first-order
language in such a way that under such an interpretation, all sentences become true or
false. This interpretation introduces a set called the universe and assigns functions
and predicates over this universe to the functions (and constants) and predicates of the
language.

Example 2.3 Consider the language with the constants c0, c1 and the two-argument
function symbol f . In one interpretation, the universe is the set of natural numbers,
c0 = 0, c1 = 1, f(a, b) = a+ b. In another interpretation, the universe is {0, 1}, c0 = 0,
c1 = 1, f(a, b) = a · b. There are certain sentences that are true in both of these
interpretations but not in all possible ones: such is ∀x∀y f(x, y) = f(y, x).

For a given theory T , an interpretation of its language is called a model of T if
the axioms (and thus all theorems) of the theory are true in it. In the above Exam-
ple 2.3, both interpretations are models of the theory T1 defined by the single axiom
∀x∀y f(x, y) = f(y, x).

It has been recognized long ago that the proof checking algorithm can be made in-
dependent of the theory: theories are different only in their axioms. This algorithm is
exactly what we mean by “pure logical reasoning”; for first order logic, it was first for-
malized in the book Principia Mathematica by Russell and Whitehead at the beginning
of the 20th century. We will outline one such algorithm at the end of the present sub-
section. Gödel proved in 1930 that if B implies T in all interpretations of the sentences
then there is a proof of the Principia Mathematica type for it. The following theorem
is a consequence.
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Theorem 2.17 Gödel’s completeness theorem Let P be the set of all pairs (B, T ) where
B is a finite set of sentences and T is a sentence that is true in all interpretations in
which the elements of B are true. The set P is recursively enumerable.

Tarski proved that the algebraic theory of real numbers (and with it, all Euclidean
geometry) is complete. This is in contrast to the theories of natural numbers, among
which the minimally adequate ones are incomplete. (In the algebraic theory of real
numbers, we cannot speak of an “arbitrary integer”, only of an “arbitrary real number”.)
Theorem 2.15 implies that there is an algorithm to decide the truth of an arbitrary
algebraic sentence on real numbers. The known algorithms for doing this take a very
long time, but are improving.

Proofs A proof is a sequence F1, . . . , Fn of formulas in which each formula is either an
axiom or is obtained from previous formulas in the sequence using one of the rules given
below. In these rules, A,B,C are arbitrary formulas, and x is an arbitrary variable.

There is an infinite number of formulas that we will require to be part of the set
of axioms of each theory: these are therefore called logical axioms. These will not
all necessarily be sentences: they may contain free variables. To give the axioms, some
more notions must be defined.

Let F (X1, . . . , Xn) be a Boolean formula of the variables X1, . . . , Xn, with the prop-
erty that it gives the value 1 for all possible substitutions of 0 or 1 into X1, . . . , Xn.
Let ϕ1, . . . , ϕn be arbitrary formulas. Formulas of the kind F (ϕ1, . . . , ϕn) are called
tautologies.

The logical axioms of our system consist of the following groups:

Tautologies: All tautologies are axioms.

Equality axioms: Let t1, . . . , tn, u1, . . . , un be terms, f a function symbol and P a
predicate symbol, of arity n. Then

(t1 = u1 ∧ · · · ∧ tn = un) ⇒f(t1, . . . , tn) = f(u1, . . . , un),

(t1 = u1 ∧ · · · ∧ tn = un) ⇒(P (t1, . . . , tn) ⇔ P (u1, . . . , un))

are axioms.

The definition of ∃: For all formulas A and variables x, the formula ∃xA⇔ ¬∀x¬A
is an axiom.

Specialization: If term t is substitutable for variable x in formula A then ∀xA ⇒
A[t/x] is an axiom.

The system has two rules:

Modus ponens: From A⇒ B and B ⇒ C, we can derive A⇒ C.

Generalization: If the variable x does not occur free in A then from A ⇒ B we can
derive A⇒ ∀xB.
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Remark 2.5 The generalization rule says that if we can derive a statementB containing
the variable x without using any properties of x in our assumptions then it is true for
arbitrary values of x. It does not say that B ⇒ ∀xB is true.

For the system above, the following stronger form of Gödel’s completeness theorem
holds.

Theorem 2.18 Suppose that B is a set of sentences and T is a sentence that is true
in all interpretations in which the elements of B are true. Then there is a proof in the
proof system P of T from the axioms of B.

2.4.3 A simple theory of arithmetic; Church’s Theorem

This theory N contains two constants, 0 and 1, the function symbols +, · and the
predicate symbol <. There is only a finite number of simple nonlogical axioms (all of
them without quantifier).

¬(x+ 1 =0).

1 + x = 1 + y ⇒x = y.

x+ 0 =x.

x+ (1 + y) =1 + (x+ y).

x · 0 =0.

x · (1 + y) =(x · y) + x.

¬(x <0).

x < (1 + y) ⇔x < y ∨ x = y.

x < y ∨ x = y ∨ y < x.

Theorem 2.19 The theory N is minimally adequate. Thus, there is a minimally ade-
quate consistent theory of arithmetic with a finite system of axioms.

This fact implies the following theorem of Church, showing that the problem of
logical provability is algorithmically undecidable.

Theorem 2.20 Undecidability Theorem of Predicate Calculus The set P of all sentences
that can be proven without any axioms, is undecidable.

Proof. Let N be a finite system of axioms of a minimally adequate consistent theory
of arithmetic, and let N be the sentence obtained by taking the conjunction of all
these axioms and applying universal quantification. Let us remember the definition of
“minimally adequate”: we used there a nonrecursive r.e. set L of natural numbers. In
arithmetic, we can write up a formula Q(n) saying N ⇒ (n ∈ L). There is a proof for
“n ∈ L” in N if and only if there is a proof for Q(n) in P If we had a decision procedure
for P we could decide, Q(n); since we cannot, there is no decision procedure for P . �
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Exercise 2.1 Prove that a function is recursive if and only if its graph { (x, f(x)) : x ∈
Σ∗

0 } is recursively enumerable.

Exercise 2.2 (a) Prove that a language is recursively enumerable if and only if it can
be enumerated without repetition by some Turing machine.
(b) Prove that a language is recursive if and only if it can be enumerated in increasing
order by some Turing machine.

Exercise 2.3 (a) Construct a language that is not recursively enumerable.

(b) Construct a language that is neither recursive nor recursively enumerable.

In the exercises below, we will sometimes use the following notion. A function f
defined on a subset of Σ∗

0 is called partial recursive (abbreviated as p.r.) if there
exists a Turing machine that for any input x ∈ Σ∗

0 will stop after finite time if and only
if f(x) is defined and in this case, it will have f(x) written on its first tape.

Exercise 2.4 Let us call two Turing machines equivalent if for all inputs, they give the
same outputs. Let the function f : Σ∗

0 → {0, 1} be 1 if p, q are codes of equivalent Turing
machines and 0 otherwise. Prove that f is undecidable.

Exercise 2.5 (Inseparability Theorem.) Let U be a one-tape Turing machine simulating
the universal two-tape Turing machine. Let u′(x) be 0 if the first symbol of the value
computed on input x is 0, and 1 if U halts but this first symbol is not 0. Then u′ is
a partial recursive function, defined for those x on which U halts. Prove that there is
no computable total function which is an extension of the function u′(x). In particular,
the two disjoint r.e. sets defined by the conditions u′ = 0 and u′ = 1 cannot be enclosed
into disjoint recursive sets.

Exercise 2.6 (Nonrecursive function with recursive graph.) Give a p.r. function f that
is not extendable to a recursive function, and whose graph is recursive.

[Hint: use the running time of the universal Turing machine.]

Exercise 2.7 Construct an undecidable, recursively enumerable set B of pairs of nat-
ural numbers with the property that for all x, the set { y : (x, y) ∈ B } is decidable, and
at the same time, for all y, the set { x : (x, y) ∈ B } is decidable.

Exercise 2.8 Let #E denote the number of elements of the set E. Construct an un-
decidable set S of natural numbers such that

lim
n→∞

1

n
#(S ∩ {0, 1, . . . , n}) = 0.

Can you construct an undecidable set for which the same limit is 1?

Exercise 2.9 A rooted tree is a set of “nodes” in wich each node has some “children”,
the single “root” node has no parent and each other node has a unique parent. A path
is a sequence of nodes in which each node is the parent of the next one. Suppose that
each node has only finitely many children and the tree is infinite. Prove that then the
tree has an infinite path.
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Exercise 2.10 Consider a Turing machine T which we allow now to be used in the
following nonstandard manner: in the initial configuration, it is not required that the
number of nonblank symbols be finite. Suppose that T halts for all possible initial config-
urations of the tape. Prove that then there is an n such that for all initial configurations,
on all tapes, the heads of T stay within distance n of the origin.

Exercise 2.11 Show that there is a kit of dominoes with the property that it tiles the
plane but does not tile it periodically.

Exercise 2.12 Let T be a one-tape Turing machines that never overwrites a nonblank
symbol by a blank one. Let the partial function fT (n) be defined if T , started with the
empty tape, will ever write a nonblank symbol in cell n; in this case, let it be the first
such symbol. Prove that there is a T for which fT (n) cannot be extended to a recursive
function.

Exercise 2.13 * Show that there is a kit of dominoes with the property that it tiles
the plane but does not tile it recursively.

[Hint: Take the Turing machine of Exercise 2.12. Use the kit assigned to it by the
proof of the tiling problem. Again, we will only consider the prototiles associated with
the upper half-plane. We turn each of these prototiles into several others by writing a
second tape symbol on both the top edge and the bottom edge of each prototile P in
the following way. If the tape symbol of both the top and the bottom of P is ∗ or both
are different from ∗ then for all symbols h in Σ0, we make a new prototile Ph by adding
add h to both the top and the bottom of P . If the bottom of P has ∗ and the top has a
nonblank tape symbol h then we make a new prototile P ′ by adding h to both the top
and the bottom. The new kit for the upper half-plane consists of all prototiles of the
form Ph and P ′.]

Exercise 2.14 Let us consider the following modifications of the tiling problem.

• In P1, tiles are allowed to be rotated 180 degrees.

• In P2, flipping around a vertical axis is allowed.

• In P3, flipping around the main diagonal axis is allowed.

Prove that there is always a tiling for P1, the problem P2 is decidable and problem P3

is undecidable.

Exercise 2.15 Show that the following modification of the tiling problem is also unde-
cidable. We use tiles marked on the corners instead of the sides and all tiles meeting in
a corner must have the same mark.

Exercise 2.16 Our proof of Gödel’s theorem does not seem to give a specific sentence
ϕT undecidable for a given minimally adequate theory T . Show that such a sentence
can be constructed, if the language L used in the definition of “minimally adequate” is
obtained by any standard coding from the nonrecursive r.e. set constructed in the proof
of the undecidablity of the halting problem.
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3 Computation with resource bounds

3.1 Introduction

The algorithmic solvability of some problems can be very far from their practical solv-
ability. There are algorithmically solvable problems that cannot be solved, for an input
of a given size, in fewer than exponentially or doubly exponentially many steps (see
Chapter 4). Complexity theory, a major branch of the theory of algorithms, investigates
the solvability of individual problems under certain resource restrictions. The most
important resources are time and space (storage).

We define these notions in terms of the Turing machine model of computation. This
definition is suitable for theoretical study; in describing algorithms, using the RAM is
more convenient, and it also approximates reality better. It follows, however, from our
constructions in section 1.3 that from the point of view of the most important types of
resource restrictions (e.g. polynomial time and space) it does not matter, which machine
model is used in the definition.

This leads os to the definition of various complexity classes: classes of problems
solvable within given time bounds, depending on the size of the input. Every positive
function of the input size defines such a class, but some of them are particularly impor-
tant. The most central complexity class is polynomial time. Many algorithms important
in practice run in polynomial time (in short, are polynomial). Polynomial algorithms
are often very interesting mathematically, since they are built on deeper insight into the
mathematical structure of the problems, and often use strong mathematical tools.

We restrict the computational tasks to yes-or-no problems; this is not too much of a
restriction, and pays off in what we gain simplicity of presentation. Note that the task
of computing any output can be broken down to computing its bits in any reasonable
binary representation.

Most of this chapter is spent on illustrating how certain computational tasks can be
solved within given resource contraints. We start with the most important case, and
show that most of the basic everyday computational tasks can be solved in polynomial
time. These basic tasks include tasks in number theory (arithmetic operations, greatest
common divisor, modular arithmetic) linear algebra (Gaussian elimination) and graph
theory. (We cannot in any sense survey all the basic algorithms, especially in graph
theory; we’ll restrict ourselves to a few that will be needed later.

Polynomial space is a much more general class than polynomial time (i.e., a much less
restrictive resource constraint). The most important computational problems solvable
in polynomail space (but most probably not in polynomial time) are games like chess or
GO. We give a detailed description of this connection.

We end with a briefer discussion of other typical complexity classes.

3.2 Time and space

Let us fix some finite alphabet Σ, inluding the blank symbol ∗ and let Σ0 = Σ \ {∗}.
In this chapter, when a Turing machine is used for computation, we assume that it has
an input tape and output tape and k ≥ 1 work tapes. At start, there is a word in Σ∗

0

written on the input tape.
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The time demand of a Turing machine T is a function timeT (n) defined as the
maximum of the number of steps taken by T over all possible inputs of length n. We
assume timeT (n) ≥ n (the machine must read the input; this is not necessarily so but
we exclude only trivial cases with this assumption). It may happen that timeT (n) = ∞.

Similarly, the function spaceT (n) is defined as the maximum number, over all inputs
of length n, of all cells on all tapes to which the machine writes. (This way, the cells
occupied by the input are not counted in the space requirement.) We assume that
spaceT (n) ≥ 1 (the machine has some output).

A Turing machine T is called polynomial , if there is a polynomial f(n) such that
timeT (n) = O(f(n)). This is equivalent to saying that there is a constant c such that
the time demand of T is O(nc). We can define exponential Turing machines similarly
(for which the time demand is O(2nc

) for some c > 0), and also Turing machines working
in polynomial and exponential space.

Now we consider a yes-or-no problem. This can be formalized as the task of deciding
whether the input word x belongs to a fixed language LıΣ∗

0.
We say that a language L ∈ Σ∗

0 has time complexity at most f(n), if it can be decided
by a Turing machine with time demand at most f(n). We denote by DTIME(f(n)) the
class of languages whose time complexity is at most f(n). (The letter “D” indicates that
we consider here only deterministic algorithms; later, we will also consider algorithms
that are “nondeterministic” or use randomness). We denote by PTIME, or simply by
P , the class of all languages decidable by a polynomial Turing machine. We define
similarly when a laguage has space complexity at most f(n), and also the language
classes DSPACE(f(n)) and PSPACE (polynomial space).

Remark 3.1 It would be tempting to define the time complexity of a language L as the
optimum time of a Turing machine that decides the language. Note that we were more
careful above, and only defined when the time complexity is at most f(n). The reason is
that there may not be a best algorithm (Turing machine) solving a given problem: some
algorithms may work better for smaller instances, some others on larger, some others
on even larger etc. Section 3.3 contains a theorem that provides such examples.

Remark 3.2 When we say that the multiplication of two numbers of size n can be
performed in time n2 then we actually find an upper bound on the complexity of a
function (multiplication of two numbers represented by the input strings) rather than
a language. The classes DTIME(f(n)), DSPACE(f(n)), etc. are defined as classes of
languages; corresponding classes of functions can also be defined.

Sometimes, it is easy to give a trivial lower bound on the complexity of a function.
Consider e.g. the function is x · y where x and y are numbers in binary notation. Its
computation requires at least |x|+ |y| steps, since this is the length of the output. Lower
bounds on the complexity of languages are never this trivial, since the output of the
computation deciding the language is a single bit.

How to define time on the RAM machine? The number of steps of the Random
Access Machine is not the best measure of the “time it takes to work”. One could
(mis)use the fact that the instructions operate on natural numbers of arbitrary size, and
develop computational tricks that work in this model but use such huge integers that

49



to turn them into practical computations would be impossible. For example, we can
simulate vector addition by the addition of two very large natural numbers.

Therefore, we prefer to characterize the running time of RAM algorithms by two
numbers, and say that “the machine makes at most n steps on numbers with at most k
bits”. Similarly, the space requirement is best characterized by saying that “the machine
stores most n numbers with at most k bits”.

If we want a single number to characterize the running time of a RAM computation,
we can count as the time of a step not one unit but the number of bits of the integers
occurring in it (both register addresses and their contents). Since the number of bits of
an integer is essentially base two logarithm of its absolute value, it is also usual to call
this model logarithmic cost RAM.)

In arithmetical and algebraic algorithms, it is sometimes convenient to count the
arithmetical operations; on a Random Access Machine, this corresponds to extending
the set of basic operations of the programming language to include the subtraction,
multiplication, division (with remainder) and comparison of integers, and counting the
number of steps instead of the running time. If we perform only a polynomial number of
operations (in terms of the length of the input) on numbers with at most a polynomial
number of digits, then our algorithm will be polynomial in the logarithmic cost model.

3.3 Polynomial time I: Algorithms in arithmetic

3.3.1 Arithmetic operations

All basic arithmetic operations are polynomial: addition, subtraction, multiplication
and division of integers with remainder. (Recall that the length of an integer n as input
is the number of its bits, i.e., log2 n+O(1)). We learn polynomial time algorithms for all
these operations in elementary school (linear time algorithms in the case of addition and
subtraction, quadratic time algorithms in the case of multiplication and division). We
also count the comparison of two numbers as a trivial but basic arithmetic operation,
and this can also be done in polynomial (linear) time.

A less trivial polynomial time arithmetic algorithm the Euclidean algorithm, com-
puting the greatest common divisor of two numbers.
Euclidean Algorithm. We are given two natural numbers, a and b. Select one that is
not larger than the other, let this be a (say). If a = 0 then the greatest common divisor
of a and b is gcd(a, b) = b. If a > 0 then let us divide b by a, with remainder, and let
r be the remainder. Then gcd(a, b) = gcd(a, r), and it is enough therefore to determine
the greatest common divisor of a and r. Since r < a, tis recurrence will terminate in a
finite number of iterations and we get the greatest common divisor of a and b.

Notice that strictly speaking, the algorithm given above is not a program for the
Random Access Machine. It is a recursive program, and even as such it is given somewhat
informally. But we know that such an informal program can be translated into a formal
one, and a recursive program can be translated into a machine-language program (most
compilers can do that).

Lemma 3.1 The Euclidean algorithm takes polynomial time. More exactly, it carries
out of O(log a+ log b) arithmetical operations carried out on input (a, b).
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Proof. Since 0 ≤ r < a ≤ b, the Euclidean algorithm will terminate sooner or later.
Let us see that it terminates in polynomial time. Notice that b ≥ a+ r > 2r and thus
r < b/2. Hence ar < ab/2. Therefore after ⌈log(ab)⌉ iterations, the product of the two
numbers will be smaller than 1, hence one of them will be 0, i.e. the algorithm terminates.
Each iteration consist of elementary arithmetic operations, and can be carried out in
polynomial time. �

It is an important feature of the Euclidean algorithm not only gives the value of the
greatest common divisor, but also delivers integers p, q such that gcd(a, b) = pa+qb. For
this, we simply maintain such a form for all numbers computed during the algorithm. If
a′ = p1a+q1b and b′ = p2a+q2b and we divide, say, b′ by a′ with remainder: b′ = ha′+r′

then
r′ = (p2 − hp1)a+ (q2 − hp2)b,

and thus we obtain the representation of the new number r′ in the form p′a+ q′b.

Remark 3.3 The Euclidean algorithm is sometimes given by the following iteration: if
a = 0 then we are done. If a > b then let us switch the numbers. If 0 < a ≤ b then
let b := b − a. Mathematically, essentially the same thing happens (Euclid’s original
algorithm was closer to this), this algorithm is not polynomial : even the computation
of gcd(1, b) requires b iterations, which is exponentially large in terms of the number
log b+O(1) of digits of the input.

The operations of addition, subtraction, multiplication can be carried out in polyno-
mial times also in the ring of remainder classes modulo an integer m. We represent the
remainder classes by the smallest nonnegative remainder. We carry out the operation
on these as on integers; at the end, another division by m, with remainder, is necessary.

If m is a prime number then we can also carry out the division in the field of the
residue classes modulo m, in polynomial time. This is different from division with
remainder! It means that given integers a, b and m, where 0 ≤ a, b ≤ m− 1 and b 6= 0,
we can compute an integer x with 0 ≤ x < m such that

bx ≡ a (mod m).

(Such an x is sometimes denoted by a/b (mod m).)
The solution is to apply the Euclidean algorithm to compute the greatest common

divisor of the numbers b,m. Of course, we know in advance that the result is 1. But
as remarked, we also obtain integers p and q such that bp + mq = 1. In other words,
bp ≡ 1 (mod m), and thus b(ap) ≡ a (mod m). So the quotient x we are looking for is
the remainder of the product ap after dividing by m.

We mention yet another application of the Euclidean algorithm. Suppose that a
certain integer x is unknown to us but we know its remainders x1, . . . , xk with respect
to the moduli m1, . . . ,mk which are all relatively prime to each other. The Chinese
Remainder Theorem says that these remainders uniquely determine the remainder of x
modulo the product m = m1 · · ·mk. But how can we compute this remainder?

It suffices to deal with the case k = 2 since for general k, the algorithm follows
from this by mathematical induction. We are looking for an integer x such that x ≡ x1
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(mod m1) and x ≡ x2 (mod m2) (we also want that 0 ≤ x ≤ m1m2−1, but this we can
achieve by dividing with remainder at the end).

In other words, we are looking for integers x, q1 and q2 such that x = x1 + q1m1

and x = x2 + q2m2. Subtracting, we get x2 − x1 = q1m1 − q2m2. This equation does
not determine the numbers q1 and q2 uniquely, but this is not important. We can find,
using the Euclidean algorithm, numbers q1 and q2 such that

x2 − x1 = q1m1 − q2m2,

and compute x = x1 + q1m1 = x2 + q2m2. Then x ≡ x1 (mod m1) and x ≡ x2

(mod m2), as desired.
Next, we discuss the operation of exponentiation. Since even to write down the num-

ber 2n, we need an exponential number of digits (in terms of the length of the input as
the number of binary digits of n), so of course, this number is not computable in polyno-
mial time. The situation changes, however, if we want to carry out the exponentiation
modulo m: then ab is also a residue class modulo m, and hence it can be represented by
logm + O(1) bits. We will show that it can be not only represented polynomially but
also computed in polynomial time.

Lemma 3.2 Let a, b and m be three natural numbers. Then ab (mod m) can be com-
puted in polynomial time, or more exactly, with O(log b) arithmetical operations, carried
out on natural numbers with O(logm+ log a) digits.

Algorithm Let us write b in binary:

b = 2r1 + · · · + 2rk ,

where 0 ≤ r1 < · · · < rk. It is obvious that rk ≤ log b and therefore k ≤ log b. Now,
the numbers a2t

(mod m) for 0 ≤ t ≤ log b are easily obtained by repeated squaring,
and then we multiply those k together that make up ab. Of course, we carry out all
operations modulo m, i.e., after each multiplication, we also perform a division with
remainder by m. �

Remark 3.4 It is not known whether a! mod m or
(

a
b

)

mod m can be computed in
polynomial time.

3.3.2 Gaussian elimination

The basic operations of linear algebra are polynomial: addition and inner product of
vectors, multiplication and inversion of matrices, the computation of determinants. How-
ever, these facts are non-trivial in the last two cases, so we will deal with them in detail.

Let A = (aij) be an arbitrary n× n matrix consisting of integers.
Let us verify, first of all, that the polynomial computation of det(A) is not inherently

impossible, in the sense that the result can be written down with polynomially many
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bits. Let K = max |aij |, then to write down the matrix A we need obviously at least
L = n2 + logK bits. On the other hand, the definition of determinants gives

| det(A)| ≤ n!Kn,

hence det(A) can be written down using

log(n!Kn) +O(1) ≤ n(logn+ logK) +O(1)

bits. This is polynomial in L.
Linear algebra gives a formula for each element of det(A−1) as the quotient of two

subdeterminants of A. This shows that A−1 can also be written down with polynomially
many bits.

The usual procedure to compute the determinant is Gaussian elimination. We can
view this as the transformation of the matrix into a lower triangular matrix with column
operations. These transformations do not change the determinant, and in the final
triangular matrix, the computation of the determinant is trivial: we just multiply the
diagonal elements to obtain it. It is also easy to obtain the inverse matrix from this
form; we will not deal with this issue separately.

Gaussian elimination. Suppose that for all i such that 1 ≤ i ≤ t, we have achieved
already that in the i’th row, only the first i entries hold a nonzero element. Pick a
nonzero element from the last n − t columns (stop if if there is no such element). Call
this element the pivot element of this stage. Rearrange the rows and columns so that
this element gets into position (t + 1, t + 1). Subtract column t + 1, multiplied by
at+1,i/at+1,t+1, from column i column for all i = t + 2, . . . , n, in order to get 0’s in
the elements (t + 1, t + 2), . . . , (t + 1, n). These subtractions do not change value of
the determinant and the rearrangement changes at most the sign, which is easy to keep
track of.

Since one iteration of the Gaussian elimination uses O(n2) arithmetic operations and
n iterations must be performed, this procedure uses O(n3) arithmetic operations. But
the problem is that we must also divide, and not with remainder. This does not cause a
problem over a finite field, but it does in the case of the rational field. We assumed that
the elements of the original matrix are integers; but during the run of the algorithm,
matrices also occur that consist of rational numbers. In what form should these matrix
elements be stored? The natural answer is that as pairs of integers (whose quotient is
the rational number).

Do we require that the fractions be in simplified form, i.e., that their numerator
and denominator be relatively prime to each other? We could do so; then we have to
simplify each matrix element after each iteration, for which we would have to perform
the Euclidean algorithm. This can be performed in polynomial time, but it is a lot of
extra work, and it is desirable to avoid it. (Of course, we also have to show that in
the simplified form, the occurring numerators and denominators have only polynomially
many digits. This will follow from the discussions below.)

We could also choose not to require that the matrix elements be in simplified form.
Then we define the sum and product of two rational numbers a/b and c/d by the following
formulas: (ad + bc)/(bd) and (ac)/(bd). With this convention, the problem is that the
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numerators and denominators occurring in the course of the algorithm can become very
large (have a nonpolynomial number of digits)!

Fortunately, we can give a procedure that stores the fractions in partially simplified
form, and avoids both the simplification and the excessive growth of the number of digits.
For this, let us analyze a little the matrices occurring during Gaussian elimination. We
can assume that the pivot elements are, as they come, in positions (1, 1), . . . , (n, n), i.e.,

we do not have to permute the rows and columns. Let (a
(k)
ij ) (1 ≤ i, j ≤ n) be the matrix

obtained after k iterations. Let us denote the elements in the main diagonal of the final

matrix, for simplicity, by d1, . . . , dn (thus, di = a
(n)
ii ). Let D(k) denote the submatrix

determined by the first k rows and columns of matrix A, and let D
(k)
ij , for k+1 ≤ i, j ≤ n,

denote the submatrix determined by the first k rows and the ith row and the first k

columns and the jth column. Let d
(k)
ij = det(D

(k)
ij ). Obviously, det(D(k)) = d

(k−1)
kk .

Lemma 3.3

a
(k)
ij =

d
(k)
ij

det(D(k))
.

Proof. If we compute det(D
(k)
ij ) using Gaussian elimination, then in its main diagonal,

we obtain the elements d1, . . . , dk, a
(k)
ij . Thus

d
(k)
ij = d1 · · · dk · a(k)

ij .

Similarly,
det(D(k)) = d1 · · · dk.

Dividing these two equations by each other, we obtain the lemma. �

By this lemma, every number occurring in the Gaussian elimination can be repre-
sented as a fraction both the numerator and the denominator of which is a determinant
of some submatrix of the original A matrix. In this way, a polynomial number of digits
is certainly enough to represent all the fractions obtained.

However, it is not necessary to compute the simplifications of all fractions obtained
in the process. By the definition of Gaussian elimination we have that

a
(k+1)
ij = a

(k)
ij −

a
(k)
i,k+1a

(k)
k+1,j

a
(k)
k+1,k+1

and hence

d
(k+1)
ij =

d
(k)
ij d

(k)
k+1,k+1 − d

(k)
i,k+1d

(k)
k+1,j

d
(k−1)
k,k

.

This formula can be considered as a recurrence for computing the numbers d
(k)
ij . Since

the left-hand side is an integer, the division can be carried out exactly. Using the above
considerations, we find that the number of digits in the quotient is polynomial in terms
of the size of the input.
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There are at least two further possibilities to remedy the problem of the fractions
occurring in Gaussian elimination.

We can approximate the numbers by binary “decimals” of limited accuracy (as it
seems natural from the point of view of computer implementation), allowing, say, p bits
after the binary “decimal point”. Then the result is only an approximation, but since
the determinant is an integer, it is enough to compute it with an error smaller than
1/2. Using the methods of numerical analysis, it can be determined how large p must
be chosen to make the error in the end result smaller than 1/2. It turns out that a
polynomial number of digits are enough, and this leads to a polynomial algorithm.

The third possibility is based on the remark that if m > | det(A)| then it is enough
to determine the value of det(A) modulo m. If m is a prime number then computing
modulo m, we don’t have to use fractions at all. Since we know that | det(A)| < n!Kn

it is enough to choose for m a prime number greater than n!Kn.
It is, however, not quite easy to select such a large prime (see the section on ran-

domized algorithms). An easier method is to choose m as the product of different small
primes: m = 2 · 3 · · · pk where for k we can be choose, e.g., the total number of bits oc-
curring in the representation of A. Then it is easy to compute the remainder of det(A)
modulo pi for all pi, using Gaussian elimination in the field of residue classes modulo pi.
Then we can compute the remainder of det(A) modulo m using the Chinese Remainder
Theorem. (Since k is small we can afford to find the first k primes simply by brute
force. But the cost of this computation must be judged differently anyway since the
same primes can then be used for the computation of arbitrarily many determinants.)

Remark 3.5 The modular method is successfully applicable in a number of other cases.
One way to look at this method is to consider it as an encoding of the integers in a way
different from the binary (or decimal) number system: we code the integer n by its
remainder after division by the primes 2,3, etc. This is an infinite number of bits, but
if we know in advance that no number occurring in the computation is larger than N
then it is enough to consider the first k primes whose product is larger than N . In this
encoding, the arithmetic operations can be performed very simply, and even in parallel
for the different primes. Comparison by magnitude is, however, awkward.

3.4 Polynomial time II: Graph algorithms

The most important algorithms of graph theory are polynomial. It is impossible to
survey this topic in this course; graph algorithms can fill several books. We restrict
ourselves to a brief discussion of a few examples that provide particularly important
insight into some basic techniques. We’ll group our examples around two algorithmic
methods: searching a graph and augmenting paths.

3.4.1 How is a graph given?

3.4.2 Searching a graph

a. General search and connectivity testing. Perhaps the most fundamental ques-
tion to ask about a graph is whether or not it is connected. If not, we often want to find
its connected components.
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These tasks are trivial to do in polynomial time, in a variety of ways. The reason
why we describe a solution is because its elements will be useful later.

Let G be a graph. Select any node r. Build up a tree T as follows. at the beginning,
T consists of just r. At any stage, we look if there is an edge between the nodes of
T and the rest of the node. If there is such an edge, we add it to T , together with its
endnode outside T . If not, then we know that G is disconnected and T is a spanning tree
of a connected component. We can delete the nodes of T grom the graph and proceed
recursively.

It is costumary to call the nodes of T labelled. The usual way to look for an edge
between a labelled and an unlabelled node is to look at the labelled nodes and investigate
the edges going out of them. A simple but important observation is that if at one stage
we find that none of the edges of a given labelled node goes to an unlabelled node, then
we don’t need to investigate this node at any other later stage (since only an unlabelled
node can become labelled, not vice versa). Therefore we can mark this node as taken
care of, or scanned. At any time, we only need to look at those nodes that are labelled
but not scanned.

This general labelling-scanning procedure is called searching the graph.

b. Breadth-First-Search and shortest paths. Specializing the order in which we
investigate edges out of the labelled nodes, we get special search algorithms that are good
for solving different kinds of graph problems. Perhaps the simplest such specialization is
depth-first-search. The problem is to find a shortest path in a graph from a distinguished
node s (the source) to a distinguished node t (the sink). The solution of this problem is
very simple once we embed the problem in the larger family of problems:we ask for the
shortest path from the source s to every other node of the graph. Proceed recursively:
label the neighbors of the source s with a 1. Label with k those unlabelled vertices
which are neighbors of vertices of label k−1. Then the label of each node is its distance
from s. (This method is perhaps the simplest example of a technique called dynamic
programming.

This idea reappears in the more general problem of finding a shortest path from s to
t in a graph with weighted edges. (The weight cij on the edge {i, j} is interpreted as the
length of the edge.) Again we embed this problem in the larger family of problems which
asks for a shortest (minimum weight) path from s to every other node of the graph.

Dijkstra’s algorithm recognizes that a path between two vertices may be of minimum
weight even if other paths have fewer edges. So if we begin at the source, among all
neighbors j of s, find one such that the edge sj has minimum weight csj . We can
confidently assert that the shortest path in the graph from s to this neighbor has length
csj , but we are not sure about the other neighbors of s. So label this one neighbor csj .
You may think of s as labelled with a 0. In the course of the algorithm we maintain a
set T of vertices, each of which we have confidently labelled with the minimum weight
of a path from s to it. Call this label d(s, j), the distance from s to the node j.
These minimum weight paths pass only through vertices already in T . At each step
of the algorithm, we consider vertices on the frontier of T (vertices not in T which are
neighbors of vertices in T ). Consider edges ij between vertices i in T and vertices j
in this frontier. An upper bound for the minimum weight of a path from s to j is the
smallest of the numbers d(s, i) + cij where i is in T . Find i ∈ T and j which minimize
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Figure 13: Dijkstra’s shortest path algorithm.

d(s, i) + cij . We can confidently label such a node j with d(s, j) = d(s, i) + cij and add
j to T for the following reason: Any path from s to j must leave the set T at a node i′

then pass through a node j′ of the frontier. Hence this competing path from s to j has
length at least d(s, i′) + ci′j′ . By our choice of i and j, the path from s to i in T then
immediately to j has length no greater d(s, i′) + ci′j′ (figure 13).
c. Depth-First-Search, 2-connected components, and 3-connected compo-
nents.
d. Depth-First-Search and planarity.

3.4.3 Maximum bipartite matching and alternating paths

Let G be a graph; we want to find a maximum size matching in G (recall that a matching
is subset of the edges having mutually no endpoint in common). A matching is perfect if
it mmets every node. We describe a polynomial time algorithm that finds a maximum
size matching in a bipartite graph.

Assume that we have a matching M ; how can we see whether M is maximum? One
answer to this question is provided by the following simple criterion due to Berge. An
alternating path (with respect to M) is a path in which every other edge belongs to M
(the path may start with an edge of M or with an edge not in M). An alterning path is
augmenting if it starts and ends with an edge not in M , and moreover, its endpoints are
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not incindent with any edge of M . (An augmenting path has necessarily odd length.)

Lemma 3.4 A matching in G is maximum if and only if there is no augmenting path
with respect to it.

Proof It is obvious that if we have an augmenting path P with respect to M , then we
can improve M : we can replace in M the edges of P ∩M by the edges of P \M , to get
a larger matching.

Conversely, if M is not maximum, and there exists a larger matching M ′, then
consider the connected components of M ∪M ′′. These are either alternating paths or
alternating circuits with respect to M . At least one such component must contain more
edges of M ′ than of M : this coponent is an augmenting path with respect to M .

This fact is not very deep since it relates the existence of something (a larger match-
ing) to the existence of something else (an augmenting path). But it does give a moti-
vation for most of the known polynomial time matching algorithms: one can look for an
augmenting path by building up a search tree.

Given a bipartite graph G = (A,B), we want to find a maximal matching M . We
use the notion of alternating trees. Given a matching M , we call a vertex of the graph
exposed (by M) if it is not covered by M . An alternating tree is a subgraph of G which
contains exactly one exposed node r; for which every node at odd distance from r has
degree 2 in the tree; such that along any path from r every other edge belongs to the
matching; and whose endpoints are all at even distance from r.

The vertices of the tree at even distance from r (including r itself) are called outer
nodes, and the vertices at odd distance from r are called inner nodes.

An alternating forest is a forest such that every component is an alternating tree,
and every exposed node of the graph is contained in the forest.

If we have a matching M and would like to extend it, we take an exposed vertex r
and try to match it to a neighbour; but the neighbor may already be in the matching,
so we leave this edge out; this creates a new exposed node which we try to match etc.
This leads to the notion of alternating paths. Searching for alternating paths from an
exposed node r leads to the construction of an alternating tree.

Now we describe the algorithm. We start with the empty matching and the alter-
nating forest consisting of all nodes and no edges. At every stage, either we can increase
the size of the matching (deleting some edges but adding more) or we can extend the
forest already constructed (and keeping the matching unchanged), or we are stuck and
the matching is optimal.

Suppose that we already have a candidate matching M and alternating forest F with
respect to M .

Case 1. If there is an edge e connecting two outer nodes of the forest, then these
nodes must belong to different trees since the graph is bipartite. Let u and v be the
exposed nodes of the two trees. We have an alternating path from u to v, and switching
the matching edges along the path we get a new matching M ′ with one more edge than
M . The forest consisting of all exposed points of M ′ is alternating with respect to M ′.
(See figure 14).

Case 2. Otherwise, if there is an edge connecting an outer node p of the forest to
a vertex u of V (G) \ V (F ), this vertex u cannot be exposed from the definition of an
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Figure 14: Extending a bipartite graph matching

p
u

v

p

u

v

Figure 15: Extending an alternating forest

alternating forest. Hence it is the endpoint of an edge of the matching, say uv. Vertex
v is also in V (G) \ V (F ) (otherwise u would have to be in F ), and so we can extend F
by adding the edges pu and uv. (See figure 15).

Case 3. If neither of the cases above applies, the outer points must be connected to
inner points only. A simple but crucial counting argument will show that the matching
must be optimal. (We will use this counting argument several times during this lecture).

There is one exposed vertex in every component of F , and none outside F , so the
total number of exposed points of the matching is equal to the number of components
of F . Each outer point of the trees of F is matched to an inner point, which is its
predecessor in the tree, except for the exposed vertex of each tree. Thus

#outer points = #inner points + #exposed points.

Let D be the set of outer vertices and A be the set of inner vertices of F . The neighbor
set of D in the graph is included in A, the number of exposed points of M is exactly
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|D| − |A|.
Let M ′ be any matching of the graph. M ′ can only match points of D to points of

A, and must therefore it must leave at least |D| − |A| points exposed. Hence M is a
maximum matching.

Thus we have a valid algorithm for finding a maximum matching in a bipartite graph.
At every step we must consider at most n2 edges, and since the size ofM or of F increases
at each step, there are at most n2 steps, hence a O(n4) algorithm. Simple considerations
enable to reduce the running time to O(n3). It is possible, but quite difficult, to reduce
it further to O(n2.5).

3.5 Polynomial space

Obviously, all polynomial-time algorithms require only polynomial space, but polyno-
mial space is significantly more general: many exponential time algorithms need only
polynomial space. (It is clear that using polynomial space, we terminate in exponential
time or never: if the same configuration (state of the CU, position of heads, contents of
tape) is repeated, then we are in cycle).

For example, the space requirement of the trivial graph coloring algorithm treated
in is polynomial (even linear): if we survey all colorings in lexicographic order then it is
sufficient to keep track of which coloring is currently checked and for which edges has
it already been checked whether they connect points with the same color. In a similar
way, we could carry out in polynomial space every brute force algorithm that tries to
find in a graph a Hamilton cycle, the largest clique, etc.

The most typical example for a polynomial-space algorithm is finding the optimal
step in a 2-person game like chess, by searching through all possible continuations.

Let us describe a general model for a “chess-like” game.
We assume that every given position of a game can be described by a word x of length

n over some finite alphabet Σ (typically, telling the position of the pieces on the board,
the name of the player whose turn it is and possibly some more information, e.g. in
the case of chess whether the king has moved already, etc.). An initial configuration is
distinguished. We assume that the two players take turns and have a way to tell, for
two given positions whether it is legal to move from one into the other, by an algorithm
taking polynomial time1 If there is no legal move in a position then it is a terminal
position and a certain algorithm decides in polynomial time, who won. We assume that
the game is always finished in nc steps.

A position is winning for the player whose turn it is if there is a strategy that, starting
from this position, leads to the victory of this player no matter what the other player
does. A position is losing if it no matter what move the player makes, his opponent has
a winning strategy. Since the game is finite, every position is either a winning or losing
position. Note that

• — every legal move from a losing position leads to a winning position;

• — there is a move from any winning position that leads to a losing position.

1It would be sufficient to assume polynomial space but it makes the game rather boring if it takes

more than polynomial time to decide whether a move is legal or not.
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We can visualize a game as a huge rooted tree. The root is labelled by the starting
position. The children of the root are labelled by the positions that can be reached from
the starting position by a legal move. Similarly, each node i of the tree is labelled by
a position xi in the game, and its children are labelled by the positions that can be
reached from xi by a legal move. The leaves of the tree are the terminal positions.

Note that the same position may occur more than once as a label, if there are different
sequences of legal moves leading to that position. A node of the tree corresponds to a
subgame, i.e., to a sequence x0, x1, . . . , xk of positions such that a legal step leads from
each position xi into xi+1. (We could identify nodes of the tree that correspond to the
same position, and work on the resulting graph, which is not a tree any more. However,
it is moree transparent to have the whole tree around.)

We describe an algorithm that decides about each position in such a game whether it
is a winning or losing position. The algorithm works in polynomial space but exponential
time.

Algorithm to find an optimal move. Roughly speaking, we search the game-tree in
a depth-first-search manner, and label positions “winning’ and “loosing”.

At a given step, the machine analyzes all possible continuations of some partial game
x0, x1, . . . , xk. It will always be maintained that among all continuations of x0, x1, . . . , xi

(0 ≤ i ≤ k) those that come before xi+1 (with respect to the lexicographical ordering
of the words of length n) are “bad steps”, i.e. they are either illegal moves or lead
to a winning position (the position is winning for the other player, so to go there is a
bad move!). In other words, if there are “good” moves at all, the algorithm finds the
lexicographically first good move. The algorithm maintains the last legal continuation
y of xk it has studied (or that no such continuation was found yet). All the legal
continuations that come before y lead to winning positions.

The algorithm looks at the words of length n following y in lexicographical order, to
see whether they are legal continuations of xk. If it finds one, this is xk+1 and goes on to
examine the one longer partial game obtained this way. If it does not find such a move,
and it did not find legal move from this position, that this position is terminal, and the
algorithm marks it “winning” or “loosing” according to the game rules. If there was at
least one legal move from xk, then we know that all legal moves from this position lead
to winning positions, so this position is loosing. The algorithm marks it so, and removes
xk from the partial game. It also marks xk−1 as winning (all you have to do to win is
to move to xk), and removes it from the partial game.

Eventually, the root gets labelled, and that tells is who wins in this game.

Exercise 3.1 The Fibonacci numbers are defined by the following recurrence: F0 = 0,
F1 = 1, Fk = Fk−1 + Fk−2 for k > 1. Let 1 ≤ a ≤ b and let Fk denote the greatest
Fibonacci number not greater than b. Prove that the Euclidean algorithm, when applied
to the pair (a, b), terminates in at most k steps. How many steps does the algorithm
take when applied to (Fk, Fk−1)?

Exercise 3.2 (a) Show that for computing a/b (mod m), we don’t need that m is a
prime; it suffices to assume that the greatest common divisor of b and m is 1.

(b) More generally, show that given integers a, b andm, we can find find in polynomial
time an integer x such that bx ≡ a (mod m), or conclude that no such integer exists.
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Exercise 3.3 Show that if A is a square matrix consisting of integers, then to write
down det(A) we need at most as many bits as to write up A. [Hint: If a1, . . . , an are the
row vectors of A then | det(A)| ≤ |a1| · · · |an| (this so-called “Hadamard Inequality” is
analogous to the statement that the area of a parallelogram is smaller than the product
of the lengths of its sides).]

Exercise 3.4 Let A be an n×n matrix with 2’s in the main diagonal, 1’s below it and
0’s above it. Show that if Gaussian elimination without simplification is applied to this

matrix then after k iterations, each of the denominators will be 22k−1.
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4 General theorems on space and time complexity

If for a language L, there is a Turing machine deciding L for which for all large enough
n the relation timeT (n) ≤ f(n) holds then there is also a Turing machine recognizing L
for which this inequality holds for all n. Indeed, for small values of n we assign the task
of deciding the language to the control unit.

It can be expected that for the price of further complicating the machine, the time
demands can be decreased. The next theorem shows the machine can indeed be accel-
erated by an arbitrary constant factor, at least if its time need is large enough (the time
spent on reading the input cannot be saved).

Theorem 4.1 (Linear Speedup Theorem) For every Turing machine and c > 0
there is a Turing machine S over the same alphabet wich decides the same language an
for which timeS(n) ≤ c · timeT (n) + n.

Proof. For simplicity, let us also assume that T has a single work tape (the proof
would be similar for k tapes). We can assume that c = 1/p where p is an integer.

Let the Turing machine S have an input-tape, 2p − 1 “starting” tapes and 2p − 1
further work tapes. Let us number these each from 1− p to p− 1. Let the index of cell
j of (start- or work) tape i be the number j(2p − 1) + i. The start- or work cell with
index t will correspond to cell t on the input resp. worktape of machine T . Let S also
have an output tape.

Machine S begins its work by copying every letter of input x from its input tape to
the cell with the corresponding index on its starting tapes, then moves every head back
to cell 0. From then on, it ignores the “real” input tape.

Every further step of machine S will correspond p consecutive steps of machine T .
After pk steps of machine T , let the scanning head of the input tape and the work tape
rest on cells t and s respectively. We will plan machine S in such a way that in this case,
each cell of each start- resp. worktape of S holds the same symbol as the corresponding
cell of the corresponding tape of T , and the heads rest on the starting-tape cells with
indices t−p+1, . . . , t+p−1 and the work-tape cells with indices s−p+1, . . . , s+p−1.
We assume that the control unit of machine S “knows” also which head scans the cell
corresponding to t resp. s. It knows further what is the state of the control unit of T .

Since the control unit of S sees not only what is read by T ’s control unit at the
present moment on its input- and worktape but also the cells at a distance at most p−1
from these, it can compute where T ’s heads will step and what they will write in the
next p steps. Say, after p steps, the heads of T will be in positions t+ i and s+ j (where,
say, i, j > 0). Obviously, i, j < p. Notice that in the meanwhile, the “work head” could
change the symbols written on the work tape only in the interval [s− p+ 1, s+ p− 1].

Let now the control unit of S do the following: compute and remember what will
be the state of T ’s control unit p steps later. Remember wich heads rest on the cells
corresponding to the positions (t+ i) and (s+ j). Let it rewrite the symbols on the work
tape according to the configuration p steps later (this is possible since there is a head on
each work cell with indices in the interval [s− p+ 1, s+ p− 1]). Finally, move the start
heads with indices in the interval [t − p+ 1, t− p+ i] and the work heads with indices
in the interval [s − p+ 1, s− p+ j] one step right; in this way, the indices occupied by
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them will fill the interval [t+ p, t+ p+ i− 1] resp. [s+ p, s+ p+ i− 1] which, together
with the heads that stayed in their place, gives interval [t + i − p + 1, t + i + p − 1]
resp. [s+ j − p+ 1, s+ j + p− 1].

If during the p steps under consideration, T writes on the output tape (either 0 or 1)
and stops, then let S do this, too. Thus, we constructed a machine S that (apart from
the initial copying) makes only a pth of the number of steps of T and decides the same
language. �

Exercise 4.1 * For every Turing machine T and c > 0, one can find a Turing machine S
with the same number of tapes that decides the same language and for which timeS(n) ≤
c · timeT (n) + n (here, we allow the extension of the alphabet.

Exercise 4.2 Formulate and prove the analogue of the above problem for storage in
place of time.

It is trivial that the storage demand of a k-tape Turing machine is at most k times
its time demand (since in one step, at most k cells will be written). Therefore if we have
L ∈ DTIME(f(n)) for a language then there is a constant k (depending on the language)
that L ∈ DSPACE(k · f(n)). (If extending the alphabet is allowed and f(n) > n
then DSPACE(k · f(n)) = DSPACE(f(n)) and thus it follows that DTIME(f(n)) ⊆
DSPACE(f(n)).) On the other hand, the time demand is not greater than an exponential
function of the space demand (since exactly the same memory configuration, taking into
account also the positions of the heads and the state of the control unit, cannot occur
more than once without getting into a cycle). Computing more precisely, the number
of different memory configurations is at most c · f(n)kmf(n) where m is the size of the
alphabet.

Since according to the above, the time complexity of a language does not depend on
a constant factor, and in this upper bound the numbers c, k,m are constants, it follows
that if f(n) > logn and L ∈ DSPACE(f(n)) then L ∈ DTIME((m+ 1)f(n)).

A recursive language can have arbitrarily large time (and, due to the above inequality,
also space-) complexity. More precisely:

Theorem 4.2 For every recursive function f(n) there is a recursive language L that is
not an element of DTIME(f(n)).

Proof. The proof is similar to the proof of the fact that the halting problem is
undecidable. We can assume f(n) > n. Let T be the 2-tape universal Turing machine
constructed in Chapter 1, and let L consist of all words x for which it is true that having
x as input on both of its tape, T halts in at most f(|x|)4 steps. L is obviously recursive.

Let us now assume that L ∈ DTIME(f(n)). Then there is a Turing machine (with
some k > 0 tapes) deciding L in time f(n). From this we can construct a 1-tape Turing
machine deciding L in time cf(n)2 (e.g. in such a way that it stops and writes 0 or 1 as
its decision on a certain cell). Since for large enough n we have cf(n)2 < f(n)3, and the
words shorter than this can be recognized by the control unit directly, we can also make
a 1-tape Turing machine that always stops in time f(n)3. Let us modify this machine
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in such a way that if a word x is in L then it runs forever, while if x ∈ Σ∗
0 \ L then it

stops. This machine be S can be simulated on T by some program p in such a way that
T halts with input (x, p) if and only if S halts with input x; moreover, it halts in these
cases within |p|f(|x|)3 steps.

There are two cases. If p ∈ L then—according to the definition of L—starting with
input p on both tapes, machine T will stop. Since the program simulates S it follows
that S halts with input p. This is, however, impossible, since S does not halt at all for
inputs from L.

On the other hand, if p 6∈ L then—according to the construction of S—starting with
p on its first tape, this machine halts in time |p|f(|p|)3 < f(|p|)4. Thus, T also halts in
time f(|p|)4. But then p ∈ L by the definition of the language L.

This contradiction shows that L 6∈ DTIME(f(n)). �

There is also a different way to look at the above result. For some fixed universal
two-tape Turing machine U and an arbitrary function t(n) > 0, the t-bounded halting
problem asks, for n and all inputs p, x of maximum length n, whether the above machine
U halts in t(n) steps. (Similar questions can be asked about storage.) This problem
seems decidable in t(n) steps, though this is true only with some qualification: for this,
the function t(n) must itself be computable in t(n) steps (see the definition of “fully
time-constructible” below). We can also expect a result similar to the undecidability of
the halting problem, saying that the t-bounded halting problem cannot be decided in
time “much less” than t(n). How much less is “much less” here depends on some results
on the complexity of simulation between Turing machines.

We call a function f : Z+ → Z+ fully time-constructible if there is a multitape
Turing machine that for each input of length n using exactly f(n) time steps. The
meaning of this strange definition is that with fully time-constructable functions, it is
easy to bound the running time of Turing machines: If there is a Turing machine making
exactly f(n) steps on each input of length n then we can build this into any other Turing
machine as a clock: their tapes, except the work tapes, are different, and the combined
Turing machine carries out in each step the work of both machines.

Obviously, every fully time-constructible function is recursive. On the other hands, it
is easy to see that n2, 2n, n! and every “reasonable” function is fully time-constructible.
The lemma below guarantees the existence of many completely time-constructable func-
tions.

Let us call a function f : Z+ → Z+ well-computable if there is a Turing machine
computing f(n) in time O(f(n)). (Here, we write n and f(n) in unary notation: the
number n is given by a sequence 1 . . . 1 of length n and we want as output a sequence
1 . . . 1 of length f(n). The results would not be changed, however, if n and f(n) were
represented e.g. in binary notation.) Now the following lemma is easy to prove:

Lemma 4.3 (a) To every well-computable function f(n), there is a fully time-
constructible function g(n) such that f(n) ≤ g(n) ≤ const · f(n).

(b) For every fully time-constructible function g(n) there is a well-computable func-
tion f(n) with g(n) ≤ f(n) ≤ const · g(n).

(c) For every recursive function f there is a fully time-constructible function g with
f ≤ g.
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This lemma allows us to use, in most cases, fully time-constructible and well-
computable functions interchangeably. Following the custom, we will use the former.

Theorem 4.4 If f(n) is fully time-constructible and g(n) log g(n) = o(f(n)) then there
is a language in DTIME(f(n)) that does not belong to DTIME(g(n)).

This says that the time complexities of recursive languages are “sufficiently dense”.
Analogous, but easier, results hold for storage complexities.

Exercise 4.3 Prove the above theorem, and the following, closely related statement:
Let t′(n) log t′(n) = o(t(n)). Then the t(n)-bounded halting problem cannot be decided
on a two-tape Turing machine in time t′(n).

Exercise 4.4 Show that if S(n) is any function and S′(n) = o(S(n)) then the S(n)
space-bounded halting problem cannot be solved in time S′(n).

The full time-constructibility of the function f plays very important role in the last
theorem. If we drop it then there can be an arbitrarily large “gap” below f(n) which
contains the time-complexity of no language at all.

Theorem 4.5 (Gap Theorem) For every recursive function ϕ(n) ≥ n there is a re-
cursive function f(n) such that

DTIME(ϕ(f(n))) = DTIME(f(n)).

Thus, there is a recursive function f with

DTIME(f(n)2) = DTIME(f(n)),

moreover, there is even one with

DTIME(22f(n)

) = DTIME(f(n)).

Proof. Let us fix a 2-tape universal Turing machine. Denote τ(x, y) the time needed
for T compute from input x on the first tape and y on the second tape. (This can also
be infinite.)

Claim 4.6 There is a recursive function h such that for all n > 0 and all x, y ∈ Σ∗
0, if

|x|, |y| ≤ n then either τ(x, y) ≤ h(n) or τ(x, y) ≥ (ϕ(h(n)))3.

If the function

ψ(n) = max{ τ(x, y) : |x|, |y| ≤ n, τ(x, y) is finite }

was recursive this would satisfy the conditions trivially. This function is, however,
not recursive (exercise: prove it!). We introduce therefore the following “constructive
version”: for a given n, let us start from the time bound t = n + 1. Let us arrange all
pairs (x, y) ∈ (Σ∗

0)
2, |x|, |y| ≤ n in a queue. Take the first element (x, y) of the queue

66



and run the machine with this input. If it stops within time t then throw out the pair
(x, y). If it stops in s steps where t < s ≤ ϕ(t)3 then let t := s and throw out the pair
(x, y) again. (Here, we used that ϕ(n) is recursive.) If the machine does not stop even
after ϕ(t)3 steps then stop it and place the pair (x, y) to the end of the queue. If we
have passed the queue without throwing out any pair then let us stop, with h(n) := t.
This function clearly has the property formulated in the Claim.

We will show that with the function h(n) defined above,

DTIME(h(n)) = DTIME(ϕ(h(n))).

For this, consider an arbitrary language L ∈ DTIME(ϕ(h(n))) (containment in the other
direction is trivial). To this, a Turing machine can thus be given that decides L in time
ϕ(h(n)). Therefore a one-tape Turing machine can be given that decides L in time
ϕ(h(n))2. This latter Turing machine can be simulated on the given universal Turing
machine T with some program p on its second tape, in time, |p| · ϕ(h(n)). Thus, if n
is large enough then T works on all inputs (y, p) (|y| ≤ n) for at most ϕ(h(n))3 steps.
But then, due to the definition of h(n), it works on each such input at most h(n) steps.
Thus, this machine decides, with the given program (which we can also put into the
control unit, if we want) the language L in time h(n), i.e. L ∈ DTIME(h(n)). �

As a consequence of the theorem, we see that there is a recursive function f(n) with

DTIME((m+ 1)f(n)) = DTIME(f(n)),

and thus
DTIME(f(n)) = DSPACE(f(n)).

For a given problem, there is often no “best” algorithm: the following surprising
theorem is true.

Theorem 4.7 (Speed-up Theorem) For every recursive function g(n) there is a re-
cursive language L such that for every Turing machine T deciding L there is a Turing
machine S deciding L with g(timeS(n)) < timeT (n).

The Linear Speedup Theorem applies to every language; this theorem states only the
existence of an arbitrarily “speedable” language. In general, for an arbitrary language,
better than linear speed-up cannot be expected.

Proof. The essence of the proof is that as we allow more complicated machines we can
“hard-wire” more information into the control unit. Thus, the machine needs to work
only with longer inputs “on their own merit”, and we want to construct the language
in such a way that this should be easier and easier. It will not be enough, however, to
hard-wire only the membership or non-membership of “short” words in L, we will need
more information about them.

Without loss of generality, we can assume that g(n) > n and that g is a fully time-
constructable function. Let us define a function h with the recursion

h(0) = 1, h(n) = (g(h(n− 1)))3.
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It is easy to see that h(n) is a monotonically increasing (in fact, very fast increasing),
fully time-constructable function. Fix a universal Turing machine T0 with, say, two
tapes. Let τ(x, y) denote the time spent by T0 working on input (x, y) (this can also be
infinite). Let us call the pair (x, y) “fast” if |y| ≤ |x| and τ(x, y) ≤ h(|x| − |y|).

Let (x1, x2, . . .) be an ordering of the words e.g. in increasing order; we will select
a word yi for certain indices i as follows. For each index i = 1, 2, . . . in turn, we check
whether there is a word y not selected yet that makes (xi, y) fast; if there are such words
let yi be a shortest one among these. Let L consist of all words xi for which yi exists
and the Turing machine T0 halts on input (xi, yi) with the word “0” on its first tape.
(These are the words not accepted by T0 with program yi.)

First we convince ourselves that L is recursive, moreover, for all natural numbers k
the question x ∈ L is decidable in h(n − k) steps (where n = |x|) if n is large enough.
We can decide the membership of xi if we decide whether yi exists, find yi (if it exists),
and run the Turing machine T0 on input (xi, yi) for time h(|xi| − |yi|).

This last step itself is already too much if |yi| ≤ k; therefore we make a list of all
pairs (xi, yi) with |yi| ≤ k (this is a finite list), and put this into the control unit. This
begins therefore by checking whether the given word x is in this list as the first element
of a pair, and if it is, it accepts x (beyond the reading of x, this is only one step!).
Suppose that xi is not in the list. Then yi, if it exists, is longer than k. We can try all
inputs (x, y) with k < |y| ≤ |x| for “fastness” and this needs only (m2n+ 1)h(n− k− 1)
(including the computation of h(|x| − |y|)). The function h(n) grows so fast that this is
less than h(n− k). Now we have yi and also see whether T0 accepts the pair (xi, yi).

Second, we show that if a program y accepts the language L on on the machine T0

(i.e. stops for all Σ∗
0 writing 1 or 0 on its first tape according to whether x is in the

language L) then y cannot be equal to any of the selected words yi. This follows by the
usual “diagonal” reasoning: if yi = y then let us see whether xi is in the language L. If
yes then T0 must give result “1” for the pair (xi, yi) (since y = yi decides L). But then
according to the definition of L, we did not put xi into it. Conversely, if xi 6∈ L then it
was left out since T0 answers “1” on input (xi, yi); but then xi ∈ L since the program
y = yi decides L. We get a contradiction in both cases.

Third, we convince ourselves that if program y decides L on the machine T0 then
(x, y) can be “fast” only for finitely many words x. Let namely (x, y) be “fast”, where
x = xi. Since y was available at the selection of yi (it was not selected earlier) therefore
we would have had to choose some yi for this i and the actually selected yi could not
be longer than y. Thus, if x differs from all words xj with |yj | ≤ |y| then (x, y) is not
“fast”.

Finally, consider an arbitrary Turing machine T deciding L. To this, we can make
a one-tape Turing machine T1 which also decides L and has timeT1(n) ≤ (timeT (n))2.
Since the machine T0 is universal, T0 simulates T1 by some program y in such a way that
(let us be generous) τ(x, y) ≤ (timeT (|x|))3 for all sufficiently long words x. According
to what was proved above, however, we have τ(x, y) ≥ h(|x| − |y|) for all but finitely
many x, and thus timeT (n) ≥ (h(n− |y|))1/3.

Thus, for the above constructed Turing machine S deciding L in h(n−|y|−1) steps,
we have

timeT (n) ≥ (h(n− |y|))1/3 ≥ g(h(n− |y| − 1)) ≥ g(timeS(n)).
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The most important conclusion to be drawn from the speed-up theorem is that even
though it is convenient to talk about the computational complexity of a certain language
L, rigorous statements concerning complexity generally don’t refer to a single function
t(n) as the complexity, but only give upper bounds t′(n) (by constructing a Turing
machine deciding the language in time t′(n)) or lower bounds t′′(n) (showing that no
Turing machine can make the decision in time t′′(n) for all n).

4.1 Space versus time

Above, some general theorems were stated with respect to complexity measures. It
was shown that there are languages requiring a large amount of time to decide them.
Analogous theorems can be proved for the storage complexity. It is natural to ask about
the relation of these two complexity measures. There are some very simple relations
mentioned in the text before Theorem 4.2.

There is a variety of natural and interesting questions about the trade-off between
storage and time. Let us first mention the well-know practical problem that the work of
most computers can be speeded up significantly by adding memory. The relation here
is not really between the storage and time complexity of computations, only between
slower and faster memory. Possibly, between random-access memory versus the memory
on disks, which is closer to the serial-access model of Turing machines.

There are some examples of real storage-time trade-off in practice. Suppose that
during a computation, the values of a small but complex Boolean function will be used
repeatedly. Then, on a random-access machine, it is worth computing these values once
for all inputs and use table look-up later. Similarly, if a certain field of our records
in a data base is often used for lookup then it is worth computing a table facilitating
this kind of search (inverting). All these examples fall into the following category. We
know some problem P and an algorithm A that solves it. Another algorithm A′ is also
known that solves P in less time and more storage than A. But generally, we don’t have
any proof that with the smaller amount of time really more storage is needed to solve
P . Moreover, when a lower bound is known on the time complexity of some function,
we have generally no better estimate of the storage complexity than the trivial one
mentioned above (and vice versa).

69



5 Non-deterministic algorithms

5.1 Non-deterministic Turing machines

A non-deterministic Turing machine differs from a deterministic one only in that in
every position, the state of the control unit and the symbols scanned by the heads
permit more than one possible action. To each state g ∈ Γ and symbols h1, . . . , hk a set
of “legal actions” is given where a legal action is a (2k + 1)-tuple consisting of a new
state g′ ∈ Γ, new symbols h′1, . . . , h

′
k and moves j1, . . . , jk ∈ {−1, 0, 1}. More exactly, a

non-deterministic Turing machine is an ordered 4-tuple T = (k,Σ,Γ,Φ) where k ≥ 1 is
a natural number, Σ and Γ are finite sets, ∗ ∈ Σ, START, STOP ∈ Γ (so far, everything
is as with a deterministic Turing machine) and

Φ ⊆ (Γ × Σk) × (Γ × Σk × {−1, 0, 1}k)

is an arbitrary relation. A legal computation of the machine is a sequence of steps where
in each step (just as with the deterministic Turing machine) the control unit enters a new
state, the heads write new letters on the tapes and move at most one step left or right.
The steps must satisfy the following conditions: if the state of the control unit was g ∈ Γ
before the step and the heads read on the tapes the symbols h1, . . . , hk ∈ Σ then for the
new state g′, the newly written symbols h′1, . . . , h

′
k and the steps ε1, . . . , εk ∈ {−1, 0, 1}

we have
(g, h1, . . . , hk, g

′, h′1, . . . , h
′
k, ε1, . . . , εk) ∈ Φ.

A non-deterministic Turing machine can have therefore several legal computations for
the same input.

We say that the non-deterministic Turing machine T accepts word x ∈ Σ∗
0 in time

t if whenever we write x on the first tape and the empty word on the other tapes, the
machine has a legal computation consisting of t steps, with this input, which at its
halting has in position 0 of the first tape the symbol “1”. (There may be other legal
computations that last much longer or maybe don’t even stop, or reject the word.)

We say that a non-deterministic Turing machine T recognizes a language L if L
consists exactly of those words accepted by T (in arbitarily long finite time). If, in
addition to this, the machine accepts all words x ∈ L in time f(|x|) (where f : Z+ →
Z+), then we say that the machine recognizes L in time f(n) (recognizability in storage
f(n) is defined similarly). The class of languages recognizable by a non-deterministic
Turing machine in time f(n) is denoted by NTIME(f(n)).

Unlike deterministic classes, the non-deterministic recognizability of a language L
does not mean that the complementary language Σ∗

0 \ L is recognizable (we will see
below that each recursively enumerable but not recursive language is an example for
this). Therefore we introduce the classes co−NTIME(f(n)): a language L belongs to
a class co−NTIME(f(n)) if and only if the complementary language Σ∗

0 \ L belongs to
NTIME(f(n)).

The notion of acceptance in storage s, and the classes NSPACE(f(n)),
co−NSPACE(f(n)) are defined analogously.

Remark 5.1
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1. The deterministic Turing machines can be considered, of course, as special non-
deterministic Turing machines.

2. A non-deterministic Turing machine can make several kinds of step in a situation;
we did not assume any probability distribution on these, we cannot therefore speak
about the probability of some computation. If we did this then we would speak
of randomized, or probabilistic, Turing machines, which are the object of a later
section. In contrast to non-deterministic Turing machines, randomized Turing
machines model computing processes that are practically important.

Theorem 5.1 Languages recognizable by non-deterministic Turing machines are exactly
the recursively enumerable languages.

Proof. Assume first that language L is recursively enumerable. Then, there is a
Turing machine T that halts in finitely many steps on input x if and only if x ∈ L. Let
us modify T in such a way that when before stops it writes the symbol 1 onto field 0
of the first tape. Obviously, this modified T has a legal computation accepting x if and
only if x ∈ L.

Conversely, assume that L is recognizable by a non-deterministic Turing machine
T ; we show that L is recursively enumerable. We can assume that L is nonempty
and let a ∈ L. Let the set L# consist of all finite legal computations of the Turing
machine T . Each element of L# contains, in an appropriate encoding, of a sequence of
configurations, or instantaneous descriptions, as they follow in time. Each configuration
shows the internal state and the symbol found in each tape cell at the given instant, as
well as the positions of the tape heads. The set L# is obviously recursive since given
two configurations, it can be decided whether the second one can be obtained in one
computation step of T from the first one. Let S be a Turing machine that for an input
y decides whether it is in L# and if yes then whether it describes a legal computation
accepting some word x. The range of values of the recursive function defined by S is
obviously just L. �
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5.2 Witnesses and the complexity of non-deterministic algo-

rithms

Let us fix a finite alphabet Σ0 and consider a language L over it. Let us investigate
first, what it really means if L is recognizable within some time by a non-deterministic
Turing machine. We will show that this is connected with how easy it is to “prove” for
a word that it is in L.

Let f and g be two functions with g(n) ≥ n. We say that the language L0 ∈
DTIME(g(n)) is a witness of length f(n) and time g(n) for language L if we have x ∈ L
if and only if there is a word y ∈ Σ∗

0 with |y| ≤ f(|x|) and x&y ∈ L0. (Here, & is a new
symbol serving the separation of the words x and y.)

Theorem 5.2

• Every language L ∈ NTIME(f(n)) has a witness of length O(f(n)) and time O(n).

• If language L has a witness of length f(n) and time g(n) then L is in
NTIME(g(f(n) + n+ 1)).

Proof. 5.2: Let T be the nondeterministic Turing machine recognizing the language
L in time f(n) with, say, two tapes. Following the pattern of the proof of Theorem 5.1,
let us assign to each word x in L the description of a legal computation of T accepting
x in time f(|x|). It is not difficult to make a Turing machine deciding about a string of
length N in O(N) steps whether it is the description of a legal computation and if yes
then whether this computation accepts the word x. Thus, the witness is composed of
the pairs x&y where y is a legal computation accepting x.

5.2 Let L0 be a witness of L with length f(n) and time g(n), and consider a determin-
istic Turing machine S deciding L0 in time g(n). Let us construct a non-deterministic
Turing machine T doing the following. If x is written on its first tape then it first com-
putes (deterministically) the value of f(|x|) and writes this many 1’s on the second tape.
Then it writes symbol & at the end of x and makes a transition into its only state in
which its behavior is nondeterministic. While staying in this state it writes a word y of
lengt at most f(|x|) after the word x&. This happens as follows: while it reads a 1 on
the second tape it has |Σ0|+1 legal moves: either it writes some symbol of the alphabet
on the first tape, moves right on the first tape and left on the second tape or it writes
nothing and makes a transition into state START2.

From state START2, on the first tape, the machine moves the head on the starting
cell, erases the second tape and then proceeds to work as the Turing machine S.

This machine T has an accepting legal computation if and only if there is a word
y ∈ Σ∗

0 of length at most f(|x|) for which S accepts word x&y, i.e. if x ∈ L. The
running time of this computation is obviously at most O(f(|x|)) + g(|x| + 1 + f(|x|)) =
O(g(|x| + 1 + f(x))). �

Corollary 5.3 For an arbitrary language L ⊆ Σ∗
0, the following properties are equiva-

lent:

• L is recognizable on a non-deterministic Turing machine in polynomial time.
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P

NP co-NP

Figure 16: The classes of NP and co-NP

• L has a witness of polynomial length and time.

Remark 5.2 We mention it without proof (even without exact formulation) that these
properties are also equivalent to the following: one can give a definition of L in the
formal axiom system of set theory such that, for a word x ∈ L, the statement “x ∈ L”
can be proved from the axioms of set theory in a number of steps polynomial in |x|.

We denote the class of languages having the property stated in Corollary 5.3 by NP.
The languages L whose complement Σ∗

0 \ L is in NP form the class co−NP. As we
mentioned earlier, with these classes of languages, what is easy is not the solution of
the recognition problem of the language, only the verification of the witnesses for the
soluton. We will see later that these classes are fundamental: they contain a large part
of the algorithmic problems important from the point of view of practice.

Figure 16 illustrates the relationship between the classes P, NP and co-NP. Note the
similarity with Figure 8 in Chapter 2. There are, however, significant differences. First,
we don’t know whether or not P fills the whole intersection NP ∩ co−NP. Second, we
don’t know whether the difference NP \ co−NP is empty or nonempty (i.e., it could be
that NP = co−NP). We’ll discuss this issue later.

Many important languages are given by their witnesses—more precisely, by the lan-
guage L0 and function f(n) in our definition of witnesses (we will see many examples
for this later). In such cases we are asking whether a given word x is in L (i.e. , whether
there is a y with |y| ≤ f(n) and x&y ∈ L0). Without danger of confusion, the word
y itself will also be called the witness word , or simply witness, belonging to x in the
witness language L. Very often, we are not only interested whether a witness word ex-
ists but would also like to produce one. This problem can be called the search problem
belonging to the language L. There can be, of course, several search problems belonging
to a language. A search problem can make sense even if the corresponding decision
problem is trivial. For example, every natural number has a prime decomposition but

73



this is not easy to find.
Since every deterministic Turing machine can be considered non-deterministic it is

obvious that
DTIME(f(n)) ⊆ NTIME(f(n)).

In analogy with the fact that there is a recursively enumerable but not recursive language
(i.e. , without limits on time or storage, the non-deterministic Turing machines are
“stronger”), we would expect that the above inclusion is strict. This is proved, however,
only in very special cases (e.g., in case of linear functions f , by Paul, Pippenger,

Trotter and Szemeredi). Later, we will treat the most important special case, the
relation of the classes P and NP in detail.

5.3 General results on nondeterministic complexity classes

The following simple relations connect the nondeterministic time- and space complexity
classes:

Theorem 5.4 Let f be a well-computable function. Then

• NTIME(f(n)) ⊆ DSPACE(f(n))

• NSPACE(f(n)) ⊆ ⋃

c>0 DTIME(2cf(n)).

Proof.
5.4: The essence of the construction is that all legal computations of a nondetermin-

istic Turing machine can be tried out one after the other using only as much space as
needed for one such legal computation; above this, we need some extra space to keep
track of where we are in the trieout of of the cases.

More exactly, this can be described as follows: Let T be a non-deterministic Turing
machine recognizing language L in time f(n). As mentioned, we can assume that all
legal computations of T take at most f(n) steps where n is the length of the input.
Let us modify the work of T in such a way that (for some input x) it will choose first
always the lexicographically first action (we fix some ordering of Σ and Γ, this makes
the actions lexicographically ordered). We give the new (deterministic) machine called
S an extra “bookkeeping” tape on which it writes up which legal action it has chosen. If
the present legal computation of T does not end with the acceptance of x then machine
S must not stop but must look up, on its bookkeeping tape, the last action (say, this is
the j-th one) which it can change to a lexicographically larger legal one. Let it perform
a legal computation of T in such a way that up to the j-th step it performs the steps
recorded on the bookkeeping tape, in the j-th step it performs the lexicographically next
legal action, and after it, the lexicographically first one (and, of course, it rewrites the
bookkeeping tape accordingly).

The modified, deterministic Turing machine S tries out all legal computations of the
original machine T and uses only as much storage as the original machine (which is at
most f(n)), plus the space used on the bookkeeping tape (which is again only O(f(n))).

5.4: Let T = 〈k,Σ,Γ,Φ〉 be a non-deterministic Turing machine recognizing L with
storage f(n). We can assume that T has only one tape. We want to try out all legal
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computations of T . Some care is needed since a legal computation of T can last as long

as 2f(n) steps, so there can even be 22f(n)

legal computations; we do not have time for
checking this many computations.

To better organize the checking, we illustrate the situation by a graph as follows. Let
us fix the length n of the inputs. By configuration of the machine, we understand a triple
(g, p, h) where g ∈ Γ, −f(n) ≤ p ≤ f(n) and h ∈ Σ2f(n)+1. The state g is the state of the
control unit at the given moment, the number p says where is the head and h specifies
the symbols on the tape (since we are interested in computations whose storage need is
at most f(n) it is sufficient to consider 2f(n) + 1 cells). It can be seen that number of
configurations is at most |Γ|(2f(n)+1)m2f(n)+1 = 2O(f(n)). Every configuration can be
coded by a word of length O(f(n)) over Σ.

Prepare a directed graph G whose vertices are the configurations; we draw an edge
from vertex u to vertex v if the machine has a legal action leading from configuration
u to configuration v. Add a vertex v0 and draw an edge to v0 from every configuration
in which the machine is in state STOP and has 1 on cell 0 of its tape. Denote ux the
starting configuration corresponding to input x. Word x is in L if and only if in this
directed graph, a directed path leads from ux to v0.

On the RAM, we can construct the graph G in time 2O(f(n)) and (e.g. using breadth-
first search) we can decide in time O(|V (G)|) = 2O(f(n)) whether it contains a directed
path from ux to v0. Since the RAM can be simulated by Turing machines in quadratic
time, the time bound remains 2O(f(n)) also on the Turing machine. �

The following interesting theorem shows that the storage requirement is not essen-
tially decreased if we allow non-deterministic Turing machines.

Theorem 5.5 (Savitch’s Theorem) If f(n) is a well-computable function and
f(n) ≥ logn then

NSPACE(f(n)) ⊆ DSPACE(f(n)2).

Proof. Let T = 〈1,Σ,Γ,Φ〉 be a non-deterministic Turing machine recognizing L with
storage f(n). Let us fix the length n of inputs. Consider the above graph G; we want
to decide whether it contains a directed path leading from ux to v0. Now, of course,
we do not want to construct this whole graph since it is very big. We will therefore
view it as given by a certain “oracle”. Here, this means that about any two vertices,
we can decide in a single step whether they are connected by an edge. More exactly,
this can be formulated as follows. Let us extend the definition of Turing machines. An
Turing machine with oracle (for G) is a special kind of machine with three extra tapes
reserved for the “oracle”. The machine has a special state ORACLE. When it is in this
state then in a single step, it writes onto the third oracle-tape a 1 or 0 depending on
whether the words written onto the first and second oracle tapes are names of graph
vertices (configurations) connected by an edge, and enters the state START. In every
other state, it behaves like an ordinary Turing machine. When the machine enters the
state ORACLE we say it asks a question from the oracle. The question is, of course,
given by the pair of strings written onto the first two oracle tapes, and the answer comes
on the third one.
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Lemma 5.6 Suppose that a directed graph G is given on the set of of words of length t.
Then there is a Turing machine with an oracle for G which for given vertices u, v and
natural number q decides, using storage at most O(qt), whether there is a path of length
at most 2q from u to v.

Proof. The Turing machine to be constructed will have two tapes besides the three
oracle-tapes. At start, the first tape contains the pair (u, q), the second one the pair
(v, q). The work of the machine proceeds in stages. At the beginning of some interme-
diate stage, both tapes will contain a few pairs (x, r) where x is the name of a vertex
and t ≤ q is a natural number.

Let (x, r) and (y, s) be the last pair on the two tapes. In the present stage, the
machine asks the question wether there is a path of length at most min{2r, 2s} from x
to y. If min{r, s} = 0 then the answer can be read off immediately from an oracle-tape.
If min{r, s} ≥ 1 then let m = min{r, s} − 1. We write a pair (w,m) to the end of the
first tape and determine recursively whether there is a path of length at most 2m from
w to y. If there is one then we write (w,m) to the end of the second tape, erase it
from the end of the first tape and determine whether there is a path of length at most
2m from x to w. If there is one then we erase (w,m) from the end of the second tape:
we know that there is a path of length at most min{2r, 2s} from x to y. If there is no
path of length at most 2m either between x and w or between w and y then we try the
lexicographically next w. If we have tried all w’s then we know that there is no path of
length min{2r, 2s} between x and y.

It is easy to see that the second elements of the pairs are decreasing from left to
right on both tapes, so at most q pairs will ever get on each tape. One pair requires
O(t + log q) symbols. The storage thus used is only O(q log q + qt). This finishes the
proof of the lemma. �

Returning to the proof of the theorem, note that the question whether there is an
edge between two vertices of the graph G can be decided easily without the help of
additional storage; we might as well consider this decision as an oracle. The Lemma is
therefore applicable with values t, q = O(f(n)), and we obtain that it can be decided
with at most tq + q log q = O(f(n)2) storage whether from a given vertex ux there is a
directed path into v0, i.e. whether the word x is in L. �

As we noted, the class PSPACE of languages decidable on a deterministic Turing
machine in polynomial storage is very important. It seems natural to introduce the class
NPSPACE which is the class of languages recognizable on a non-deterministic Turing
machine with polynomial storage. But the following corrollary of Savitch’s theorem
shows that this would not lead to any new notion:

Corollary 5.7 PSPACE = NPSPACE.
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5.4 Examples of languages in NP

5.4.1 Graphs

In this section, by a graph we mean a simple graph: an undirected graph without multiple
edges or loops. n is always the number of nodes. Unless we say otherwise, we assume
that the graph is described by its adjacency matrix, which we consider as a string in
{0, 1}n2

. In this way, a graph property can be considered a language over {0, 1}. We can
thus ask whether a certain graph property is in NP. (Notice that describing a graph in
one of the other usual ways, e.g. by giving a list of neighbors for each node, would not
affect the membership of graph properties in NP. It is namely easy to compute these
representations from each other in polynomial time.) The following graph properties are
in NP.

Problem 5.1 Graph-connectivity Certificate: a set of
(

n
2

)

paths, one for each pair of
nodes.

Problem 5.2 Graph non-connectivity Certificate: a proper subset of the set of nodes
that is not connected by any edge to the rest of the nodes.

Problem 5.3 Graph planarity The natural witness is a concrete diagram, though some
analysis is needed to see that in case such a diagram exists then one exists in which the
coordinates of every node are integers whose number of bits is polynomial in n.

It is interesting to remark the fact known in graph theory that this can be realized
using single straight-line segments for the edges and thus, it is enough to specify the
coordinates of the nodes. We must be careful, however, since the coordinates of the
nodes used in the drawing may have too many bits, violating the requirement on the
length of the witness. (It can be proved that every planar graph can be drawn in the
plane in such a way that each edge is a straigh-line segment and the coordinates of every
node are integers whose number of bits is polynomial in n.)

It is possible, however, to give a purely combinatorial way of drawing the graph. Let
G be a graph with n nodes and m edges which we assume for simplicity to be connected.
After drawing it in the plane, the edges partition the plane into domains which we call
“countries” (the unbounded domain is also a country). We need the following fact, called
Euler’s formula:

Theorem 5.8 A connected planar graph with n nodes and m edges has n + m − 2
countries.

Thus to specify the drawing we give a set of m− n+ 2 country names and for every
country, we specify the sequence of edges forming its boundary. In this case, it is enough
to check whether every edge is in exactly two boundaries.

The fact that the existence of such a set of edge sequences is a necessary condition
of planarity follows from Euler’s formula. The sufficiency of this condition requires
somewhat harder tools from topology; we will not go into these details. (Specifying
a set of edge sequences as country boundaries amounts to defining a two-dimensional
surface with the graph drawn onto it. A theorem of topology says that if a connected
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graph drawn on that surface satisfies Euler’s formula then the surface is topologically
equivalent (homeomorphic) to the plane.)

Problem 5.4 Non-planarity Let us review the following facts.

1. Let K5 be the graph obtained by connecting five nodes in every possible way. This
graph is also called a “complete pentagon”. Let K3

3 be the 6-node bipartite graph
containing two sets A,B of three nodes each, with every possible edge between A
and B. This graph is also called “three houses, three wells” after a certain puzzle
with a similar name. It is easy to see that K5 and K3

3 are nonplanar.

2. Given a graph G, we say that a graph G′ is a subdivision of G if it is obtained
from G by replacing each edge of G with arbitrarily long non-intersecting paths.
It is easy to see that if G is nonplanar then any subdivision is nonplanar.

3. If a graph is nonplanar then, obviously, every graph containing it is also nonplanar.

The following fundamental theorem of graph theory says that the nonplanar graphs
are just the ones obtained by the above operations:

Theorem 5.9 (Kuratowski’s Theorem) A graph is nonplanar if and only if it con-
tains a subgraph that is a topological version of either K5 or K3

3 .

If the graph is nonplanar then the subgraph whose existence is stated by Kuratowski’s
Theorem can serve as a certificate for this.

Problem 5.5 Existence of perfect matching A certificate is the perfect matching itself.

Problem 5.6 Non-existence of a perfect matching Witnesses for the non-existence in
case of bipartite graphs are based on a fundamental theorem. Let G be a bipartite graph
G consisting with bipartition classes U and W . Recall the following theorem:

Theorem 5.10 Frobenius’s Theorem A bipartite graph G has a perfect matching if and
only if |U | = |W | and for any k, any k nodes in W have at least k neighbors in U .

Hence, if in some bipartite graph there is no perfect matching then this can be
certified either by noting that U and W have different cardinality, or by a subset of W
violating the conditions of the theorem.

Now let G be an arbitrary graph. If there is a perfect matching then it is easy to see
that for any k, if we delete any k nodes, there remain at most k connected components
of odd size. The following fundamental (and deeper) theorem says that this condition
is not only necessary for the existence of a perfect matching but also sufficient.

Theorem 5.11 Tutte’s Theorem A graph G has a perfect matching if and only if for
any k, if we delete any k nodes, there remain at most k connected components of odd
size.

This way, if there is no perfect matching in the graph then this can be certified by a
set of nodes whose deletion creates too many odd components.
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A Hamiltonian cycle of a graph is a cycle going through each node exactly once.

Problem 5.7 Existence of a Hamiltonian cycle
Certificate: the Hamitonian cycle itself.

A coloring of a graph is an assignment of some symbol called “color” to each node
in such a way that neighboring nodes get different colors.

Problem 5.8 Colorability with three colors If a graph can be colored with three colors
the coloring itself is a certificate. Of course, this is valid for any number of colors.

Most of the properties listed above, up to (and including) the non-existence of a
perfect matching, can be solved in polynomial time (i.e., they are in P). For the Hamil-
tonian cycle problem and the three-colorability problem, no polynomial algorithm is
known (we return to this later).

5.4.2 Arithmetic and algebra

To show that many fundamental problems in arithmetic and algebra also belong to
the class NP, we recall that every natural number can be considered a word in {0, 1}∗
(representing the number in binary). We start with the problem of deciding whether a
natural number is a prime.

Problem 5.9 Compositeness of an integer Certificate of compositeness: a proper divi-
sor.

Problem 5.10 Primality It is significantly more difficult to find witnesses for primality.
We use the following fundamental theorem of number theory:

Theorem 5.12 An integer n ≥ 2 is prime if and only if there is a natural number a
such that an−1 ≡ 1 (mod n) but am 6≡ 1 (mod n) for any m such that 1 ≤ m < n− 1.

(This theorem says that there is a so-called “primitive root” a for n, whose powers
run through all non-0 residues mod n.)

With this theorem in mind,we would like to use the number a to be the witness for
the primality of n. Since, obviously, only the remainder of the number a after division
by n is significant here, there will also be a witness a with 1 ≤ a < n. In this way, the
restriction on the length of the witness is satisfied: a does not have more bits than n
itself. Let k be the number of bits of n.

As we have seen in chapter 3, we can also check the condition

an−1 ≡ 1 (mod n) (2)

in polynomial time. It is, however, a much harder question how to verify the further
conditions:

am 6≡ 1 (mod n) (1 ≤ m < n− 1). (3)

We have seen that we can do this for each specific m, but it seems that we must do
this n− 2 times, i.e. exponentially many times in terms of k. We can use, however, the
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(easy) number-theoretical fact that if (2) holds then the smallest m = m0 violating (3)
(if there is any) is a divisor of n − 1. It is also easy to see that then (3) is violated by
every multiple of m0 smaller than n − 1. Thus, if the prime factor decomposition of
n − 1 is n − 1 = pr1

1 · · · prt
t then (3) is violated by some m = (n − 1)/pi. It is enough

therefore to verify that for all i with 1 ≤ i ≤ t,

a(n−1)/pi 6≡ 1 (mod n).

Now, it is obvious that t ≤ k and therefore we have to check (3) for at most k values
which can be done in the way described before, in polynomial total time.

There is, however, another difficulty: how are we to compute the prime decomposition
of n − 1? This, in itself, is a harder problem than to decide whether n is a prime. We
can, however, add the prime decomposition of n − 1 to the “witness”; this consists
therefore, besides the number a, of the numbers p1, r1, . . . , pt, rt (it is easy to see that
this is at most 3k bits). Now only the problem remains to check whether this is a prime
decomposition indeed, i.e. that n − 1 = pr1

1 · · · prt
t (this is easy) and that p1, . . . , pt are

indeed primes. We can do this recursively.
We still have to check that this recursion gives witnesses of polynomial length and

it can be decided in polynomial time that these are witnesses. Let L(k) denote the
maximum length of the witnesses in case of numbers n of k bits. Then, according to the
above recursion,

L(k) ≤ 3k +

t
∑

i=1

L(ki)

where ki is the number of bits of the prime pi. Since p1 · · · pt ≤ n − 1 < n it follows
easily that

k1 + · · · + kt < k + t.

Also obviously ki < k. Using this, it follows from the above recursion that L(k) ≤ 3k2.
In fact, the inequality L(k) ≤ 3(k − 1)2 is easier to prove. This is namely obvious for
k = 1, 2 and if we know that it holds for all numbers less than k then

L(k) ≤ 3k +

t
∑

i=1

L(ki) ≤ 3k +

t
∑

i=1

3(ki − 1)2

≤ 3k + 3(k − 2)

t
∑

i=1

ki − 1 ≤ 3k + 3(k − 2) · (k − 1) ≤ 3(k − 1)2.

We can prove similarly that it is decidable about a string in polynomial time whether
it is a certificate defined in the above way.

Usually we are not satisfied with knowing whether a given number n is a prime
or not, but if it is not a prime then we might also want to find one of its proper
divisors. (If we can solve this problem then repeating it, we can find the complete prime
decomposition.) This is not a decision problem, but it is not difficult to reformulate it
as a decision problem:
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Problem 5.11 Existence of a bounded divisor Given two natural numbers n and k;
does n have a proper divisor not greater than k?

It is clear that this problem is in NP: the certificate is the divisor.

The complementary language is also in NP:

Problem 5.12 Nonexistence of a bounded divisor This is the set of all pairs (n, k) such
that every proper divisor of n is greater than k. A certificate for this is the prime
decomposition of n, together with a certificateof the primality of every prime factor.

It is not known whether the problem of compositeness (even less, the existence of a
bounded divisor) is in P. Extending the notion of algorithms and using random numbers,
it is decidable in polynomial time about a number whether it is a prime (see the section
on randomized algorithms). At the same time, the corresponding search problem (the
search for a proper divisor), or, equivalently, deciding the existence of bounded divisors,
is significantly harder; for this, a polynomial algorithm was not yet found even when the
use of random numbers is allowed.

Now we turn to some basic questions in algebra. A notion analogous for primality of
a positive integer is irreducibility of a polynomial (for simplicity, with a single variable,
and with rational coefficients). A polynomial is reducible if it can be written as the
product of two non-constant polynomials with rational coefficients.

Problem 5.13 Reducibility of a polynomial over the rational field
Certificate: a proper divisor; but some remarks are in order.

Let f be the polynomial. To prove that this problem is in NP we must convince
ourselves that the number of bits necessary for writing down a proper divisor can be
bounded by a polynomial of the number of bits in the representation of f . (We omit
the proof of this here.)

It can also be shown that this language is in P.

5.4.3 Systems of linear inequalities

A system Ax ≤ b of linear inequalities (where A is an integer matrix with m rows and
n columns and b is a column vector of m elements) can be considered a word over the
alphabet consisting of the symbols “0”, “1”, “,” and “;” when e.g. we represent its
elements in the binary number system, write the matrix row after row, placing a comma
after each number and a semicolon after each row. The following properties of systems
of linear inequalities are in NP:

Problem 5.14 Existence of solution The solution offers itself as an obvious witness of
solvability but we must be careful: we must be convinced that if a system of linear
equations with integer coefficients has a solution then it has a solution among rational
numbers, moreover, even a solution in which the numerators and denominators have
only a polynomial number of bits. These facts follow from the elements of the theory of
linear programming.
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Problem 5.15 Nonexistence of solution Witnesses for the non-existence of solution can
be found using the following fundamental theorem known from linear programming:

Theorem 5.13 Farkas Lemma The system Ax ≤ b of inequalities is unsolvable if and
only if the following system of inequalities is solvable: yTA = 0, yT b = −1, y ≥ 0.

In words, this lemma says that a system of linear inequalities is unsolvable if and
only if a contradiction can be obtained by a linear combination of the inequalities with
nonnegative coefficients.

Using this, a solution of the other system of inequalities given in the lemma (the
nonnegative coefficients) is a witness of the nonexistence of a solution.

Problem 5.16 Existence of an integer solution The solution itself is a witness but we
need some reasoning again to limit the size of witnesses, which is more difficult here.

It is not known wheter the non-existence of an integer solution is in NP, i.e., if this
fact can be certified by a polynomial length and polynomial time verifiable certificate.

It is important to note that the fundamental problem of linear programming, i.e. look-
ing for the optimum of a linear object function under linear conditions, can be easily
reduced to the problem of solvability of systems of linear inequalities. Similarly, the
search for optimal solutions can be reduced to the decision of the existence of integer
solutions.

For a long time, it was unknown whether the problem of solvability of systems of
linear inequalities is in P (the well-known simplex method is not polynomial). The first
polynomial algorithm for this problem was the ellipsoid method of L. G. Khachian

(relying on work by Yudin and Nemirovskii).
The running time of this method led, however, to a very high-degree polynomial;

it could not therefore compete in practice with the simplex method which, though is
exponential in the worst case, is on average (as shown by experience) much faster than
the ellipsoid method.

Several polynomial-time linear programming algorithms have been found since;
among these, Karmarkar’s method can compete with the simplex method even in prac-
tice.

No polynomial algorithm is known for solving systems of linear inequalities in inte-
gers; one cannot even hope to find such an algorithm (see the notion of NP-completeness
below).

Reviewing the above list of examples, the following observatons can be made.

• For many properties that are in NP, their negation (i.e. the complement of the
corresponding language) is also in NP. This fact is, however, generally non-trivial;
in various branches of mathematics, often the most fundamental theorems assert
this for certain languages.

• It is often the case that if some property (language) turns out to be in NP∩co−NP
then sooner or later it also turns out to be in P. This happened, for example, with
the existence of perfect matchings, planarity, the solution of systems of linear
inequalities. Research is very intensive on prime testing. If NP is considered an
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analog of “recursively enumerable” and P an analog of “recursive” then we can
expect that this is always the case. However, there is no proof for this; moreover,
this cannot really be expected to be true in full generality.

• With other NP problems, their solution in polynomial time seems hopeless, they
are very hard to handle (Hamiltonian cycle, graph coloring, and integer solution of
a system of linear inequalities). We cannot prove that these are not in P (we don’t
know whether P = NP holds); but still, one can prove a certain exact property of
these problems that shows that they are hard. We will turn to this later.

• There are many problems in NP with a naturally corresponding search problem
and with the property that if we can solve the decision problem then we can also
solve (in a natural manner) the search problem. E.g., if we can decide whether
there is a perfect matching in a certain graph then we can search for perfect
matching in polynomial time in the following way: we delete edges from the graph
as long as a perfect matching still remains in it. When we get stuck, the remaining
graph must be a perfect matching. Using similar simple tricks, the search problem
corresponding to the existence of Hamiltonian cycles, colorability with 3 colors,
etc. can be reduced to the decision problem. This is, however, not always so. E.g.,
our ability to decide in polynomial time (at least, in some sense) whether a number
is a prime was not applicable to the problem of finding a proper divisor.

• A number of NP-problems has a related optimization problem which is easier to
state, even if it is not an NP-problem by its form. For example, instead of the
general matching problem, it is easier to say that the problem is to find out the
maximum size of a matching in the graph. In case of the coloring problem, we may
want to look for the chromatic number, the smallest number of colors with which
the graph is colorable. The solvability of a set of linear inequalities is intimately
connected with the problem of finding a solution that maximizes a certain linear
form: this is the problem of linear programming. Several other examples come
later. If there is a polynomial algorithm solving the optimization problem then
it automatically solves the associated NP problem. If there is a polynomial algo-
rithm solving the NP-problem then, using binary search, it provides a polynomial
algorithm to solve the associated optimization problem.

There are, of course, interesting problems (languages) also in other non-deterministic
complexity classes. The non-deterministic exponential time (NEXPTIME) class can be
defined as the union of the classes NTIME(2nc

) for all c > 0. We can formulate an
example in connection with Ramsey’s Theorem. Let G be a graph; the Ramsey number
R(G) belonging to G is the smallest N > 0 for which it is the case that no matter how
we color the edges of the N -node complete graph with two colors, some color contains
a copy of G. (Ramsey’s Theorem says that such a finite number exists, which is non-
trivial.) Let L consist of the pairs (G,N) for which R(G) > N . The size of the input
(G,N) (if G is described, say, by its adjacency matrix) is O(|V (G)|2 + logN).

Now, L is in NEXPTIME since the fact (G,N) ∈ L is witnessed by a coloring of the
complete graph on N nodes in which no homogenously colored copy of G; this property
can be checked in time O(N |V (G)|) which is exponential in the size of the input (but not
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worse). On the other hand, deterministically, we know no better algorithm to decide
(G,N) ∈ L than a double exponential one. The trivial algoritm, which is, unfortunately,
the best known, goes over all colorings of the edges of the N -node complete graph, and
the number of these is 2N(N−1)/2.

5.5 NP-completeness

We say that a language L1 ⊆ Σ∗
1 is polynomially reducible to a language L2 ⊆ Σ∗

2 if
there is a function f : Σ∗

1 → Σ∗
2 computable in polynomial time such that for all words

x ∈ Σ∗
1 we have

x ∈ L1 ⇔ x ∈ L2.

It is easy to verify from the definition that this relation is transitive:

Proposition 5.14 If L1 is polynomially reducible to L2 and L2 is polynomially reducible
to L3 then L1 is polynomially reducible to L3.

The membership of a language in P can also be expressed by saying that it is poly-
nomially reducible to the language {0, 1}.

Proposition 5.15 If a language is in P then every language is in P that is polynomially
reducible to it. If a language is in NP then every language is in NP that it polynomially
reducible to it.

We call a language NP-complete if it belongs to NP and every language in NP is
polynomially reducible to it. These are thus the “hardest” languages in NP. The class
of NP-complete languages is denoted by NPC. Figure 17 adds the class of NP-complete
languages to figure 16. We’ll see that the position of the dotted line is not a proved fact:
for example, if P = NP, then also NPC = P.

The word “completeness” suggests that such a problem contains all the complexity
of the whole class: the solution of the decision problem of a complete language contains,
in some sense, the solution to the decision problem of all other NP languages. If we
could show about even a single NP-complete language that it is in P then P = NP
would follow. The following observation is also obvious.

Proposition 5.16 If an NP-complete language L1 is polynomially reducible to a lan-
guage L2 in NP then L2 is also NP-complete.

It is not obvious at all that NP-complete languages exist. Our first goal is to give
an NP-complete language; later (by polynomial reduction, using 5.16) we will prove the
NP-completeness of many other problems.

A Boolean polynomial is called satisfiable if the Boolean function defined by it is
not identically 0.

Problem 5.17 Satisfiability Problem For a given Boolean polynomial f , decide whether
it is satisfiable. We consider the problem, in general, in the case when the Boolean
polynomial is a conjunctive normal form.
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NP co-NP

NPC co-NPC

Figure 17: The classes of NP-complete (NPC) and co-NP-complete languages

We can consider each conjunctive normal form as a word over the alphabet consisting
of the symbols “x”, “0”, “1”, “+”, “¬”, “∧” and “∨” (we write the indices of the variables
in binary number system, e.g. x6 = x110). Let SAT denote the language formed from
the satisfiable conjunctive normal forms.

The following theorem is one of the central results in complexity theory.

Theorem 5.17 Cook–Levin Theorem. The language SAT is NP-complete.

Proof. Let L be an arbitrary language in NP. Then there is a non-deterministic
Turing machine T = 〈k,Σ,Γ,Φ〉 and there are integers c, c1 > 0 such that T recognizes
L in time c1 ·nc. We can assume k = 1. Let us consider an arbitrary word h1 · · ·hn ∈ Σ∗.
Let N = ⌈c1 · nc⌉. Let us introduce the following variables:

x[n, g](0 ≤ n ≤ N, g ∈ Γ),

y[n, p](0 ≤ n ≤ N, −N ≤ p ≤ N),

z[n, p, h](0 ≤ n ≤ N, −N ≤ p ≤ N, h ∈ Σ).

If a legal computation of the machine T is given then let us assign to these variables
the following values: x[n, g] is true if after the n-th step, the control unit is in state g;
y[n, p] is true if after the n-th step, the head is on the p-th tape cell; z[n, p, h] is true if
after the n-the step, the p-th tape cell contains symbol h. The variables x, y, z obviously
determine the computation of the Turing machine.

However, not every possible system of values assigned to the variables will correspond
to a computation of the Turing machine. One can easily write up logical relations among
the variables that, when taken together, express the fact that this is a legal computation
accepting h1 · · ·hn. We must require that the control unit be in some state in each step:
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∨

g∈Γ

x[n, g] (0 ≤ n ≤ N);

and it should not be in two states:

¬x[n, g] ∨ ¬x[n, g′] (g, g′ ∈ Γ, 0 ≤ n ≤ N).

We can require, similarly, that the head should be only in one position in each step and
there should be one and only one symbol in each tape cell. We write that initially, the
machine is in state START and at the end of the computation, in state STOP, and the
head starts from cell 0:

x[0, START] = 1, x[N, STOP] = 1, y[0, 0] = 1;

and, similarly, that the tape contains initially the input h1 · · ·hn and finally the symbol
1 on cell 0:

z[0, i− 1, hi] = 1(1 ≤ i ≤ n)

z[0, i− 1, ∗] = 1(i < 0 or i > n)

z[N, 0, 1] = 1.

We must further express the computation rules of the machine, i.e., that for all
g, g′ ∈ Γ, h, h′ ∈ Σ, ε ∈ {−1, 0, 1} and −N ≤ p ≤ N we have

(x[n, g] ∧ y[n, p] ∧ z[n, p, h]) ⇒ ¬(x[n+ 1, g′] ∧ y[n+ 1, p+ ε] ∧ z[n+ 1, p, h′])

and that where there is no head the tape content does not change:

¬y[n, p] ⇒ (z[n, p, h] ⇔ z[n+ 1, p, h]).

For the sake of clarity, the the last two formulas are not in conjunctive normal form but
it is easy to bring them to such form. Joining all these relations by the sign “∧” we get
a conjunctive normal form that is satisfiable if and only if the Turing machine T has
a computation of at most N steps accepting h1 · · ·hn. It easy to verify that for given
h1, . . . , hn, the described construction of a formula can be carried out in polynomial
time. �

It will be useful to prove the NP-completeness of some special cases of the satisfiabil-
ity problem. A conjunctive normal form is called a k-form if in each of its components,
at most k literals occur. Let k-SAT denote the language made up by the satisfiable k-
forms. Let further SAT-k denote the language consisting of those satisfiable conjunctive
normal forms in which each variable occurs in at most k elementary disjunctions.

Theorem 5.18 The language k-SAT is NP-complete.

Proof. Let B be a Boolean circuit with inputs x1, . . . , xn (a conjunctive normal form
is a special case of this). We will find a 3-normal form that is satisfiable if and only
if the function computed by B is not identically 0. Let us introduce a new variable yi
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for each node i of the circuit. The meaning of these variables is that in a satisfying
assignment, these are the values computed by the corresponding nodes. Let us write
up all the restrictions for yi. For each input node i, with node variable yi and input
variable xi we write

yi ⇔ xi (1 ≤ i ≤ n).

If yi is the variable for an ∧ node with inputs yj and yk then we write

yi ≡ yj ∧ yk.

If yi is the variable for a ∨ node with inputs yj and yk then we write

yi ≡ yj ∨ yk.

If yi is the variable for a ¬ node with input yj then we write

yi ≡ ¬yj .

Finally, if yi is the output node then we add the clause

yi.

Each of these statements involves only three variables and is therefore expressible as a
3-normal form. The conjunction of all these is satisfiable if and only if B is satisfiable.
�

it is natural to wonder at this point why have we considered just the 3-satisfiability
problem. The problems 4-SAT, 5-SAT, etc. are harder than 3-SAT therefore these are,
of course, also NP-complete. The theorem below shows, on the other hand, that the
problem 2-SAT is already not NP-complete (at least if P 6= NP). (This illustrates the fact
that often a little modification of the conditions of a problem leads from a polynomially
solvable problem to an NP-complete one.)

Theorem 5.19 The language 2-SAT is in P.

Proof. Let B be a 2-normal form on the variables x1, . . . , xn. Let us use the
convention that the variables xi are also written as x1

i and the negated variables xi

are also written as new symbols x0
i . Let us construct a directed graph G on the set

V (G) = {x1, . . . , xn, x1, . . . , xn} in the following way: we connect node xε
i to node xδ

j if

x1−ε
i ∨xδ

j is an elementary disjunction in B. (This disjunction is equivalent to xε
i ⇒ xδ

j .)

Let us notice that then in this graph, there is also an edge from x1−δ
j to x1−ε

i . In this
directed graph, let us consider the strongly connected components; these are the
classes of nodes obtained when we group two nodes in one class whenever there is a
directed path between them.

Lemma 5.20 The formula B is satisfiable if and only if none of the strongly connected
components of G contains both a variable and its negation.

The theorem follows from this lemma since it is easy to find in polynomial time the
strongly connected components of a directed graph. �
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Proof of Lemma 5.20 Let us note first that if an assignment of values satisfies
formula B and xε

i is “true” in this assignment then every xδ
j is “true” to which an edge

leads from xε
i : otherwise, the elementary disjunction x1−ε

i ∨xδ
j would not be satisfied. It

follows from this that the nodes of a strongly connected component are either all “true”
or none of them. But then, a variable and its negation cannot simultaneously be present
in a component.

Conversely, let us assume that no strongly connected component contains both a
variable and its negation. Consider a variable xi. According to the condition, there
cannot be directed paths in both directions between x0

i and x1
i . Let us assume there

is no such directed path in either direction. Let us then draw a new edge from x1
i to

x0
i . This will not violate our assumption that no connected component contains both

a node and its negation. If namely such a connected components should arise then it
would contain the new edge, but then both x1

i and x0
i would belong to this component

and therefore there would be a path from x0
i to x1

i . But then this path would also be in
the original graph, which is impossible.

Repeating this procedure, we can draw in new edges (moreover, always from a vari-
able to its negation) in such a way that in the obtained graph, between each variable and
its negation, there will be a directed path in exactly one direction. Let now be xi = 1 if
a directed path leads from x0

i to x1
i and 0 if not. We claim that this assignment satisfies

all disjunctions. Let us namely consider an elementary disjunction, say, xi ∨ xj . If both
of its members were false then—according to the definition—there were a directed path
from x1

i to x0
i and from x1

j to x0
j . Further, according to the definition of the graph,

there is an edge from x0
i to x1

j and from x0
j to x1

i . But then, x0
i and x1

i are in a strongly
connected components, which is a contradiction. �

Theorem 5.21 The language SAT-3 is NP-complete.

Proof. Let B be a Boolean formula of the variables x1, . . . , xn. For each variable xj ,
replace the i-th occurrence of xj in B, with new variable yi

j: let the new formula be B′.
For each j, assuming there are m occurrences of xj in B, form the conjunction

Cj = (y1
j ⇒ y2

j ) ∧ (y2
j ⇒ y3

j ) ∧ · · · ∧ (ym
j ⇒ y1

j ).

(Of course, y1
j ⇒ y2

j = ¬y1
j ∨ y2

j .) The formula B′ ∧ C1 ∧ · · · ∧ Cn contains at most
3 occurrences of each variable, is a conjunctive normal form if B is, and is satisfiable
obviously if and only if B is. �

5.6 Further NP-complete problems

5.6.1 NP-complete problems for graphs

One might think that NP-complete problems are of logical character. In what follows,
we will show the NP-completeness of a number of important “everyday” combinatorial,
algebraic, etc. problems. When we show about a problem that it is NP-complete, then it
follows that it is not in P unless P = NP. Therefore we can consider the NP-completeness
of a language as a proof of its undecidability in polynomial time.
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Let us formulate a fundamental combinatorial problem:

Problem 5.18 Blocking Set Problem: Given a system {A1, . . . , Am} of finite sets and
a natural number k, is there a set with at most k elements intersecting every Ai?

We have met a special case of this problem, the Blocking Set Problem for the edges
of a bipartite graph. This special case was polynomial time solvable. In contrast to this,
we prove:

Theorem 5.22 The Blocking Set Problem is NP-complete.

Proof. We reduce 3-SAT to this problem. For a given conjunctive 3-normal
form B we construct a system of sets as follows: let the underlying set be the set
{x1, . . . , xn, x1, . . . , xn} of the variable symbols occurring in B and their negations. For
each clause of B, let us take the set of literals occurring in it; let us further take the sets
{xi, xi}. The elements of this set system can be blocked with at most n nodes if and
only if the normal form is satisfiable. �

The Blocking Set Problem remains NP-complete even if we impose various restric-
tions on the set system. It can be seen from the above construction that the Blocking
Set Problem is NP-complete even for a system of sets with at most three elements. (We
will see a little later that this holds even if the system contains only two-element sets,
i.e., the edges of a graph.) If we reduce the language SAT first to the language SAT-3
according to Theorem 5.21 and apply to this the above construction then we obtain a
set system for which each element of the underlying set is in at most 4 sets.

With a little care, we can show that the Blocking Set Problem remains NP-complete
even for set-systems in which each element is contained in at most 3 sets. Indeed, it
is easy to reduce the Satisfiablity Problem to the case when the input is a conjunctive
normal form in which every variable occurs at least once negated and at least one
unnegated; then the construction above gives such a set-system.

We cannot go further than this: if each element is in at most 2 sets then the Blocking
Set Problem is solvable in polynomial time. In fact, it is easy to reduce this special case
of the blocking set problem to the matching problem.

It is easy to see that the following problem is equivalent to the Blocking Set Problem
(only the roles of “elements” and “subsets” must be interchanged):

Problem 5.19 Covering problem: Given a system {A1, . . . , Am} of subsets of a finite
set S and a natural number k. Can k sets be selected in such a way that their union is
the whole set S?

According to the discussion above, this problem is NP-complete already even when
each of the given subsets has at most 3 elements. has only 2 elements, the problem
becomes polynomially solvable, as the following exercise shows:

Exercise 5.1 Prove that the covering problem, if every set in the set system is restricted
to have at most 2 elements, is reducible to the following matching problem: given a graph
G and a natural number k, is there a matching of size k in G?

89



For set systems, the following pair of problems is also important:

Problem 5.20 k-partition problem: Given a system {A1, . . . , Am} of subsets of a finite
set V and a natural number k. Can a subsystem of k sets {Ai1 , . . . , Aik

} be selected
that gives a partition of the underlying set (i.e. consists of disjoint sets whose union is
the whole set V )?

Problem 5.21 Partition problem: Given a system {A1, . . . , Am} of subsets of a finite
set S. Can a subsystem (of any size) be selected that gives a partition of the underlying
set?

If all the Ai are of the same size, then of course the number of sets in a partition is
uniquely determined, and so the two problems are equivalent.

Theorem 5.23 The k-partition problem and the partition problem are NP-complete.

Proof. We reduce the the Covering Problem with sets having at most 3 elements to
the k-partition problem. Thus we are given a system of sets with at most 3 elements and
a natural number k. We want to decide whether k of these given sets can be selected
in such a way that their union is the whole S. Let us expand the system by adding
all subsets of the given sets (it is here that we exploit the fact that the given sets are
bounded: from this, the number of sets grows as most 23 = 9-fold). Obviously, if k sets
of the original system cover S then k appropriate sets of the expanded system provide a
partition of S, and vice versa. In this way, we have found that the k-partition problem
is NP-complete.

Second, we reduce the k-partition problem to the partition problem. Let U be a
k-element set disjoint from S. Let our new underlying set be S ∪ U , and let the sets of
our new set system be the sets of form Ai ∪ {u} where u ∈ U . Obviously, if from this
new set system, some sets can be selected that form a partition of the underlying set
then the number of these is k and the parts falling in S give a partition of S into k sets.
Conversely, every partition of S into k sets Ai provides a partition of the set S ∪U into
sets from the new set system. Thus, the partition problem is NP-complete. �

If the given sets have two elements then the Set Partition Problem is just the perfect
matching problem and can therefore be solved in polynomial time. The argument above
shows that, on the other hand, the Set Partition Problem for sets with at most 3 elements
is NP-complete.

Next we treat a fundamental graph-theoretic problem, the coloring problem. We
have seen that the problem of coloring with two colors is solvable in polynomial time.
On the other hand:

Theorem 5.24 The coloring of graphs with three colors is an NP-complete problem.

Proof. Let us be given a 3-form B; we construct a graph G for it that is colorable
with three colors if and only if B is satisfiable.

For the nodes of the graph G, we first take the literals, and we connect each variable
with its negation. We take two more nodes, u and v, and connect them with each

90



x1

x xx x

xxx

2

2

3

3

4

4

1

u v

Figure 18: The graph whose 3-coloring is equivalent to satisfying the expression
(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

other, further we connect u with all unnegated and negated variables. Finally, we take
a pentagon for each elementary disjunction zi1 ∨ zi2 ∨ zi3 ; we connect two neighboring
vertices of the pentagon with v, and its three other vertices with zi1 , zi2 and zi3 . We
claim that the graph G thus constructed is colorable with three colors if and only if B
is satisfiable (Figure 18).

The following remark, which is very easily verified, plays a key role in the proof: if
for some clause zi1 ∨ zi2 ∨ zi3 , the nodes zi1 , zi2 , zi3 and v are colored with three colors
then this coloring can be extended to the pentagon as a legal coloring if and only if the
colors of zi1 , zi2 , zi3 and v are not identical.

Let us first assume that B is satisfiable, and let us consider the corresponding value
assignment. Let us color red those (negated or unnegated) variables that are “true”, and
blue the others. Let us color u yellow and v blue. Since every elementary disjunction
must contain a red node, this coloring can be legally extended to the nodes of the
pentagons.

Conversely, let us assume that the graph G is colorable with three colors and let us
consider a “legal” coloring with red, yellow and blue. We can assume that the node v
is blue and the node u is yellow. Then the nodes corresponding to the variables can
only be blue and red, and between each variable and its negation, one is red and the
other one is blue. Then the fact that the pentagons are also colored implies that each
elementary disjunction contains a red node. But this also means that taking the red
nodes as “true”, we get a value assignment satisfying B. �
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It follows easily from the previous theorem that for every number k ≥ 3 the k-
colorability of graphs is NP-complete.

The following is another very basic graph theory problem. A set S of nodes of a
graph is independent, if no edge connects two of them.

Problem 5.22 Independent node set problem: Given a graph G and a natural number
k, are there k independent nodes in G?

Theorem 5.25 The independent node set problem is NP-complete.

Proof. We reduce to this problem the problem of coloring with 3 colors. Let G be an
arbitrary graph with n nodes and let us construct the graph H as follows: Take three
disjoint copies G1, G2, G3 of G and connect the corresponding nodes of the three copies.
Let H be the graph obtained, this has thus 3n nodes.

We claim that there are n independent nodes in H if and only if G is colorable with
three colors. Indeed, if G is colorable with three colors, say, with red, blue and yellow,
then the nodes in G1 corresponding to the red nodes, the nodes in G2 corresponding to
the blue nodes and the nodes in G3 corresponding to the yellow nodes are independent
even if taken together in H , and their number is n. The converse can be proved similarly.
�

In the set system constructed in the proof of Theorem 5.22 there were sets of at
most three elements, for the reason that we reduced the 3-SAT problem to the Blocking
Set Problem. Since the 2-SAT problem is in P, we could expect that the Blocking Set
Problem for two-element sets is in P. We note that this case is especially interesting
since the issue here is the blocking of the edges of graphs. We can notice that the nodes
outside a blocking set are independent (there is no edge among them). The converse
is true in the following sense: if an independent set is maximal (no other node can be
added to it while preserving independence) then its complement is a blocking set for the
edges. Our search for a minimum Blocking set can therefore be replaced with a search
for a maximum independent set, which is also a fundamental graph-theoretical problem.
Formulating it as a yes-no question:

Remark 5.3 The independent vertex set problem (and similarly, the Blocking set prob-
lem) are only NP-complete if k is part of the input. It is namely obvious that if we fix k
(e.g., k = 137) then for a graph of n nodes it can be decided in polynomial time (in the
given example, in time O(n137)) whether it has k independent nodes. The situation is
different with colorability, where already the colorability with 3 colors is NP-complete.

From the NP-completeness of the Independent Set Problem, we get the NP-
completeness of two other basic graph-theory problems for free. First, notice that the
complement of an independent set of nodes is a blocking set for the family of edges, and
vice versa. Hence we get

Corollary 5.26 The Blocking Set Problem for the family of edges of a graph is NP-
complete.
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(Recall that in the special case when the graph is bipartite, then the minimum size
of a blocking set is equal to the size of a maximum matching, and therefore it can be
computed in polynomial time.)

Another easy transformation is to look at the complementary graph G of G (this is
the graph on the same set of nodes, with “adjacent” and “non-adjacent” interchanged).
An independent set in G corresponds to a clique (complete subgraph) in G and vice
versa. Thus the problem of finding a k-element independent set is (trivially) reduced to
the problem of finding a k-element clique.

Corollary 5.27 The problem of deciding whether a graph has a clique of size k is NP-
complete.

Very many other important combinatorial and graph-theoretical problems are NP-
complete:

• Does a given graph have a Hamiltonial circuit?

• Can we cover the nodes with disjoint triangles (for “2-angles”, this is the matching
problem!),

• Does there exist a family of k node-disjoint paths connecting k given pairs of
nodes?

The book “Computers and Intractability” by Garey and Johnson (Freeman, 1979)
lists NP-complete problems by the hundreds.

5.6.2 NP-complete problems in arithmetic and algebra

A number of NP-complete problems is known also outside combinatorics. The most
important one among these is the following. In fact, the NP-completeness of this problem
was observed (informally, without an exact definition or proof) by Edmonds several years
before the Cook–Levin Theorem.

Problem 5.23 Linear Diophantine inequalities Given a system Ax ≤ b of linear in-
equalities with integer coefficients, decide whether it has a solution in integers.

(Recall that the epithet “Diophantine” indicates that we are looking for the solution
among integers.)

Theorem 5.28 The solvability of a Diophantine system of linear inequalities is an NP-
complete problem.
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Proof. Let a 3-form B be given over the variables x1, . . . , xn. Let us write up the
following inequalities:

0 ≤ xi ≤ 1 for all i,

xi1 + xi2 + xi3 ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

xi1 + xi2 + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

xi1 + (1 − xi2 ) + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

(1 − xi1) + (1 − xi2 ) + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B.

The solutions of this system of inequalities are obviously exactly the value assignments
satisfying B, and so we have reduced the problem 3-SAT to the problem of solvability
in integers of systems of linear inequalities. �

We mention that already a very special case of this problem is NP-complete:

Problem 5.24 Subset sum problem: Given natural numbers a1, . . . , am and b. Does
the set {a1, . . . , am} have a subset whose sum is b? (The empty sum is 0 by definition.)

Theorem 5.29 The subset sum problem is NP-complete.

Proof. We reduce the set-partition problem to the subset sum problem. Let
{A1, . . . , Am} be a family of subsets of the set S = {0, . . . , n − 1}, we want to de-
cide whether it has a subfamily giving a partition of S. Let q = m+ 1 and let us assign
a number ai =

∑

j∈Ai
qj to each set Ai. Further, let b = 1 + q + · · · + qn−1. We claim

that Ai1 ∪ · · · ∪Aik
is a partition of the set S if and only if

ai1 + · · · + aik
= b.

The “only if” is trivial. Conversely, assume ai1 + · · ·+ aik
= b. Let dj be the number of

those sets Air that contain the element j (0 ≤ j ≤ n− 1). Then

ai1 + · · · + aik
=

∑

j

djq
j .

Since the representation of the integer b with respect to the number base q is unique, it
follow that dj = 1, i.e., Ai1 ∪ · · · ∪Aik

is a partition of S. �

This last problem illustrates nicely that the way we encode numbers can significantly
influence the complexity of a problem. Let us assume that each number ai is encoded in
such a way that it requires ai bits (e.g., with a sequence 1 · · · 1 of length ai). In short,
we say that we use the unary notation. The length of the input will increase this way,
and therefore the number of steps of the algorithms will be smaller in comparison with
the length of the input.

Theorem 5.30 In unary notation, the subset sum problem is polynomially solvable.
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(The general problem of solving linear inequalities in integers is NP-complete even
under unary notation; this is shown by the proof of Theorem 5.28 where only coefficients
with absolute value at most 2 are used.)

Proof. For every p with 1 ≤ p ≤ m, we determine the set Tp of those natural numbers
t that can be represented in the form ai1 + · · · + aik

, where 1 ≤ i1 ≤ · · · ≤ ik ≤ p. This
can be done using the following trivial recursion:

T0 = {0}, Tp+1 = Tp ∪ { t+ ap+1 : t ∈ Tp }.

If Tm is found then we must only check whether b ∈ Tp holds.
We must see yet that this simple algorithm is polynomial. This follows immedi-

ately from the observation that Tp ⊆ {0, . . . ,∑i ai} and thus the size of the sets Tp is
polynomial in the size of the input, which is now

∑

i ai. �

The method of this proof, that of keeping the results of recursive calls to avoid
recomputation later, is called dynamic programming.

Remark 5.4 A function f is called NP-hard if every problem in NP can be reduced
to it in the sense that if we add the computation of the value of the function f to the
instructions of the Random Access Machine (and thus consider it a single step) then
every problem in NP can be solved in polynomial time (the problem itself need not be
in NP).

An NP-hard function may or may not be 01-valued (i.e., the characteristic function
of a language). The characteristic function of every NP-complete language is NP-hard,
but there are languages with NP-hard characteristic functions which are not in NP, and
so are strictly harder than any problem in NP (e.g., to decide about a position of the
GO game on an n× n board, who can win).

There are many important NP-hard functions whose values are not 0 or 1. If there is
an optimization problem associated with an NP-problem, like in many important discrete
optimization problems of operations research, then in case the problem is NP-complete
the associated optimization problem is NP-hard. Some examples:

• the famous Traveling Salesman Problem: a non-negative “cost” is assigned to each
edge of a graph, and we want to find Hamilton cycle with minimum cost (the cost
of a Hamilton cycle is the sum of costs of its edges);

• the Steiner problem (under the previous conditions, find a connected graph con-
taining given vertices with minimum cost);

• the knapsack problem (the optimization problem associated with a more general
version of the subset sum problem);

• a large fraction of scheduling problems.

Many enumeration problems are also NP-hard (e.g., to determine the number of all
perfect matchings, Hamilton circuits or legal colorings).
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Remark 5.5 Most NP problems occurring in practice turn out to be either NP-
complete or in P. Nobody succeeded yet to put either into P or among the NP-complete
ones the following problems:

PRIMALITY. Is a given natural number a prime?

BOUNDED DIVISOR. Does a given natural number n have a proper divisor not
greater than k?

GRAPH ISOMORPHISM. Are two given graph isomorphic?

The primality problem is probably in P (this is proved using an old number-
theoretical conjecture, the so-called Generalized Riemann Hypothesis; see the section
on “Randomized algorithms”). For the problems of bounded divisor and isomorphism,
it is rather expected that they are neither in P nor NP-complete.

Remark 5.6 When a problem turns out to be NP-complete we cannot hope to find for
it such an efficient, polynomial algorithm such as e.g. for the matching problem. Since
such problems can be very important in practice we cannot give them up because of
such a negative result. Around an NP-complete problem, a mass of partial results of
various types is born: special classes for which it is polynomially solvable; algorithms
that are exponential in the worst case but are fairly well usable for not too large inputs,
or for problems occuring in practice (whether or not we are able to describe the special
structure of “real word” problems that make them easy); “heuristics” (approximation
algorithms) that do not give exact solution but (provably or in practice) give good
approximation.

It is, however, sometimes just the complexity of the problems that can be utilized:
see the section on cryptography.

Exercise 5.2 A quantified Boolean expression is a Boolean expression in which the
quantifiers ∀x and ∃x can also be used. Prove that the problem of deciding about a
given quantified Boolean expression whether it is true is in PSPACE.

Exercise 5.3 Let f be a length-preserving one-to-one function over binary strings com-
putable in polynomial time. We define the language L of those strings y for which there
is an x with f(x) = y such that the first bit of x is 1. Prove that L is in NP ∩ co−NP.

Exercise 5.4 We say that a quantified Boolean formula is in class Fk if all of its quan-
tifiers are in front and the number of alternations between existential and universal
quantifiers is at most k. Let Lk be the set of true closed formulas in Fk. Prove that if
P = NP then for all k we have Lk ∈ P. [Hint: induction on k.]

Exercise 5.5 Show that the following general matching problem is in both NP and co-
NP: Given a graph G and a natural number k, does there exist a k-edge matching in
G?

Exercise 5.6 Give a polynomial algorithm to decide whether a disjunctive normal form
is satisfiable.
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Exercise 5.7 Show that the Satisfiablity Problem can be reduced to the special case
when each variable occurs at least once unnegated and at least one negated.

Exercise 5.8 Given a graph G and a variable xv for each vertex v of G. Write up a
conjunctive normal form that is true if and only if the values of the variables give a legal
coloring of the graph G with 2 colors. (I.e. the normal form is satisfiable if and only bif
the graph is colorable with 2 colors.)

Exercise 5.9 Given a graph G and three colors, 1,2 and 3. Let us introduce, to each
vertex v and color i a logical value x[v, i]. Write up a conjunctive normal form B for
the variables x[v, i] which is satisfiable if and only if G can be colored with 3 colors.

[Hint: Let B be such that it is true if and only if there is a coloring of the vertices
with the given 3 colors for which x[v, i] is true if and only if vertex v has color i.]

Exercise 5.10 Define the language 3-SAT-3 and show that it is NP-complete.

Exercise 5.11 Define the language SAT-2 and show that it is in P.

Exercise 5.12 Prove that it is also NP-complete to decide whether in a given 2n-vertex
graph, there is an n-element independent set.

Exercise 5.13 In the GRAPH EMBEDDING PROBLEM, what is given is a pair
(G1, G2) of graphs. We ask whether G2 has a subgraph isomorphic to G1. Prove that
this problem is NP-complete.

Exercise 5.14 Prove that it is also NP-complete to decide whether the chromatic num-
ber of a graph G (the smallest number of colors with which its vertices can be colored)
is equal to the number of elements of its largest complete subgraph.

Exercise 5.15 Prove that if a system of sets is such that every element of the (finite)
underlying set belongs to at most two sets of the system, then the Blocking Set Problem
with for this system is polynomial time solvable.

[Hint: reduce it to the general matching problem.]

Exercise 5.16 Prove that for “hypergraphs”, already the problem of coloring with two
colors is NP-complete: Given a system {A1, . . . , An} of subsets of a finite set. Can the
nodes of S be colored with two colors in such a way that each Ai contains nodes of both
colors?

Exercise 5.17 An instance of the problem of 0-1 Integer Programming is defined as
follows. The input of the problem is the arrays of integers aij , bi for i = 1, . . . ,m,
j = 1, . . . , n. The task is to see if the set of equations

n
∑

j=1

aijxj = bi (i = 1, . . . ,m)
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is satisfiable with xj = 0, 1. The Subset Sum Problem is a special case with m = 1.
Make an immediate reduction of the 0-1 Integer Programming problem to the Subset

Sum Problem.

Exercise 5.18 The SUM PARTITION PROBLEM is the following. Given a set A =
{a1, . . . , an} of integers, find a subset B of A such that

∑

i∈B ai =
∑

i6∈B ai. Prove
that this problem is NP-complete. [Hint: use the NP-completeness of the subset sum
problem.]

Exercise 5.19 Consider the following problem: given a finite set of integers in binary
form, one has to partition this set into three subsets such that the sum of numbers
within each subset is the same. Prove that this problem is NP-complete. You can use
the fact that the problem of partitioning into two sets is known to be NP-complete.

Exercise 5.20 The bounded tiling problem B is the following language. Its words have
the form T&n&s. Here, the string T represents a set of tile types and n represents a
natural number. The string s represents a sequence of 4n− 4 tiles. The string T&n&s
belongs to B if and only if there is a tiling of an n× n square with tiles whose type is in
T in such a way that the tiles on the boundary of the square are given by s (starting,
say, at the lower left corner and going counterclockwise). Prove that the language B is
NP-complete.

Exercise 5.21 Consider the following tiling problem T . Given is a finite set of tile
types with a distinguished initial tile I among them and a number n in binary. It is
to decide whether an n× n square can be tiled tiles of these types, when the lower left
corner must be the initial tile. Prove that if T is solvable in time polynomial in n then
NEXPTIME=EXPTIME.
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6 Randomized algorithms

6.1 Introduction

We cited Church’s Thesis in Section: every ”algorithm” (in the heuristic meaining of the
word) is realizable on a Turing machine. It turned out that other models of computation
were able to solve exactly the same class of problems.

But there is an extension of the notion of an algorithm that is more powerful than a
Turing machine, and still realizable in the real world. This is the notion of a randomized
algorithm: we permit ”coin tossing”, i.e., the have access to a random number generator.
Such machines will be able to solve problems that the Turing machine cannot solve (we
will formulate and prove this in an exact sense in a later section); furthermore, such
machines can solve some problems more efficiently than Turing machines. We start
with a discussion of such examples. The simplest example of such an application of
randomization is checking an algebraic identity; the most important is quite certainly
testing whether an integer is a prime.

Since in this way, we obtain a new, stronger mathematical notion of a machine,
corresponding randomized complexity classes can also be introduced. Some of the most
important ones will be treated at the end of the Chapter.

6.2 Verifying a polynomial identity

Let f(x1, . . . , xn) be a rational polynomial with n variables that has degree at most k
in each of its variables. We would like to decide whether f is identically 0 (as a function
of n variables). We know from classical algebra that a polynomial is identically 0 if and
only if, after “opening its parentheses”, all terms “cancel”. This criterion is, however,
not always useful. It is conceivable, e.g., that the polynomial is given in a parenthesized
form an the opening of the parentheses leads to exponentially many terms as in

(x1 + y1)(x2 + y2) · · · (xn + yn) + 1.

It would also be good to say something about polynomials in whose definition not only
the basic algebraic operations occur but also some other ones, like the computation of
a determinant (which is a polynomial itself but is often computed, as we have seen, in
some special way).

The basic idea is that we write random numbers in place of the variables and compute
the value of the polynomial. If this is not 0 then, naturally, the polynomial cannot be
identically 0. If the computed value is 0 then though it can happen that the polynomial
is not identically 0, but “hitting” one of its roots has very small probability; therefore
in this case we can conclude that the polynomial is identically 0; the probability that
we make a mistake is small.

If we could give real values to the variables, chosen according to the uniform distri-
bution e.g. in the interval [0, 1], then the probability of error would be 0. We must in
reality, however, compute with discrete values; therefore we assume that the values of
the variables are chosen from among the integers of the interval [0, N−1], independently
and according to the uniform distribution. In this case, the probability of error will not
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be 0 but it will be “small” if N is large enough. This is the meaning of the following
fundamental result:

Theorem 6.1 Schwartz’s Lemma If f is a not identically 0 polynomial in n variables
with degree at most k, and the values ξi (i = 1, . . . , n) are chosen in the interval [0, N−1]
independently of each other according to the uniform distribution then

P{f(ξ1, . . . , ξn) = 0} ≤ k

N
.

(The degree of a polynomial in several variables is defined as the largest degree of its
terms (monomials); the degree of a monomial is the sum of the exponents of the variables
in it.)

Proof. We prove the assertion by induction on n. The statement is true for n = 1
since a polynomial in one variable of degree k can have at most k roots. Let n > 1 and
let us arrange f according to the powers of x1:

f = f0 + f1x1 + f2x
2
1 + · · · + ftx

t
1,

where f0, . . . , ft are polynomials of the variables x2, . . . , xn, the term ft is not identically
0, and t ≤ k. Now,

P{f(ξ1, . . . , ξn) = 0}
≤ P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) = 0}P{ft(ξ2, . . . , ξn) = 0}
+ P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) 6= 0}P{ft(ξ2, . . . , ξn) 6= 0}
≤ P{ft(ξ2, . . . , ξn) = 0} + P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) 6= 0}.

Here can estimate the first term by the induction hypothesis, using that the degree of
ft is at most k − t; thus the first term is at most (k − t)/N . The second term is at
most t/N (since ξ1 is independent of the variables ξ2, . . . , ξn, therefore no matter how
the latter are fixed in such a way that ft 6= 0 ( and therefore f as a polynomial of x1 is
not identically 0), the probability that ξ1 is its root is at most t/N). Hence

P{f(ξ1, . . . , ξn) = 0} ≤ k − t

N
+

t

N
≤ k

N
.

�

This suggests the following a randomized algorithm to decide whether a polynomial
f is identically 0:

Algorithm 6.2 We compute f(ξ1, . . . , ξn) with integer values ξi chosen randomly and
independently of each other according to the uniform distribution in the interval [0, 2kn].
If we don’t get the value 0 we stop: f is not identically 0. If we get 0 value we repeat
the computation. If we get 0 value 100 times we stop and declare that f is identically 0.
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If f is identically 0 then this algorithm will determine this. If f is not identically
0 then in every separate iteration—according to Schwartz’s Lemma—the probability
that the result is 0 is less than 1/2. With 100 experiments repeated independently of
each other, the probability that this occurs every time, i.e., that the algorithm asserts
erroneously that f is identically 0, is less than 2−100.

Two things are needed for us to be able to actually carry out this algorithm: on the
one hand, we must be able to generate random numbers (here, we assume that this can
be implemented, and even in time polynomial in the number of bits of the integers to be
generated), on the other hand, we must be able to evaluate f in polynomial time (the
size of the input is the length of the “definition” of f ; this definition can be, e.g., an
expression containing multiplications and additions with parentheses, but also something
entirely different, e.g., a determinant form).

As a surprising example for the application of the method we present a matching
algorithm. (We have already treated the matching problem in Chapters 3 and 5). Let
G be a bipartite graph with the edge set E(G) whose edges run between sets A and B,
A = {a1, . . . , an}, B = {b1, . . . , bn}. Let us assign to each edge aibj a variable xij . Let
us construct the n× n matrix M as follows:

mij =

{

xij , if aibj ∈ E(G),

0, otherwise.

The determinant of this graph is closely connected with the matchings of the graph G
as Dénes Kőnig noticed while analyzing a work of Frobenius:

Theorem 6.3 There is a perfect matching in the bipartite graph G if and only if det(M)
is not identically 0.

Proof. Consider a term in the expansion of the determinant:

±m1π(1)m2π(2) · · ·mnπ(n),

where π is a permutation of the numbers 1, . . . , n. For this not to be 0, we need that ai

and bπ(i) be connected for all i; in other words, that {a1bπ(1), . . . , anbπ(n)} be a perfect
matching in G. In this way, if there is no perfect matching in G then the determinant
is identically 0. If there are perfect matchings in G then to each one of them a nonzero
expansion term corresponds. Since these terms do not cancel each other (any two of
them contain at least two different variables), the determinant is not identically 0. �

Since det(M) is a polynomial of the elements of the matrix M that is computable
in polynomial time (e.g. by Gaussian elimination) this theorem offers a polynomial-time
randomized algorithm for the matching problem in bipartite graphs. We mentioned
it before that there is also a polynomial-time deterministic algorithm for this problem
(the “Hungarian method”). One advantage of the algorithm treated here is that it is
very easy to program (determinant-computation can generally be found in the program
library). If we use “fast” matrix multiplication methods then this randomized algorithm
is a little faster than the fastest known deterministic one: it can be completed in time
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O(n2.4) instead of O(n2.5). Its main advantage is, however, that it is well suitable to
parallelization, as we will see in a later section.

In non-bipartite graphs, it can also be decided by a similar but slightly more compli-
cated method whether there is a perfect matching. Let V = {v1, . . . , vn} be the vertex
set of the graph G. Assign again to each edge vivj (where i < j) a variable xij and
construct an asymmetric n× n matrix T = (tij) as follows:

tij =











xij , if vivj ∈ E(G) and i < j,

−xij , if vivj ∈ E(G) and i > j,

0, otherwise.

The following analogue of the above cited Frobenius-Kőnig theorem comes from Tutte
and we formulate it here without proof:

Theorem 6.4 There is a perfect matching in the graph G if and only if det(T ) is not
identically 0.

This theorem offers, similarly to the case of the bipartite graph, a randomized algo-
rithm for deciding whether there is a perfect matching in G.
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6.3 Prime testing

Let m be an odd natural number, we want to decide whether it is a prime. We have seen
in the previous chapter that this problem is in NP ∩ co−NP. The witnesses described
there did not lead, however, (at least for the time being) to a polynomial-time prime test.
We will therefore give first a new, more complicated NP description of compositeness.

Theorem 6.5 “Little” Fermat Theorem If m is a prime then am−1 − 1 is divisible by
m for all natural numbers 1 ≤ a ≤ m− 1.

If—for a given m—the integer am−1−1 is divisible by m then we say that a satisfies
the Fermat condition.

The Fermat condition, when required for all integers 1 ≤ a ≤ m−1, also characterizes
primes:

Lemma 6.6 An integer m > 0 is a prime if and only all integers 1 ≤ a ≤ m− 1 satisfy
the Fermat condition.

Indeed, if m is composite, then we can choose for a an integer not relatively prime
to m, and then am−1 − 1 is obviously not divisible by m.

A further nice feature of the Fermat condition is that it can be checked in polynomial
time for given m and a. This was discussed in chapter 5.

Of course, we cannot check the Fermat condition for every a: this would take expo-
nential time. The question is therefore to which a’s should we apply it?

We could just try a = 2. This is in fact not a bad test, and it reveals the non-
primality of many (in a sense, most) composite numbers, but it may fail. For example,
561 = 3 · 11 · 17 is not a prime, but 561 | 2560 − 1. Any other specific choice of a would
have similar shortcoming.

The next idea is to select as random a and check Fermat condition. If m is a prime,
then a will of course satisfy it. Suppose that m is not prime, then at least those a’s
not relatively prime to m will violate it. Unfortunately, the number of such a’s may be
miniscule compared with the number of all choices for a, and so the probability that our
random choice will pick one is negligible. (In fact, we can compute the greatest common
divisor of a and m right away: if we can find an a not relatively prime to m, then this
will yield a proper divisor of m.)

So we need to use a’s relatively prime to m. Unfortunately, there are composite
numbers m (the so-called pseudo-primes) for which the Fermat condition is satisfied for
all a relatively prime to m; for such numbers, it will be especially difficult to find an
integer a violating the condition. (Such a pseudo-prime is e.g. 561 = 3 · 11 · 17.)

But at least of m is not a pseudo-prime, then the random choice for a works. This
is guaranteed by the following lemma.

Lemma 6.7 If m is not a prime and not a pseudo-prime then at most half of the integers
a, 1 ≤ a ≤ m− 1 relatively prime to m satisfies the Fermat condition.

Note that none of the non-relatively-prime a’s satisfy the Fermat condition.
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Proof. Since m is not a pseudoprime, there is at least one b relatively prime to m
such that bm−1 − 1 is not divisible by m. Now if a is “bad”, i.e., am−1 − 1 is divisible
by m, then ab mod m is “good”:

(ab)m−1 − 1 = (am−1 − 1)bm−1 + bm−1 − 1,

and here the first term is divisible by m but the second is not.
Hence for every a that is “bad”, we find another a (namely abmod m) that is “good”.

It is easy to see that different a’s yield different “good” numbers. Thus at least half of
the numbers a must be good. �

Thus, if m is not a pseudo-prime then the following randomized prime test works:
check whether a randomly chosen integer 1 ≤ a ≤ m− 1 satisfies the Fermat condition.
If not then we know that m is not a prime. If yes then repeat the procedure. If we found
100 times, independently of each other, that the Fermat condition is satisfied then we
say that m is a prime. It can still happen that m is composite, but if the probability
that we picked an integer a satisfying the condition is less than 1/2 at every step, and
hence the probability that this occurs 100 times in a row is less than 2−100.

Unfortunately, this method fails for pseudoprimes (it finds them prime with large
probability). It turns out that one can modify the Fermat condition just a little to
overcome this difficulty. Let us write the number m − 1 in the form 2kM where M is
odd. We say that a satisfies the Miller condition if at least one of the numbers

aM − 1, aM + 1, a2M + 1, a4M + 1, . . . , a2k−1M + 1

is divisible by m. Note that the product of these numbers is just am−1 − 1. Hence every
number satisfying the Miller condition also satisfies the Fermat condition.

If m is a prime then it divides this product, and hence it divides one of these factors,
i.e., every a satisfies the Miller condition. If m is composite then, however, it could
happen that some a satisfies the Fermat condition but not the Miller condition (m can
be a divisor of a product without being the divisor of any of its factors).

Thus the Miller condition provides a potentially stronger primality test than the
Fermat condition. The question is: how much stronger?

We will need some fundamental facts about pseudoprimes.

Lemma 6.8 Every pseudoprime m is (a) Odd
(b) Squarefree (not divisible by any square).

Proof.
(a) If m > 2 is even then a = m − 1 will violate the Fermat condition, since (m −

1)m−1 ≡ −1 6≡ 1 (mod m).
(b) Assume that p2 | m; let k be the largest exponent for which pk | m. Then

a = m/p − 1 violates the Fermat condition since the last two terms of the binomial
expansion of (m/p− 1)m−1 are −(m− 1)(m/p)+ 1 ≡ m/p+ 1 6≡ 1 (mod pk) (all earlier
terms are divisible by pk) and if an integer is not divisible by pk then it is not divisible
by m either. �
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Lemma 6.9 Let m = p1p2 · · · pt where the pi’s are different primes. The relation ak ≡ 1
(mod m) holds for all a relatively prime to m if and only if pi−1 divides k for all i with
1 ≤ i ≤ t.

Proof. If pi−1 divides k for all i with 1 ≤ i ≤ t then ak −1 is divisible by pi according
to the little Fermat Theorem and then it is also divisible by m. Conversely, suppose
that ak ≡ 1 (mod m) for all a relatively prime to m. If e.g. p1 − 1 would not divide
k then let g be a primitive root modulo p1 (the existence of primitive roots was stated
in Chapter 5) According to the Chinese Remainder Theorem, there is a residue class h
modulo m with h ≡ g (mod p1) and h ≡ 1 (mod pi) for all i ≥ 2. Then (h,m) = 1 and
p1 6 |hk − 1, so m 6 |hk − 1. �

Corollary 6.10 The number m is a pseudoprime if and only if m = p1p2 · · · pt where
the pi’s are different primes, t ≥ 2, and (pi − 1) divides (m− 1) for all i with 1 ≤ i ≤ t.

6.11 Remark This is how one can show about the above example 561 that it is a pseu-
doprime.

Now we can prove the main fact that makes the Miller test better than the Fermat
test.

Theorem 6.12 If m is a composite number then at least half of the numbers 1, . . . ,m−1
violate the Miller condition.

Proof. Since we have already seen that the lemma holds for non-pseudoprimes, in
what follows we can assume that m is a pseudoprime. Let p1 · · · pt (t ≥ 2) be the prime
decomposition of m. By the above, these primes are all odd and distinct, and we have
(pi − 1) | (m− 1) = 2kM for all i with 1 ≤ i ≤ t.

Let l be the largest exponent with the property that none of the numbers pi − 1
divides 2lM . Since the numbers pi −1 are even while M is odd, such an exponent exists
(e.g. 0) and clearly 0 ≤ l < k. Further, by the definition of l, there is a j for which
pj − 1 divides 2l+1M . Therefore pj − 1 divides 2sM for all s with l < s ≤ k, and hence
pj divides a2sM − 1 for all primitive residue classes a. Consequently pj cannot divide
a2sM + 1 which is larger by 2, and hence m does not divide a2sM + 1 either. If therefore
a is a residue class that is a Miller accomplice then m must already be a divisor of

one of the remainder classes aM − 1, aM + 1, a2M + 1, . . ., a2l−1M + 1, a2lM + 1. Hence
for each such a, the number m divides either the product of the first l + 1, which is

(a2lM − 1), or the last one, (a2lM + 1). Let us call the primitive residue class a modulo

m an “accomplice of the first kind” if a2lM ≡ 1 (mod m) and an “accomplice of the

second kind” if a2lM ≡ −1 (mod m).
Let us estimate first the number of accomplices of the first kind. Consider an index i

with 1 ≤ i ≤ t. Since pi − 1 does not divide the exponent 2lM , Lemma 6.9 implies that

there is a number a not divisible by pi for which a2lM − 1 is not divisible by pi. The
reasoning of Lemma 6.7 shows that then at most half of the mod pi residue classes will

satisfy the Fermat comdition belonging to the above exponent, i.e. such that a2lM − 1
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is divisible by pi. According to the Chinese Remainder Theorem, there is a one-to-one
correspondence between the primitive residue classes with respect to the product p1 · · · pt

as modulus and the t-tuples of primitive residue classes modulo the primes p1, . . . , pt.
Thus, modulo p1 · · · pt, at most a 2t-th fraction of the primitive residue classes is such

that every pi divides (a2lM − 1). Therefore at most a 2t-th fraction of the mod m
primitive residue classes are accomplices of the first kind.

It is easy to see that the product of two accomplices of the second kind is one of the
first kind. Hence multiplying all accomplices of the second kind by a fixed one of the
second kind, we obtain accomplices of the first kind, and thus the number of accomplices
of the second kind is at least as large as the number of accomplices of the first kind.
(If there is no accomplice of the second kind to multiply with then the situation is even
better: zero is certainly not greater than the number of accomplices of the first kind.)
Hence even the two kinds together make up at most a 2t−1-th part of the primitive
residue classes, and so (due to t ≥ 2) at most a half. �

Lemma 6.13 For a given m and a, it is decidable in polynomial time whether a satisfies
the Miller condition.

For this, it is enough to recall from Chapter 3 that the remainder of ab modulo c is
computable in polynomial time. Based on these three lemmas, the following randomized
algorithm, called the Miller–Rabin test, can be given for prime testing:

6.14 Algorithm We choose a number between 1 and m−1 randomly and check whether
it satisfies the Miller condition. If it does not then m is composite. If it does then
we choose a new a. If the Miller condition is satisfied 100 times consecutively then we
declare that m is a prime.

If m is a prime then the algorithm will certainly assert this. If m is composite then
the number a chosen randomly violates the Miller condition with probability 1/2. After
hundred independent experiments the probability will therefore be at most 2−100 that
the Miller condition is not violated even once, i.e., that the algorithm asserts that m is
a prime.

6.15 Remarks

1. If m is found composite by the algorithm then — interestingly enough — we see
this not from its finding a divisor but from the fact that one of the residues violates
the Miller condition. If at the same time, the residue a does not violate the Fermat
condition, then m cannot be relatively prime to each of the numbers aM−1, aM +1,

a2M +1, a4m+1, · · · , a2k−1M +1, therefore computing its greatest common divisors
with each, one of them will be a proper divisor of m. No polynomial algorithm
(either deterministic or randomized) is known for finding a factorization in the
case when the Fermat condition is also violated. This problem is significantly more
difficult also in practice than the testing of primality. We will see in the section
on cryptography that this empirical fact has important applications.
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2. For a given m, we can try to find an integer a violating the Miller condition
not by random choice but by trying out the numbers 1,2, etc. It is not known
how small is the first such integer if m is composite. Using, however, a hundred
year old conjecture of analytic number theory, the so-called Generalized Riemann
Hypothesis, (which is too technical to be formulated here) one can show that it is
not greater than logm. Thus, this deterministic prime test works in polynomial
time if the Generalized Riemann Hypothesis is true.

We can use the prime testing algorithm learned above to look for a prime number
with n digits (say, in the binary number system). Choose namely a number k randomly
from the interval [2n−1, 2n − 1] and check whether it is a prime, say, with an error
probability of at most 2−100/n. If it is, we stop. If it is not we choose a new number k.
Now, it follows from the theory of prime numbers that in this interval, not only there is
a prime number but the number of primes is rather large: asymptotically (log e)2n−1/n,
i.e., a randomly chosen n-digit number will be a prime with probability cca. 1.44/n.
Repeating therefore this experiment O(n) times we find a prime number with very large
probability.

We can choose a random prime similarly from any sufficiently long interval, e.g. from
the interval [1, 2n].
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6.4 Randomized complexity classes

In the previous subsections, we treated algorithms that used random numbers. Now we
define a class of problems solvable by such algorithms.

First we define the corresponding machine. Let T = (k,Σ,Γ,Φ) be a non-
deterministic Turing machine and let us be given a probability distribution for every
g ∈ Γ, h1, . . . , hk ∈ Σ on the set

{ (g′, h′1, . . . , h
′
k, ε1, . . . , εk) : (g, h1, . . . , hk, g

′, h′1, . . . , h
′
k, ε1, . . . , εk) ∈ Φ }.

(It is useful to assume that the probabilities of events are rational numbers, since then
events with such probabilities are easy to generate, provided that we can generate mu-
tually independent bits.) A non-deterministic Turing machine together with these dis-
tributions is called a randomized Turing machine.

Every legal computation of a randomized Turing machine has some probability. We
say that a randomized Turing machine weakly decides (or, decides in the Monte-
Carlo sense) a language L if for all inputs x ∈ Σ∗, it stops with probability at least 3/4
in such a way that in case of x ∈ L it writes 1 on the result tape, and in case of x 6∈ L,
it writes 0 on the result tape. Shortly: the probability that it gives a wrong answer is
at most 1/4.

In our examples, we used randomized algorithms in a stronger sense: they could err
only in one direction. We say that a randomized Turing machine accepts a language L
if for all inputs x, it always rejects the word x in case of x 6∈ L, and if x ∈ L then the
probability is at least 1/2 that it accepts the word x.

We say that a randomized Turing machine strongly decides (or, decides in the
Las Vegas sense) a language L if it gives a correct answer for each word x ∈ Σ∗ with
probability 1. (Every single computation of finite length has positive probability and
so the 0-probability exception cannot be that the machine stops with a wrong answer,
only that it works for an infinite time.)

In case of a randomized Turing machine, for each input, we can distunguish the
number of steps in the longest computation and the expected number of steps. The
class of all languages that are weakly decidable on a randomized Turing machine in
polynomial expected time is denoted by BPP (Bounded Probability Polynomial). The
class of languages that can be accepted on a randomized Turing machine in polynomial
expected time is denoted by RP (Random Polynomial). The class of all languages that
can be strongly decided on a randomized Turing machine in polynomial expected time
is denoted by ∆RP. Obviously, BPP ⊇ RP ⊇ ∆RP ⊇ P.

The constant 3/4 in the definition of weak decidability is arbitrary: we could say
here any number smaller than 1 but greater than 1/2 without changing the definition of
the class BPP (it cannot be 1/2: with this probability, we can give a correct answer by
coin-tossing). If namely the machine gives a correct answer with probability 1/2 < c < 1
then let us repeat the computation t times on input x and accept as answer the one
given more often. It is easy to see from the Law of Large Numbers that the probability
that this answer is wrong is less than ct1 where c1 is a constant smaller than 1 depending
only on c. For sufficiently large t this can be made arbitrarily small and this changes
the expected number of steps only by a constant factor.

108



It can be similarly seen that the constant 1/2 in the definition of acceptance can be
replaced with an arbitrary positive number smaller than 1.

Finally, we note that instead of the expected number of steps in the definition of
the classes BPP and RP, we could also consider the largest number of steps; this would
still not change the classes. Obviously, if the largest number of steps is polynomial,
then so is the expected number of steps. Conversely, if the expected number of steps
is polynomial, say, at most |x|d, then according to Markov’s Inequality, the probability
that a computation lasts a longer time than 8|x|d is at most 1/8. We can therefore build
in a counter that stops the machine after 8|x|d steps, and writes 0 on the result tape.
This increases the probability of error by at most 1/8.

The same is, however, not known for the class ∆RP: the restriction of the longest
running time would lead here already to a deterministic algorithm, and it is not known
whether ∆RP is equal to P (moreover, this is rather expected not to be the case; there
are examples for problems solvable by polynomial Las Vegas algorithms for which no
polynomial deterministic algorithm is known).

Remark 6.1 A Turing machine using randomness could also be defined in a different
way: we could consider a deterministic Turing machine which has, besides the usual
(input-, work- and result-) tapes also a tape on whose every cell a bit (say, 0 or 1)
is written that is selected randomly with probability 1/2. The bits written on the
different cells are mutually independent. The machine itself works deterministically but
its computation depends, of course, on chance (on the symbols written on the random
tape). It is easy to see that such a deterministic Turing machine fitted with a random
tape and the non-deterministic Turing machine fitted with a probability distribution can
replace each other in all definitions.

We could also define a randomized Random Access Machine: this would have an
extra cell w in which there is always a 0 or 1 with probability 1/2. We have to add
the instruction y := w to the programming language. Every time this is executed a
new random bit occurs in the cell w that is completely independent of the previous bits.
Again, it is not difficult to see that this does not bring any significant difference.

It can be seen that every language in RP is also in NP. It is trivial that the classes
BPP and ∆RP are closed with respect to the taking of complement: they contain,
together with every language L the language Σ∗ \ L. The definition of the class RP is
not such and it is not known whether this class is closed with respect to complement.
It is therefore worth defining the class co−RP: A language L is in co−RP if Σ∗ \L is in
RP.

“Witnesses” provided a useful characterization of the class NP. An analogous theorem
holds also for the class RP.

Theorem 6.16 A language L is in RP if and only if there is a language L′ ∈ P and a
polynomial f(n) such that (i) L = { x ∈ Σ∗ : y ∈ Σf(|x|) x&y ∈ L′ } and
(ii) if x ∈ L then at least half of the words y of length f(|x|) are such that x&y ∈ L′.

Proof. Similar to the proof of the corresponding theorem on NP. �
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The connection of the classes RP and ∆RP is closer than it could be expected on
the basis of the analogy to the classes NP and P:

Theorem 6.17 The following properties are equivalent for a language L:

(i) L ∈ ∆RP;

(ii) L ∈ RP ∩ co−RP;

(iii) There is a randomized Turing machine with polynomial (worst-case) running time
that can write, besides the symbols “0” and “1”, also the words “I GIVE UP”; the
answers “0” and “1” are never wrong, i.e., in case of x ∈ L the result is “1” or
“I GIVE UP”, and in case of x 6∈ L it is “0” or “I GIVE UP”. The probability of
the answer “I GIVE UP” is at most 1/2.

Proof. It is obvious that (i) implies (ii). It can also be easily seen that (ii) implies
(iii). Let us submit x to a randomized Turing machine that accepts L in polynomial
time and also to one that accepts Σ∗ \ L in polynomial time. If the two give opposite
answers then the answer of the first machine is correct. If they give identical answers
then we “give it up”. In this case, one of them made an error and therefore this has a
probability at most 1/2.

Finally, to see that (iii) implies (i) we just have to modify the Turing machine T0

given in (iii) in such a way that instead of the answer “I GIVE IT UP”, it should start
again. If on input x, the number of steps of T0 is τ and the probability of giving it up
is p then on this same input, the expected number of steps of the modified machine is

∞
∑

t=1

pt−1(1 − p)tτ =
τ

1 − p
≤ 2τ.

�

We have seen in the previous subsection that the “language” of composite numbers
is in RP. Even more is true: Adleman and Huang have shown that this language is also
in ∆RP. For our other important example, the not identically 0 polynomials, it is only
known that they are in RP. Among the algebraic (mainly group-theoretical) problems,
there are many that are in RP or ∆RP but no polynomial algorithm is known for their
solution.

Remark 6.2 The algorithms that use randomization should not be confused with the
algorithms whose performance (e.g., the expected value of their number of steps) is being
examined for random inputs. Here we did not assume any probability distribution on
the set of inputs, but considered the worst case. The investigation of the behavior of
algorithms on random inputs coming from a certain distribution is an important but
difficult area, still in its infancy, that we will not treat here.

Exercise 6.1 Suppose that some experiment has some probability p of success. Prove
that in n3 experiments, it is possible to compute an approximation p̂ of p such that the
probability of |p−p̂| >

√

p(1 − p)/n is at most 1/n. [Hint: Use Tshebysheff’s Inequality.]
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Exercise 6.2 We want to compute a real quantity a. Suppose that we have a random-
ized algorithm that computes an approximation A (which is a random variable) such
that the probability that |A−a| > 1 is at most 1/20. Show that by calling the algorithm
t times, you can compute an approximation B such that the probability that |B−a| > 1
is at most 2−t.

Exercise 6.3 Suppose that somebody gives you three n×nmatrices A,B,C (of integers
of maximimum length l) and claims C = AB. You are too busy to verify this claim
exactly and do the following. You choose a random vector x of length n whose entries
are integers chosen uniformly from some interval [0, . . . , N −1], and check A(Bx) = Cx.
If this is true you accept the claim otherwise you reject it.

• How large must N be chosen to make the probability of false acceptance smaller
than 0.01?

• Compare the time complexity the probabilistic algorithm to the one of the deter-
ministic algorithm computing AB.

Exercise 6.4 Show that if m is a pseudoprime then the Miller–Rabin test not only
discovers this with large probability but it can also be used to find a decomposition of
m into two factors.

Exercise 6.5 Show that the Turing machine equipped with a random tape and the non-
deterministic Turing machine equipped with a probability distribution are equivalent: if
some language is accepted in polynomial time by the one then it is also accepted by the
other one.

Exercise 6.6 Formulate what it means that a randomized RAM accepts a certain lan-
guage in polynomial time and show that this is equivalent to the fact that some ran-
domized Turing machine accepts it.

Exercise 6.7 Let us call a Boolean formula with n variables robust if it is either un-
satisfiable or has at least 2n/n2 satisfying assignments. Give a probabilistic polynomial
algorithm to decide the satisfiability of robust formulas.
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7 Information complexity: the complexity-theoretic

notion of randomness

7.1 Introduction

The mathematical foundation of probability theory appears among the famous problems
of Hilbert formulated in 1900 (mentioned before). Von Mises made an important attempt
in 1919 to define the randomness of a 0-1 sequence. his attempt can be sketched as
follows. We require that the frequency of 0’s and 1’s be approximately the same. This
is clearly not enough, but we can require the same to hold also if we select every other
number of the sequence. more generally, we can require the same for all subsequences
obtained by selecting indices from an arithmetic progression. This approach, however,
did not prove sufficiently fruitful.

In 1931 Kolmogorov initiated another approach, using measure theory. His theory
was very successful from the point of view of probability theory, and it is the basis of
the rigorous development of probability theory in any textbook today.

However, this standard approach fails to capture some important aspects For exam-
ple, in probability theory based on measure theory, we cannot speak of the randomness
of a single 0-1 sequence, only of the probability of a set of sequences. At the same time,
in an everyday sense, it is ”obvious” that the sequence ”Head, Head, Head,...” cannot be
the result of coin tossing. In the 1960’s Kolmogorov and independently Chaitin revived
the idea of von Mises, using complexity-theoretic tools. They defined the information
complexity (information content) of a sequence; then (roughly speaking) random se-
quences are those whose information content is as large as possible. The importance of
these results goes beyond the foundation of probabity theory; it contributes to the clar-
ification of the basic notions in several fields like data compression, information theory
and statistics.

In this chapter we introduce the notion of information complexity first. Then we
discuss the notion of an informatically random sequence, and show that such sequences
behave like ”usual” random sequences: they obeu the Laws of Large Numbers. Finally,
we discuss the problem of optimal encoding of various structures.

7.2 Information complexity

Fix an alphabet Σ. Let Σ0 = Σ ⊆ {∗} and consider a two-tape universal Turing machine
over Σ. It will be convenient to identify Σ0 with the set {0, 1, . . . ,m − 1}. Consider a
2-tape, universal Turing machine T over Σ. We say that the word (program) q over Σ
prints word x if writing q on the second tape (the program tape) of T and leaving the
first tape empty, the machine stops in finitely many steps with the word x on its first
tape (the data tape).

Let us note right away that every word is printable on T . There is namely a one-tape
(perhaps large, but rather trivial) Turing machine Sx that, when started with the empty
tape, writes the word x onto it and halts. This Turing machine can be simulated by a
program qx that, in this way, prints x.

The information complexity (also called Kolmogorov complexity) of a word x ∈
Σ∗

0 we mean the length of the shortest word (program) that makes T print the word x.
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We denote the complexity of the word x by KT (x).
We can also consider the program printing x as a “code” of the word x where the Tur-

ing machine T performs the decoding. This kind of code will be called a Kolmogorov
code. For the time being, we make no assumptions about how much time this decoding
(or encoding, finding the appropriate program) can take.

We would like the complexity to be a characteristic property of the word x and to
depend on the machine T as little as possible. It is, unfortunately, easy to make a Turing
machine that is obviously “clumsy”. For example, it uses only every second letter of
each program and “skips” the intermediate letters. Such a machine can be universal,
but every word will be defined twice as complex as on the machine without this strange
behavior.

We show that if we impose some—rather simple—conditions on the machine T then
it will no longer be essential which universal Turing machine is used for the definition of
information complexity. Roughly speaking, it is enough to assume that every input of a
computation performable on T can also be submitted as part of the program. To make
this more exact, we assume that there is a word (say, DATA) for which the following
holds:

• Every one-tape Turing machine can be simulated by a program that does not
contain the word DATA as a subword;

• If the machine is started so that its program tape contains a word of the form
xDATAy where the word x does not contain the subword DATA, then the machine
halts, if and only if it halts when started with y written on the data tape and x
on the program tape, and in fact with the same output on the data tape,

It is easy to see that every universal Turing machine can be modified to satisfy the
assumptions (a) and (b). In what follows, we will always assume that our universal
Turing machine has these properties.

Lemma 7.1 There is a constant cT (depending only on T ) such that KT (x) ≤ |x|+ cT .

Proof. T is universal, therefore the (trivial) one-tape Turing machine that does
nothing (stops immediately) can be simulated on it by a program p0 (not containing the
word DATA). But then, for every word x ∈ Σ∗

0, the program p0DATAx will print the
word x and stop. Thus the constant cT = |p0| + 4 satisfies the conditions. �

In what follows we assume, to be specific, that cT ≤ 100.

Remark 7.1 We had to be a little careful since we did not want to restrict what symbols
can occur in the word x. In BASIC, for example, the instruction PRINT "x" is not
good for printing words x that contain the symbol ”. We are interested in knowing
how concisely the word x can be coded in the given alphabet, and we do not allow
therefore the extension of the alphabet.

We prove now the basic theorem showing that the complexity (under the above
conditions) does not depend too much on the given machine.

113



Theorem 7.2 (Invariance Theorem) Let T and S be universal Turing machines sat-
isfying the conditions (a), (b). Then there is a constant cTS such that for every word x
we have |KT (x) − KS(x)| ≤ cTS.

Proof. We can simulate the two-tape Turing machine S by a one-tape Turing machine
S0 in such a way that if on S, a program q prints a word x then writing q on the single
tape of S0, it also stops in finitely many steps, with x printed on its tape. Further,
we can simulate the work of Turing machine S0 on T by a program pS0 that does not
contain the subword DATA.

Now let x be an arbitrary word from Σ∗
0 and let qx be a shortest program printing x

on S. Consider the program pS0DATAqx on T : this obviously prints x and has length
only |qx| + |pS0 | + 4. The inequality in the other direction is obtained similarly. �

On the basis of this lemma, we will not restrict generality if we consider T fixed and
do not indicate the index T .

Unfortunately, the following theorem shows that the optimal code cannot be found
algorithmically.

Theorem 7.3 The function K(x) is not recursive.

Proof. The essence of the proof is a classical logical paradox, the so-called typewriter-
paradox. (This can be formulated simply as follows: let n be the smallest number that
cannot be defined with fewer than 100 symbols. We have just defined n with fewer than
100 symbols!)

Assume, by way of contradiction, that K(x) is computable. Let c be a natural
number to be chosen appropriately. Arrange the elements of Σ∗

0 in increasing order, and
let x(k) denote the k-th word according to this ordering. Let x0 be the first word with
K(x0) ≥ c. Assuming that our language can be programmed in the language Pascal let
us consider the following simple program.

Program 7.4 var k: integer;
function x(k : integer): integer;
...
function Kolm(k : integer): integer;
...
begin
k := 0;
while Kolm(k) < c do k := k + 1;
print(x(k));
end

(The dotted parts stand for subroutines computing the given functions. The first is easy
and could be explicitely included. The second is hypothetical, based on the assumption
that K(x) is computable.)

This program obviously prints x0. When determining its length we must take into ac-
count the subroutines for the computation of the functions x(k) and Kolm(k) = K(x(k))
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(where x(k) is the k-th string); but this is a constant (independent of c). Thus even taken
together, the number of all these symbols is only log c+O(1). If we take c large enough
this program consists of fewer than c symbols and prints x0, which is a contradiction. �

As a simple application of the theorem, we get a new proof for the undecidability of
the halting problem. To this end, let’s ask the following question: Why is it not possible
to compute K(x) as follows? Take all words y in increasing order and check whether
T prints x when started with y on its program tape. Return the first y for which this
happens; its length is K(x).

We know that something must be wrong here, since K(x) is not computable. The
only trouble with this algorithm is that T may never halt with some y. If the halting
problem were decidable, we could “weed out” in advance the programs on which T would
work forever, and not even try these. Thus we could compute K(x).

Thus the halting problem is not decidable.
In contrast to Theorem 7.3, we show that the complexity K(x) can be very well

approximated on the average.
For this, we must first make it precise what we mean by “on the average”. Assume

that the input words come from some probability distribution; in other words, every
word x ∈ Σ∗

0 has a probability p(x). Thus

p(x) ≥ 0,
∑

x∈Σ∗
0

p(x) = 1.

We assume that p(x) is computable, i.e., each p(x) is a rational number whose numerator
and denominator are computable from x. A simple example of a computable probability
distribution is p(xk) = 2−k where xk is the k-th word in size order, or p(x) = (m +
1)−|x|−1 where m is the alphabet size.

7.5 Remark There is a more general notion of a computable probability distribution
that does not restrict probabilities to rational numbers; for example, {e−1, 1−e−1} could
also be considered a computable probability distribution. Without going into details we
remark that our theorems would also hold for this more general class.

Theorem 7.6 For every computable probability distribution there is an algorithm com-
puting a Kolmogorov code f(x) for every word x such that the expectation of |f(x)|−K(x)
is finite.

Proof. For simplicity of presentation, assume that p(x) > 0 for every word x. Let
x1, x2, . . . be an ordering of the words in Σ∗

0 for which p(x1) ≥ p(x2) ≥ · · · , and the
words with equal probability are, say, in increasing order (since each word has positive
probability, for every x there are only a finite number of words with probability at least
p(x), and hence this is indeed a single sequence).

Lemma 7.7 (a) Given a word x, the index i for which x = xi is computable.

(b) Given a natural number i, the word xi is computable.
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Proof. (a) Let y1, y2, . . . be all words arranged in increasing order. Given a words x,
it is easy to find the index j for which x = yj . Next, find the first k ≥ j for which

p(y1) + · · · + p(yk) > 1 − p(yj). (4)

Since the left-hand side converges to 1 while the right-hand side is less than 1, this will
occur sooner or later.

Clearly each of the remaining words yk+1, yk+2, . . . has probability less than p(yj),
and hence to determine the index of x = yj it suffices to order the finite set {y1, . . . , yk}
according to decreasing p, and find the index of yj among them.

(b) Given an index i, we can compute the indices of y1, y2, . . . using (a) and wait
until i shows up. �

Returning to the proof of the theorem, the program of the algorithm in the above
lemma, together with the number i, provides a Kolmogorov code f(xi) for the word xi.
We show that this code satisfies the requirements of the theorem. Obviously, |f(x)| ≥
K(x). Furthermore, the expected value of |f(x)| − K(x) is

∞
∑

i=1

p(xi)(|f(xi)| − K(xi)).

We want to show that this sum is finite. Since its terms are non-negative, it suffices to
show that it partial sums remain bounded, i.e., that

N
∑

i=1

p(xi)(|f(xi)| − K(xi)) < C

for some C independent of N . To the end, write

N
∑

i=1

p(xi)(|f(xi)| − K(xi)) (5)

=

N
∑

i=1

p(xi)(|f(xi)| − logm i) +

N
∑

i=1

p(xi)(logm i− K(xi)). (6)

We claim that both sums remain bounded. The difference |f(xi)| − logm i is just the
length of the program computing xi without the length of the parameter i, and hence
it is an absolute constant C. Thus the first sum in (5) is at most C.

To estimate the second term in (5), we use the following simple but useful principle.
Let a1 ≥ a2 ≥ · · · ≥ am be a decreasing sequence and let b1, . . . , bm be an arbitrary
sequence of real numbers. Let b∗1 ≥ · · · ≥ b∗m be the sequence b ordered decreasingly,
and let b∗∗1 ≤ · · · ≤ b∗∗m be the sequence b ordered increasingly. Then

∑

i

aib
∗∗
i ≤

∑

i

aibi ≤
∑

i

aib
∗
i .
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Let (z1, z2, . . . , ) be an ordering of the words so that K(z1) ≤ K(z2) ≤ . . . (we can’t
compute this ordering, but we don’t have to compute it). Then by the above principle,

N
∑

i=1

p(xi)K(xi) ≥
N

∑

i=1

p(xi)K(zi).

The number of words x with K(x) = k is at most mk, and hence the number of words
x with K(x) ≤ k is at most 1 +m+ . . .mk < mk+1. This is the same as saying that

i ≤ mK(zi)+1,

and hence
K(zi) ≥ logm i− 1.

Thus

N
∑

i=1

p(xi)(logm i− K(xi)) ≤
N

∑

i=1

p(xi)(logm i− K(zi)) ≤
N

∑

i=1

p(xi) = 1.

This proves the theorem. �

7.3 The notion of a random sequence

In this section, we assume that Σ0 = {0, 1}, i.e., we will consider only the complexity
of 0-1 sequences. Roughly speaking, we want to consider a sequence random if there is
no “regularity” in it. Here, we want to be as general as possible and consider any kind
of regularity that would enable a more economical coding of the sequence (so that the
complexity of the sequence would be small).

7.8 Remark Note that this is not the only possible idea of regularity. One might consider
a 0-1-sequence regular if the number of 0’s in it is about the same as the number of 1’s.
This kind of regularity is compatible with (in fact implied by) randomness: we should
really consider only regularities that are shared only by a small minority of the sequences.

Let us estimate first the complexity of “average” 0-1 sequences.

Lemma 7.9 The number of 0-1 sequences x of length n with K(x) ≤ n− k is less than
2n−k+1.

Proof. The number of “codewords” of length at most n−k is at most 1+2+· · ·+2n−k <
2n−k+1, hence only fewer than 2n−k+1 strings x can have such a code. �

Corollary 7.10 The complexity of 99% of the n-digit 0-1 sequences is greater than n−7.
If we choose a 0-1 sequence of length n randomly then |K(x)−n| ≤ 100 with probability
1 − 2100.
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Another corollary of this simple lemma is that it shows, in a certain sense, a “coun-
terexample” to Church’s Thesis, as we noted in the introduction to the section on ran-
domized computation. Consider the following problem: For a given n, construct a 0-1
sequence of length n whose Kolmogorov complexity is greater than n/2. According to
the exercise mentioned after Theorem 7.3, this problem is algorithmically undecidable.
On the other hand, the above lemma shows that with large probability, a randomly
chosen sequence is appropriate.

According to Theorem 7.3, it is algorithmically impossible to find the best code.
There are, however, some easily recognizable properties indicating about a word that it
is codable more efficiently than its length. The next lemma shows such a property:

Lemma 7.11 If the number of 1’s in a 0 − 1-sequence x of length n is k then

K(x) ≤ log2

(

n

k

)

+ log2 n+ log2 k +O(1).

Let k = pn (0 < p < 1), then this can be estimated as

K(x) ≤ (−p log p− (1 − p) log(1 − p))n+O(log n).

In particular, if k > (1/2 + ε)n or k < (1/2 − ε)n then

K(x) ≤ cn+O(log n)

where c = −(1/2+ε) · log(1/2+ε)− (1/2−ε) · log(1/2−ε) is a positive constant smaller
than 1 and depending only on ε.

Proof. x can be described as the “lexicographically t-th sequence among all se-
quences of length n containing exactly k 1’s”. Since the number of sequences of
length n containing k 1’s is

(

n
k

)

, the description of the numbers t, n and k needs only

log2

(

n
k

)

+ 2 log2 n+ 2 log2 k bits. (Here, the factor 2 is due to the need to separate the
three pieces of information from each other; we leave it to the reader to find the trick.)
The program choosing the appropriate sequence needs only a constant number of bits.

The estimate of the binomial coefficient is done by a method familiar from probability
theory. �

On the basis of the above, one can consider either |x| − K(x) or |x|/K(x) as a
measure of the randomness (or, rather, non-randomness) of the word x. the larger
are these numbers, the smaller is K(x) relative to |x|, which means that x has more
“regularity” and so it is less random.

In case of infinite sequences, a sharper difference can be made: we can define whether
a given sequence is random. Several definitions are possible; we introduce here the
simplest version. Let x be an infinite 0–1 sequence, and let xn denote its starting
segment formed by the first n elements. We call the sequence x informatically random
if K(xn)/n→ 1 when n→ ∞.

It can be shown that every informatically weakly random sequence satisfies the laws
of large numbers. We consider here only the simplest such result. Let an denote the
number of 1’s in the string xn, then the previous lemma immediately implies the following
theorem:
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Theorem 7.12 If x is informatically random then an/n→ 1/2 (n→ ∞).

The question arises whether the definition of an algorithmically random sequence is
not too strict, whether there are any algorithmically random infinite sequences at all.
Let us show that not only there are such sequences but that almost all sequences have
this property:

Theorem 7.13 Let the elements of an infinite 0-1 sequence x be 0’s or 1’s, indepen-
dently from each other, with probability 1/2. Then x is algorithmically random with
probability 1.

Proof. For a fixed ǫ > 0, let S be the set of all those finite sequences y for which
K(y) < (1 − ǫ)|y|, and let An denote the event xn ∈ S. Then by lemma 7.9,

P(An) ≤
∑

y∈S

2−n < 2(1−ǫ)n + 12−n = 21−ǫn,

and hence the sum
∑∞

k=1 P(An) is convergent. But then, the Borel-Cantelli Lemma in
probability theory implies that with probability 1, only finitely many of the events Ak

occur. But this just means that K(xn)/n→ ∞. �

7.4 Kolmogorov complexity and data compression

Let L ⊆ Σ∗
0 be a recursive language and suppose that we want to find a short program,

“code”, only for the words in L. For each word x in L, we are thus looking for a program
f(x) ∈ {0, 1}∗ printing it. We call the function f : L → Σ∗ a Kolmogorov code of L.
The conciseness of the code is the function

η(n) = max{ |f(x)| : x ∈ L, |x| ≤ n }.

We can easily get a lower bound on the conciseness of any Kolmogorov code of any
language. Let Ln denote the set of words of L of length at most n. Then obviously,

η(n) ≥ log2 |Ln|.

We call this estimate the information theoretical lower bound.
This lower bound is sharp (to within an additive constant). We can code every word

x in L simply by telling its serial number in the increasing ordering. If the word x of
length n is the t-th element then this requires log2 t ≤ log2 |Ln| bits, plus a constant
number of additional bits (the program for taking the elements of Σ∗ in lexicographic
order, checking their membership in L and printing the t-th one).

We arrive at more interesting questions if we stipulate that the code from the word
and, conversely, the word from the code should be polynomially computable. In other
words: we are looking for a language L′ and two polynomially computable functions:

f : L → L′, g : L′ → L
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with g ◦ f = idL for which, for every x in L the code |f(x)| is “short” compared to |x|.
Such a pair of functions is called a polynomial-time code. (Instead of the polynomial
time bound we could, of course, consider other complexity restrictions.)

We present some examples when a polynomial-time code approaches the information-
theoretical bound.

Example 7.1 In the proof of Lemma 7.11, for the coding of the 0-1 sequences of length
n with exactly m 1’s, we used the simple coding in which the code of a sequence is the
number giving its place in the lexicographic ordering. We will show that this coding is
polynomial.

Let us view each 0-1 sequence as the obvious code of a subset of the n-element set
{n− 1, n− 2, . . . , 0}. Each such set can be written as {a1, . . . , am} with a1 > a2 > · · · >
am. Then the set {b1, . . . , bm} precedes the set {a1, . . . , am} lexicografically if and only if
there is an i such that bi < ai while aj = bj holds for all j < i. Let {a1, . . . , am}, be the
lexicographically t-th set. Then the number of subsets {b1, . . . , bn} with this property
is exactly

(

ai

m−i+1

)

. Summing this for all i we find that

t = 1 +

(

a1

m

)

+

(

a2

m− 1

)

+ · · · +
(

am

1

)

. (7)

Given a1, . . . , am, the value of t is easily computable in time polynomial in n. Conversely,
if t <

(

n
m

)

is given then t is easy to write in the above form: first we find, using binary

search, the greatest natural number a1 with
(

a1

m

)

≤ t − 1, then the greatest number

a2 with
(

a2

m−1

)

≤ t − 1 −
(

a1

m

)

, etc. We do this for m steps. The numbers obtained
this way satisfy a1 > a2 > · · · ; indeed, according to the definition of a1 we have
(

a1+1
m

)

=
(

a1

m

)

+
(

a1

m−1

)

> t− 1 and therefore
(

a1

m−1

)

> t− 1 −
(

a1

m

)

implying a1 > a2. It
follows similarly that a2 > a3 > · · · > am ≥ 0 and that there is no “remainder” after m
steps, i.e., that 7 holds. It can therefore be determined in polynomial time which subset
is lexicographically the t-th.

Example 7.2 Consider trees, given by their adjacency matrices (but any other “rea-
sonable” representation would also do). In such representations, the vertices of the tree
have a given order, which we can also express saying that the vertices of the tree are
labeled by numbers from 0 to (n−1). We consider two trees equal if whenever the nodes
i, j are connected in the first one they are also connected in the second one and vice versa
(so, if we renumber the nodes of the tree then we may arrive at a different tree). Such
trees are called labeled trees. Let us first see what does the information-theoretical
lower bound give us, i.e., how many trees are there. The following classical result, called
Cayley’s Theorem, applies here:

Theorem 7.14 The number of n-node labeled trees is nn−2.

Consequently, by the information-theoretical lower bound, for any encoding of trees
some n-node tree needs a code with length at least ⌈log(nn−2)⌉ = ⌈(n− 2) logn⌉. But
can this lower bound be achieved by a polynomial-time computable code?

(a) Coding trees by their adjacency matrices takes n2 bits.
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(b) We fare better if we specify each tree by enumerating its edges. Then we must give
a “name” to each vertex; since there are n vertices we can give to each one a 0-1
sequence of length ⌈logn⌉ as its name. We specify each edge by its two endnodes.
In this way, the enumeration of the edges takes cca. 2(n− 1) log2 n bits.

(c) We can save a factor of 2 in (b) if we distinguish a root in the tree, say the node 0,
and we specify the tree by the sequence (α(1), . . . , α(n − 1)) in which α(i) is the
first interior node on the path from node i to the root (the “father” of i). This is
(n− 1)⌈logn⌉ bits, which is already nearly optimal.

(d) There is, however, a procedure, the so-called Prüfer code, that sets up a bijection
between the n-node labeled trees and the sequences of length n−2 of the numbers
0, . . . , n − 1. (Thereby it also proves Cayley’s theorem). Each such sequence can
be considered the expression of a natural number in the base n number system; in
this way, we order a “serial number” between 0 and nn−2 to the n-node labeled
trees. Expressing these serial numbers in the base two number system, we get a
coding in which the code of each number has length at most ⌈(n− 2) logn⌉.

The Prüfer code can be considered a refinement of the procedure (c). The idea is
that we order the edges [i, α(i)] not by the magnitude of i but a little differently. Let
us define the permutation (i1, . . . , in) as follows: let i1 be the smallest endnode (leaf)
of the tree; if i1, . . . , ik are already defined then let ik+1 be the smallest endnode of
the graph remaining after deleting the nodes i1, . . . , ik. (We do not consider the root
0 an endnode.) Let in = 0. With the ik’s thus defined, let us consider the sequence
(α(i1), . . . , α(in−1)). The last element of this is 0 (the “father” of the node in−1 can
namely be only in), it is therefore not interesting. We call the remaining sequence
(α(i1), . . . , α(in−2)) the Prüfer code of the tree.

Claim 7.15 The Prüfer code of a tree determines the tree.

For this, it is enough to see that the Prüfer code determines the sequence i1, . . . , in;
then we know all the edges of the tree (the pairs [i, α(i)]).

The node i1 is the smallest endnode of the tree; hence to determine i1, it is enough
to figure out the endnodes from the Prüfer code. But this is obvious: the endnodes are
exactly those that are not the “fathers” of other nodes, i.e., the ones that do not occur
among the numbers α(i1), . . . , α(in−1), 0. The node i1 is therefore uniquely determined.

Assume that we know already that the Prüfer code uniquely determines i1, . . . , ik−1.
It follows similarly to the above that ik is the smallest number not occurring neither
among i1, . . . , ik−1 nor among α(ik), . . . , α(in−1). So, ik is also uniquely determined.

Claim 7.16 Every sequence (b1, . . . , bn−2), where 1 ≤ bi ≤ n, occurs as the Prüfer code
of some tree.

Using the idea of the proof above, let bn−1 = 0 and let us define the permutation
i1, . . . , in by the recursion that ik is the smallest number not occurring neither among
i1, . . . , ik−1 nor among bk, . . . , bn−1, where (1 ≤ k ≤ n− 1); and let in = 0. Connect ik
with bk for all 1 ≤ k ≤ n− 1 and let γ(ik) = bk. In this way, we obtain a graph G with
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n − 1 edges on the nodes 1, . . . , n. This graph is connected, since for every i the γ(i)
comes later in the sequence i1, . . . , in than i and therefore the sequence i, γ(i), γ(γ(i)), . . .
is a path connecting i to the node 0. But then G is a connected graph with n− 1 edges,
therefore it is a tree. That the sequence (b1, . . . , bn−2) is the Prüfer code of G is obvious
from the construction.

Remark 7.2 An exact correspondence like the Prüfer code has other advantages be-
sides optimal Kolmogorov coding. Suppose that our task is to write a program for a
randomized Turing machine that outputs a random labeled tree of size n in such a way
that all trees occur with the same probability. The Prüfer code gives an efficient al-
gorithm for this. We just have to generate randomly a sequence b1, . . . , bn−2, which is
easy, and then decode from it the tree by the above algorithm.

Example 7.3 Consider now the unlabeled trees. These can be defined as the equiva-
lence classes of labeled trees where two labeled trees are considered equivalent if they
are isomorphic, i.e., by a suitable relabeling, they become the same labeled tree. We
assume that we represent each equivalence class by one of its elements, i.e., by a labeled
tree (it is not interesting now, by which one). Since each labeled tree can be labeled in at
most n! ways (its labelings are not necessarily all different as labeled trees!) therefore the
number of unlabeled trees is at least nn−2/n! ≤ 2n−2. (According to a difficult result of
George Pólya, the number of n-node unlabeled trees is asymptotically c1c

n
2n

3/2 where c1
and c2 are constants defined in a certain complicated way.) The information-theoretical
lower bound is therefore at least n− 2.

On the other hand, we can use the following coding procedure. Consider an n-node
tree F . Walk through F by the “depth-first search” rule: Let x0 be the node labeled 0
and define the nodes x1, x2, . . . as follows: if xi has a neighbor that does not occur yet
in the sequence then let xi+1 be the smallest one among these. If it has not and xi 6= x0

then let xi+1 be the neighbor of xi on the path leading from xi to x0. Finally, if xi = x0

and every neighbor of x0 occured already in the sequence then we stop.
It is easy to see that for the sequence thus defined, every edge occurs among the pairs

[xi, xi+1], moreover, it occurs once in both directions. It follows that the length of the
sequence is exactly 2n− 1. Let now εi = 1 if xi+1 is farther from the root than xi and
εi = 0 otherwise. It is easy to understand that the sequence ε0ε1 · · · ε2n−3 determines
the tree uniquely; passing trough the sequence, we can draw the graph and construct
the sequence x1, . . . , xi of nodes step-for-step. In step (i + 1), if εi = 1 then we take
a new node (this will be xi+1) and connect it with xi; if εi = 0 then let xi+1 be the
neighbor of xi in the “direction” of x0.

Remark 7.3 1. With this coding, the code assigned to a tree depends on the label-
ing but it does not determine it uniquely (it only determines the unlabeled tree
uniquely).

2. The coding is not bijective: not every 0-1 sequence will be the code of an unlabeled
tree. We can notice that

(a) There are as many 1’s as 0’s in each tree;

122



(b) In every starting segment of every code, there are at least as many 1’s as 0’s

(the difference between the number of 1’s and the number of 0’s among the first i
numbers gives the distance of the node xi from the node 0). It is easy to see that
for each 0-1 sequence having the properties (a)− (b), there is a labeled tree whose
code it is. It is not sure, however, that this tree, as an unlabeled tree, is given
with just this labeling (this depends on which unlabeled trees are represented by
which of their labelings). Therefore the code does not even use all the words with
properties (a) − (b).

3. The number of 0-1 sequences having properties (a) − (b) is, according to a well-
known combinatorial theorem, 1

n

(

2n−2
n−1

)

(the so-called catalan number). We can
formulate a tree notion to which the sequences with properties (a)−(b) correspond
exactly: these are the rooted planar trees, which are drawn without intersection
into the plane in such a way that their distinguished vertex—their root—is on
the left edge of the page. This drawing defines an ordering among the “sons”
(neighbors farther from the root) “from the top to the bottom”; the drawing is
characterized by these orderings. The above described coding can also be done in
rooted planar trees and creates a bijection between them and the sequences with
the properties (a) − (b).
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8 Pseudo-random numbers

8.1 Introduction

We have seen that various important algorithms use random numbers (or, equivalently,
independent random bits). But how do we get such bits?

One possible source is from outside the computer. We could obtain “real” random
sequences, say, from radioactive decay. In most cases, however, this would not work:
our computers are very fast and we have no physical device giving the equivalent of
unbiased coin-tosses at this rate.

Thus we have to resort to generating our random bits by the computer. However, a
long sequence generated by a short program is never random, according to the notion of
randomness introduced using information complexity. Thus we are forced to use algo-
rithms that generate random-looking sequences; but, as Von Neumann (one of the first
mathematicians to propose the use of these) put it, everybody using them is inevitably
“in the state of sin”. In this chapter, we will understand the kind of protection we can
get against the graver consequences of this sin.

There are other reasons besides practical ones to study pseudorandom number gen-
erators. We often want to repeat some computation for various reasons, including error
checking. In this case, if our source of random numbers was really random, then the
only way to use the same random numbers again is to store them, using a lot of space.
With pseudorandom numbers, this is not the case: we only have to store the “seed”,
which is much shorter. Another, and more important, reason is that there are applica-
tions where what we want is only that the sequence should “look random” to somebody
who does not know how it was generated. The collection of these applications is called
cryptography, to be treated in a later chapter.

The way a pseudo-random bit generator works is that it turns a short random string
called the “seed” into a longer pseudorandom string. We require that it works in poly-
nomial time. The resulting string has to “look” random: and the important fact is
that this can be defined exactly. Roughly speaking, there should be no polynomial time
algorithm that distinguishes it from a truly random sequence. Another feature, often
easier to verify, is that no algorithm can predict any of its bits from the previous bits.
We prove the equivalence of these two conditions.

But how do we design such a generator? Various ad hoc methods that produce
random-looking sequences (like taking the bits in the binary representation of a root
of a given equation) turn out to produce strings that do not pass the strict criteria
we impose. A general method to obtain such sequences is based on one-way functions:
functions that are easy to evaluate but difficult to invert. While the existence of such
functions is not proved (it would imply that P is different from NP), there are several
candidates, that are secure at least against current techniques.

8.2 Classical methods

There are several classical methods that generate a “random-looking” sequence of bits.
None of these meets the strict standards to be formulated in the next section; but due to
their simplicity and efficiency, they (especially linear congruential generators, example
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2 below) can be used well in practice. There is a large amount of practical information
about the best choice of the parameters; we don’t go into this here, but refer to Volume
2 of Knuth’s book.

Example 8.1 Shift registers are defined as follows. Let f : {0, 1}n → {0, 1} be a
function that is easy to compute. Starting with a seed of n bits a0, a1, . . . , an−1, we
compute bits an, an+1, an+2, . . . recursively, by

ak = f(ak−1, ak−2, . . . , ak−n).

The name “shift register” comes from the fact that we only need to store n+ 1 bits:
after storing f(a0, . . . , an−1) in an, we don’t need a0 any more, and we can shift a1 to
a0, a2 to a1, etc. The most important special case is when f is a linear function over
the 2-element field, and we’ll restrict ourselves to this case.

Looking at particular instances, the bits generated by a linear shift register look
random, at least for a while. Of course, the sequence a0.a1, . . . , will eventually have
some n-tuple repeated, and then it will be periodic from then on; but this need not
happen sooner than a2n , and indeed one can select the (linear) function f so that the
period of the sequence is as large as 2n.

The problem is that the sequence has more hidden structure than just perodicity.
Indeed, let

f(x0, . . . , xn−1) = b0x0 + b1x1 + . . . bn−1xn−1

(where bi ∈ {0, 1}). Assume that we we don’t know the coefficients b0, . . . , bn−1, but
observe the first n bits an, . . . , a2n−1 of the output sequence. Then we have the following
system of linear equations to determine the bi:

b0a0 + b1a1 + . . . bn−1an−1 = an

b0a1 + b1a2 + . . . bn−1an = an+1

...

b0an−1 + b1an + . . . bna2n−2 = a2n−1

Here are n equations to determine these n unknowns (the equations are over the 2-
element field). Once we have the bi, we can predict all the remaining elements of the
sequence a2n, a2n+1, . . .

It may happen, of course, that this system is not uniquely solvable, because the
equations are dependent. For example, we might start with the seed 00 . . .0, in which
case the equations are meaningless. But it can be shown that for a random choice of
the seed, the equations determine the coefficients bi with positive probability. So after
seeing the first 2n elements of the sequence, the rest “does not look random” for an
observer who is willing to perform a relatively simple (polynomial time) computation.

Example 8.2 The most important pseudorandom number generators in practice are
linear congruential generators. Such a generator is given by three parameters a, b and
m, which are positive integers. Starting with a seed X0, which is an integer in the range
0 ≤ X0 ≤ m− 1, the generator recursively computes integers X1, X2, . . . by

Xi = aXi−1 + b (mod m).
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One might use all theXi or extract, say, the middle bit of each, and output this sequence.
It turns out that the output of these generators can also be predicted by a polynomial-

time computation, after observing a polynomial number of output bits. The algorithms
to do so are much more involved, however, and due to their fastness and simplicity,
linear congruential generators are good for most practical applications.

Example 8.3 As a third example, let us look at the binary expansion of, say,
√

5:

√
5 = 10.001111000110111 . . .

This sequence looks rather random. Of course, we cannot use the same number all the
time; but we can pick, say, an n-bit integer a as our “seed”, and output the bits of√
a−⌊√a⌋. Unfortunately, this method turns out to be “breakable” by rather advanced

(but polynomial-time) methods from algorithmic number theory.

8.3 The notion of a psuedorandom number generator

In general, a pseudo-random bit generator transforms a short, truly random sequence s
(the “seed”) into a longer sequence g(s) that still “looks” random. The success of using
g(s) in place of a random sequence depends on how severely the randomness of g(s) is
tested by the application. If the application has the ability to test all possible seeds
that might have generated g(s) then it finds the true seed and not much randomness
remains. For this, however, the application may have to run too long. We would like to
call g a pseudo-random bit generator if no applications running only in polynomial time
can distinguish g(s) from truly random strings.

To make the defition precise, we need some preparation. We say that a function
f : Z+ → R is negligible, if nkf(n) → 0 as n → ∞ for each fixed k. In other words, f
tends to 0 faster than the reciprocal of any polynomial. It will be convenient to denote
this (analogously to the “big-O” notation), by

f(n) = NEGL(n).

Note that a polynomial multiple of a negligible function is still negligible; thus

nrNEGL(n) = NEGL(n)

for each fixed r.
Consider a polynomial time computable function G : {0, 1}∗ → {0, 1}∗, where we

assume that the length |G(x)| depends only on the length |x| of x, and 2|x| ≤ |G(x)| <
c|x|c for some constant c. (So G stretches string but not too much.) We call such
a function a generator. Let A be a randomized polynomial time algorithm (Turing
machine) that accepts any 0-1 string x as input and computes a bit A(x) from it. (We
will interpret A(x) = 0 as “not random”, and A(x) = 1 as “random”.) Fix an n ≥ 1.
Let x be chosen uniformly from {0, 1}n and let y be chosen uniformly from {0, 1}N ,
where N = |G(x)|. We flip a coin, and depending on its result, we either feed G(x) or y
to A. We say that A is successful if either G(x) was fed to A and it output 0 or y was
fed and the output is 1.
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The generator G is called a (safe) random number generator if for every randomized
polynomial time algorithm A that takes a 0-1 string x as input and computes a bit A(x)
from it, the probability that A is successful is at most 1/2 + NEGL(n).

This definition says that G(x) passes every “reasonable” test (any test computable in
randomized polynomial time) in the sense that the probability that such a test recognizes
that G(x) is not truely random is only negligibly larger than 1/2 (which can of course
be achieved by guessing randomly). The probability in (b) is over the random choice of
x and y, over the coin flip determining which one is fed to A, and over the internal coin
flips of A.

This requirement is so strong that it is unknown whether safe random number gen-
erators exist at all (if they do, then P 6= NP; see the exercises). But we will see in the
next section that they exist under some complexity-theoretic assumptions.

Our definition of a safe random number generator is very general and the condition
is difficult to verify. The following theorem of Yao provides a way to establish that a
function is a safe random number generator that is often more convenient. What it says
is that every bit of G(x) is highly unpredictable from the previous bits, as long as the
prediction algorithm does not use too much time.

We say that a generator g is unpredictible if the following holds. Let n ≥ 1 and let
x be chosen uniformly from {0, 1}n. Let g(x) = G1G2 . . .GN ; each Gi is a random bit,
but these bits are in general dependent. Then for every randomized polynomial time
algorithm A that accepts a string x ∈ {0, 1}i (i ≤ N) as input and computes a bit from
it,

max
i

P
(

A(G1 . . . Gi) = Gi+1

)

=
1

2
+ NEGL(n). (8)

Informally: we try to use A to predict each bit of G1 . . .GN from the previous bits.
Then at any stage, the probability that we succeed is only negligibly larger than 1/2
(again, we could achieve a success rate of 1/2 just by guessing randomly).

Theorem 8.1 (A. Yao) A generator g is a safe random number generator if and only
if it is unpredictible.

Before giving the proof, let us point out an interesting consequence of this theorem.
Obviously, if we reverse the output of a safe random number generator, we get another
safe random number generator—any algorithm that could distinguish ot from a truely
random sequence could easily start with reversing it. But this implies that if a generator
is unpredictible, then also this reverse is unpredictible—and there is not easy way to see
this.

Proof. I. Suppose that g is not unpredictable. This means that there is a randomized
polynomial time algorithm A, a constant k > 0, there are infinitely many values n, and
for each such value a certain i < N , such that

P
(

A(G1 . . . Gi) = Gi+1

)

>
1

2
+

1

nk
.

(where x ∈ {0, 1}n is a uniformly chosen random string and g(x) = G1 . . . GN ).
Using this, we can perform the following randomness test B on strings y = y1 . . . yN :

if A(y1 . . . yi) = yi+1, then we declare y “non-random”, else we declare it “random”.
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Let us argue that this test works. Suppose tha we give B either a truly random
string R1 . . . RN or the string g(x) (each with probability 1/2). Then the probability of
success is

1

2
P
(

A(R1 . . . Ri) 6= Ri+1

)

+
1

2
P
(

A(G1 . . . Gi) = Gi+1

)

≥ 1

2

1

2
+

1

2

(

1

2
+

1

nk

)

=
1

2
+

1

2nk
.

Since this is non-negligibly larger than 1/2, the generator is not safe.

II. Assume that there exists an algorithm A that, for infinitely many values of n, dis-
tinguishes the pseudorandom sequence g(x) = G1 . . .GN from a truly random sequence
r = R1 . . . RN with a success probability that is at least 1/2 + n−k for some constant
k > 0. We want to show that in this case we can predict at least one of the bits of
G1 . . . GN .

The success probability of A is

1

2
P(A(r)) +

1

2
P(¬A(g(x))).

(Success means that A accepts r, but rejects g(x). Here we use A(r) to denote the event
that A(r) = 1.) Simple transformation gives the following way of expressing this success
probability:

1

2
+

1

2

(

P(A(r)) − P(A(g(x)))
)

.

So it follows that

P(A(r)) − P(A(g(x))) >
2

nc
. (9)

The trick is to consider the mixed sequences

yi = G1 . . .GiRi+1 . . . RN

and subject them to A. We have y0 = r and yN = g(x), and hence

P(A(y0)) − P(A(yN )) >
2

nk
.

Hence it follows that there is an index i, 1 ≤ i ≤ N , such that

P(A(yi−1)) − P(A(yi)) >
2

Nnk
. (10)

We are going to show that Gi is predictible with success probability non-negligibly larger
than 1/2.

So suppose that we have seen G1, . . . , Gi−1. Let us flip a coin several times to get
independent random bits Ri+1, . . . , RN . We run algorithm A on yi−1, and predict

X =

{

Ri, if A(yi−1) = 0,

1 −Ri, otherwise.
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Indeed,

P(X = Gi) = P(X = Ri | Ri = Gi)P(Ri = Gi) + P(X = 1 −Ri | Ri 6= Gi)P(Ri 6= Gi)

=
1

2
P(A(G1 . . . Gi−1GiRi+1 . . . RN ) = 0)

+
1

2
P(A(G1 . . . Gi−1¬GiRi+1 . . . RN ) = 1)

=
1

2
+

1

2
P(A(G1 . . . Gi−1GiRi+1 . . . RN ) = 0)

− 1

2
P(A(G1 . . . Gi−1¬GiRi+1 . . . RN ) = 0).

Using that

1

2
P(A(G1 . . .Gi−1GiRi+1 . . . RN ) = 0) +

1

2
P(A(G1 . . .Gi−1¬GiRi+1 . . . RN ) = 0)

= P(A(G1 . . .Gi−1RiRi+1 . . . RN ) = 0),

we get that

P(X = Gi) =
1

2
+ P(A(yi−1) = 0) − P(A(yi) = 0).

By (10), this shows that this prediction algorithm has a non-negligible success probability
over 1/2. �

So we have defined in an exact way what a pseudorandom number generator is,
and have proved some basic properties. But do such generators exist? It turns out that
such generators can be constructed using some (unproved) complexity-theoretic assump-
tions (which are nevertheless rather plausible). This complexity-theoretic bachground
is discussed in the enxt section.

8.4 One-way functions

A one-way function is a function that is “easy to compute but difficult to invert”. The
exact definition can be given as follows.

Definition 8.1 A function f : {0, 1}∗ → {0, 1}∗ is called a one-way function if

• there is a constant c ≥ 1 such that |x|1/c < |f(x)| < |x|c;

• f(x) is polynomial time computable;

• for every randomized polynomial time algorithm A that computes 0 − 1 strings
from 0−1 strings, and for a string y randomly and uniformly chosen from {0, 1}n,

P
(

f(A(f(y))) = f(y)
)

= NEG(n). (11)

The third condition needs explanation. We can read it as follows: if we pick a random
string y of length n, compute f(y), and then try to use A to compute a pre-image of
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f(y), the probability that we succeed is negligible. Note that we don’t assume that f is
invertible, so we cannot simply write A(f(y)) = y.

But why don’t we write simply

P
(

f(A(z)) = z
)

= NEG(n) (12)

for a uniformly chosen z? The point is that since f may not be onto, it could be the
case that most strings z are not in the range of f . then the above probability would be
small, even if in the cases when z is in the range, a pre-image could always be easily
computed. Thus (11) concentrates on the cases when a pre-image exists, and stipulates
that even these are hard.

A one-way permutation is a one-way function that is one-to-one and satisfies |f(x)| =
|x| for every x. It is clear that under this assumption, (12) is equivalent to (11).

8.4.1 Candidates for one-way functions

Number theory provides several candidates of one-way functions. The length of inputs
and outputs will not be exactly n, only polynomial in n.

The factoring problem. Let x represent a pair of primes of length n (say, along with
a proof of their primality). Let f(n, x) be their product. Many special cases of
this problem are solvable in polynomial time but the still, a large fraction of the
instances remains difficult.

The discrete logarithm problem. Given a prime number p, a primitive root g for
p and a positive integer i < p, we output p, g and y = gi mod p. The inversion
problem for this is called the discrete logarithm problem since given p, g, y, what
we are looking for is i which is also known as the index, of discrete logarithm, of y
with respect to p.

The discrete square root problem. Given positive integers m and x < m, the func-
tion outputs m and y = x2 mod m. The inversion problem is to find a number
x with x2 ≡ x (mod m). This is solvable in polynomial time by a probabilistic
algorithm if m is a prime but is considered difficult in the general case.

8.5 Random number generators and one-way functions

The main conclusion of this section is that, informally, “safe random number generators
are equivalent to one-way functions”. In one direction, the connection is easy to state
and relatively easy to prove.

Theorem 8.2 Let g be a safe random number generator, and assume that |g(x)| ≥ 2|x|
for every x. Then g is one-way.

Proof. Suppose that g is not one-way, then there exists a constant k > 0, a randomized
polynomial time algorithm A, and infinitely many values n such that for a string y
randomly and uniformly chosen from {0, 1}n,

P
(

g(A(g(y))) = g(y)
)

>
1

nk
.

130



Now consider the following randomness test B: we declare a string z ∈ {0, 1}N “non-
random” if g(A(z)) = z, and “random” otherwise. If we give B either a truly random
string r = R1 . . . RN or g(x) (each with probability 1/2), the probability of success is

1

2
P
(

g(A(r)) 6= r
)

+
1

2
P
(

g(A(g(x))) = g(x)
)

The first term is very close to 1/2; indeed, the total number of strings in the range of g
is 2n, so the probability that r is one of these os 2n−N < 2−n (and of course even if r
is in the range of g, it may not be equal to g(A(r)), which would help us but we don’t
have to use it). The second term is at least 1/nk by assumption. Thus the probability
of success is at least

1

2

(

1 − 1

2n

)

+
1

2

1

nk
>

1

2
+

1

4nk
,

which is non-negligibly larger than 1/2. �

In the reverse direction we describe how to use a one-way permutation f to construct
a safe random number generator (this construction is due to Goldreich and Levin). For
two 0-1 strings u = u1 . . . un and v = v1 . . . vn, define u · v = u1v1 ⊕ · · · ⊕ unvn.

We describe a random number generator. We start with a function f : {0, 1}n →
{0, 1}n. The seed of the generator is a pair (x, p) of random sequences x = (x1, . . . , xn)
and p = (p1, . . . , pn) (so the seed consists of 2n bits), and we stretch this to a pseudo-
random sequence of length N as follows. Compute the strings

yt = f t(x)

for t = 1, . . . , N (here f t is the function f iterated t times), and let

Gt = p · yt, g(x, p) = G1 . . . GN .

Theorem 8.3 If f is a one-way permutation, then g is a safe random number generator.

Proof. Using theorem 8.1, and the remark after it, it suffices to show that for every
1 ≤ i ≤ N , and for every randomized polynomial time algorithm computing a bit from
GN . . . Gi+1, the probability that this bit is gi is only negligibly larger than 1/2. We
can be generous and give the algorithm not only these bits, but all the strings f t(x) for
t ≥ i+ 1 and also the string p (from which GN . . . Gi+1 is easily computed). But then,
we don’t have to give f i+2(x) . . . , fN (x); these are easily computed from f i+1(x).

Since f is a permutation of {0, 1}n, the vector f t(x) is also uniformly distributed
over {0, 1}n for every t. We consider the two special vectors y = f i(x) and z = f i+1(x).
From the assumption that f is one-way, we know that no polynomial time algorithm
can compute y from z with non-negligible success probability.

Thus the algorithm B gets z = f i+1(x) and p, and guesses Gi = p·f−1(z). We denote
this guess by B(p, z) or simply by B(p) (the dependence on z will not be essential). We
show that any polynomial time algorithm that can do this with non-negligible success
probability over 1/2 can be used to compute y = f−1(z) with non-negligible success
probability.
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To warm up, let us assume that we have a polynomial time algorithm B that always
gets p · y right. Then it is easy to compute y: its ith bit is exactly yi = ei · y = B(ei),
where ei = 0i−110n−i (the string with exactly one 1 in the i-th position).

Unfortunately, we face a more difficult task: we can’t be sure that B computes p · y
correctly; all we know is that it computes a guess of this bit that is correct a little more
that half of the time (when we average over p, z and the coin-flips that B may use). In
particular, there is no guarantee that the algorithm gives the right result for the very
special choice p = ei.

The next idea is to use that

yi = ei · y = (p⊕ ei) · y ⊕ p · y
for any p. This suggests that we can try to use

B(p⊕ ei) ⊕ B(p)

as our guess for yi. Choosing p at random here (uniformly over {0, 1}n), we know that
that we have a little, but non-negligible chance over 1/2 to get p · y right; and since
along with p, the vector p⊕ ei is also uniformly distributed over {0, 1}n, the same holds
for the first term on the right hand side. Unfortunately, this implies only a very bad
bound on the chance of getting both of them right.

The main trick is to consider the values

g(p) = B(p⊕ ei) ⊕ p · y. (13)

If for a p, B(p⊕ ei) guesses right, then this bit is yi; if it guesses wrong, then it is ¬yi.
Since on the average, B guesses more often right than wrong, we get that on the average,
the number of vectors v for which this is yi is at least (1 + n−c) times larger than the
number of terms for which it is ¬yi. So it suffices to determine what is the majority of
the bits g(p).

There are two troubles with this approach: first, we cannot evaluate g(p): in (13), y
is unknown! Second, it would take too long to consider all the values g(p) to determine
whether 0 or 1 is the majority.

Even though the first problem seems to kill the whole approach, we start with ad-
dressing the second, and - surprisingly - this will also suggest a way to treat the first
one.

We can try do determine yi by sampling: choose randomly and independently a suf-
ficiently large number of vectors p1, . . . , pk, and output the majority of g(p1), . . . , g(pk)
as the guess for yi. Probability theory (the Law of Large Numbers) tells us that the
majority of the samples will be the same as the majority of all values, with large prob-
ability.

The exact computation is standard probability theory, but we go through it for later
reference. Suppose (say) that xi = 0, so that the majority of g(p), over all vectors p,
is 0, and in fact the number of vectors p with g(p) = 1 is M ≤ (1/2 − n−c)2n. In the
sample, we expect to see g(pj) = 1 about kM2−n < (1/2 − n−c)k times. If sampling
gives the wrong conclusion, then

k
∑

j=1

g(pj) ≥
k

2
,
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and hence




k
∑

j=1

(g(pj) −M2−n)





2

≥ n−2ck2 (14)

Set Zj = g(pj) −M2−n, then we have E(Zj) = 0, E(ZjZl) = E(Zi)E(Zl) = 0 if j 6= l
(since Zi and Zj are independent) and E(Z2

j ) = M2−n −M22−2n < 1. From this it is
easy to compute the expectation of the right hand side of (14):

E











∑

j

Zj





2





=

∑

j

E(Z2
j ) − 2

∑

1≤j<l≤n

E(ZjZl) < k.

Thus the probability that (14) occurs is, by Markov’s inequality, less than k/(n−2ck2) =
n2c/k.

An important point to make is that to reach this conclusion we don’t need indepen-
dent samples: it suffices to assume that the vectors p1, . . . , pk are pairwise independent.
This will be significant, because to generate pairwise independent samples, we need
“less randomness”. In fact, let k = 2r − 1, and pick only r vectors p1, . . . , pr uniformly
and independently from {0, 1}n, let pr+1, . . . , pk be all non-trivial linear combinations
of them over GF(2) (say pr+1 = p1 ⊕ p2, pr+2 = p2 ⊕ p3 etc.; it does not matter in
which order we go through these linear combinations). Then it is easy to check that the
vectors p1, . . . , pk are pairwise independent, and hence can be used as sample vectors.

It may be nice to save on coin flips, but this way of generating p1, . . . , pk has a further,
much more substatial adventage: it provides a way out from the trouble that we don’t
know y in (13). Indeed, only need to know the values p1 · y, . . . , pk · y; and for this, it
suffices to know the values p1 · y, . . . , pr · y (since then we have pr+1 · y = p1 · y ⊕ p2 · y
etc.).

So we need only r bits of information about y; this is much less than n, but how are
we going to get it? The answer is, that we don’t. We just try all possible r-tuples of 0
and 1. This is only 2j = k + 1 = O(n2c) cases to consider. For each such trial, we try
to reconstruct y as described above. We’ll know when we succeed, since then we find
f(y) = z, and we are done. And this happens with non-negligible probability. �

8.6 Discrete square roots

In this section we discuss the number theoretic algorithm to extract square roots.
We call the integers 0, 1, . . . , p− 1 residues (modulo p). Let p be an odd prime. We

say that y is a square root of x (modulo p), if

y2 ≡ x (mod p).

If x has a square root then it is called a quadratic residue.
Obviously, 0 has only one square root modulo p: if y2 ≡ 0 (mod p), then p|y2, and

since p is a prime, this implies that p|y. For every other integer x, if y is a square root of
x, then so is p− y = −y (mod p). There are no further square roots: indeed, if z2 ≡ x
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for some residue z, then p|y2 − z2 = (y− z)(y+ z) and so either p|y− z or p|y+ z. Thus
z ≡ y or z ≡ −y as claimed.

This implies that not every integer has a square root modulo p: squaring maps the
non-zero residues onto a subset of size (p− 1)/2, and the other (p− 1)/2 have no square
root.

The following lemma provides an easy way to decide if a residue has a square root.

Lemma 8.4 A residue x has a square root if and only if

x(p−1)/2 ≡ 1 (mod p). (15)

Proof. The “only if” part is easy: if x has a square root y, then

x(p−1)/2 ≡ yp−1 ≡ 1 (mod p)

by Fermat’s “Little” Theorem. Conversely, the polynomial x(p−1)/2 − 1 has degree
(p − 1)/2, and hence it has at most (p − 1)/2 “roots” modulo p (this can be proved
just like the well-know theorem that a polynomial of degree n has at most n real roots).
Since all quadratic residues are roots of x(p−1)/2 − 1, none of the quadratic non-residues
can be. �

But how to find this square root? For some primes, this is easy:

Lemma 8.5 Assume that p ≡ 3 (mod 4). Then for every quadratic residue x, x(p+1)/4

is a square root of x.

Indeed,
(

x(p+1)/4
)2

= x(p+1)/2 = x · x(p−1)/2 ≡ x (mod p).

The case when p ≡ 1 (mod 4) is more difficult, and the solution uses randomization.
In fact, randomization is only needed in the following auxiliary algorithm:

Lemma 8.6 Let p be an odd prime. Then we can find a quadratic non-residue modulo
p in randomized polynomial time.

This can be done by selecting a random residue z 6= 0, and then testing (using lemma
8.4 whether it is a quadratic residue. If not, we try another z. Since the chance of hitting
one is 1/2, we find one in an average of two trials.

One could, of course, try to avoid randomization by testing the residues 2, 3, 5, 7, . . .
to see if they have a square root. Sooner or later we will find a quadratic non-residue.
However, it is not known whether the smallest quadratic non-residue will be found in
polynomial time this way. It is conjectured that one never has to try more than O(log2 p)
numbers this way.

Now let us return to the problem of finding the square root of a residue x, in the
case when p is a prime satisfying p ≡ 1 (mod 4). We can write p− 1 = 2kq, where q is
odd and k ≥ 2.
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We start with finding a quadratic non-residue z. The trick is to find an even power
z2t such that xqz2t ≡ 1 (mod p). Then we can take y = x(q+1)/2zt (mod p). Indeed,

y2 ≡ xq+1z2t ≡ x (mod p).

To construct such a power of z, we consruct for all j ≤ k− 1 an integer tj > 0 such that

x2jqz2j+1tj ≡ 1 (mod p). (16)

For j = 0, this is just what we need. For j = k − 1, we can take tk−1 = q:

x2k−1qz2kq = x(p−1)/2zp−1 ≡ 1 (mod p),

since x is a quadratic residue and zp−1 ≡ 1 (mod p) by Fermat’s “Little” theorem. This
suggests that we construct the number tj “backwards” for j = k − 2, k − 3, . . .

Suppose that we have tj , j > 0, and we want to construct tj−1. We know that

p
∣

∣

∣x2jqz2j+1tj − 1 =
(

x2j−1qz2jtj − 1
)(

x2j−1qz2jtj + 1
)

We test which of the two factors is a multiple of p. If it is the first, we can simply take
tj−1 = tj . So suppose that it is the second. Now take

tj−1 = tj + 2k−j−1q.

Then

x2j−1qz2jtj−1 = x2j−1qz2jtj+2k−1q = x2j−1qz2jtjz(p−1)/2 ≡ (−1)(−1) = 1,

since z is a quadratic non-residue.
This completes the description of the algorithm.
Show that squaring an integer is not a safe random number generator.
For a string x, let rev(x) denote the reverse string. Show that if g(s) is a safe random

number generator, then so is rev(g(s)).
If P = NP then no one-way function exists.
Somebody proposes the following random number generator: it takes an integer x

with n bits as the seed, and outputs ⌊x3/10n⌋. Show that this random number generator
is not safe.
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9 An application of complexity: cryptography

The complexity of a phenomenon can be the main obstacle of exploring it. Our book—we
hope—proves that complexity is not only an obstacle to research but also an important
and exciting subject. It goes, however, beyond this: it has applications where it is
precisely the complexity of a phenomenon that is exploited. We have discussed the
problem of generating pseudorandom numbers in Chapter 8. This chapter treats another
such subject: cryptography, i.e., the science of secret codes. It was the application
of the results of complexity theory that elevated secret codes beyond the well-known
(military, intelligence) applications, and made them one of the most important ingredient
of computer security, electronic trade, internet etc.

9.1 A classical problem

Sender wants to send a message x to Receiver (where x is e.g. a 0-1-sequence of length
n). The goal is that when the message gets into the hands of any unauthorized third
party, she should not understand it. For this, we “code” the message, which means
that instead of the message, Sender sends a code y of it, from which the receiver can
recompute the original message but the unauthorized interceptor cannot. For this, we
use a key d that is (say) also a 0-1-sequence of length n. Only Sender and Receiver know
this key.

Thus, Sender computes a “code” y = f(x, d) that is also a 0-1-sequence of length
n. We assume that for all d, f(·, d) is a bijective mapping of {0, 1}n to itself. Then
f−1(·, d) exists and thus Receiver, knowing the key d, can reconstruct the message x.
The simplest, frequently used function f is f(x, d) = x⊕ d (bitwise addition modulo 2).

Remark 9.1 This so-called “one-time pad” method is very safe. It was used during
World War II for communication between the American President and the British Prime
Minister. Its disadvantage is that it requires a very long key. It can be expensive to
make sure that Sender and Receiver both have such a common key; but note that the
key can be sent at a safer time and by a completely different method than the message.

9.2 A simple complexity-theoretic model

Let us look at a problem now that has—apparently—nothing to do with the above one.
From a certain bank, we can withdraw money using an ATM. The client types his name
or account number (in practice, he inserts a card on which these data are stored) and a
password. The bank’s computer checks whether this is indeed the client’s password. If
this checks out the automaton hands out the desired amount of money. In theory, only
the client knows this password (it is not written on his card!), so if he takes care that
nobody else can find it out, then this system provides complete security.

The problem is that the bank must also know the password and therefore a bank
employee can abuse it. Can one design a system in which it is impossible to figure out
the password, even with the knowledge of the complete password-checking program?
This seemingly self-contradictory requirement is satisfiable!
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Here is a solution (not a very efficient one, and certainly never used in practice,
but one that illustrates the idea how complexity theory enters this field). The client
takes n nodes numbered from 1 to n, draws in a random Hamiltonian circuit and then
adds arbitrary additional edges. He remembers the Hamiltonian circuit; this will be
his password. He gives the whole graph to the bank (without marking the Hamiltonian
circuit in it).

If somebody shows up at the bank in the name of the client and gives a set of edges
on the n nodes as her password, the bank checks it whether it is a Hamiltonian circuit
of the graph stored there. If so, the password will be accepted; if not, it will be rejected.

Now it seems that we have made it easier to impersonate our client: the imposter
does not have to know the password (the particular Hamiltonian circuit); she can give
any other Hamiltonian circuit of the client’s graph. But note that even if she learns the
graph, she must still solve the problem of finding a Hamiltonian circuit in a graph. And
this is NP-hard!

9.1 Remarks

1. Instead of the Hamiltonian circuit problem, we could have based the system on any
other NP-complete problem.

2. We glossed over a difficult question: how many more edges should the client add to
the graph and how? The problem is that the NP-completeness of the Hamiltonian
circuit problem means only that its solution is hard in the worst case. We don’t
know how to construct one graph in wich there is a Hamiltonian circuit but it is
hard to find.

It is a natural idea to try to generate the graph by random selection. If we chose
it randomly from among all n-point graphs then it can be shown that in it, with
large probability, it is easy to find a Hamiltonian circuit. If we chose a random
one among all n-point graphs with m edges then the situation is similar both with
too large m and with too small m. The case m = n logn at least seems hard. In
some cases, one can show that certain randomized constructions yield instances
of NP-hard problems that are hard with high probability (in the sense that if one
could solve a random instance in polynomial time with non-negligible probability,
then we could solve all instances in randomized polynomial time). These studies
are beyond the scope of this book.

9.3 Public-key cryptography

In this section, we describe a system that improves on the methods of classical cryptogra-
phy in several points. Let us note first of all that the system intends to serve primarily
civil rather than military goals. For using electronic mail, in particular, if we use it
for electronic commerce, we must recreate some tools of traditional correspondence like
envelope, signature, company letterhead, etc.

The system has N ≥ 2 participants. Every participant has a public key ei (she will
publish it e.g. in a phone-book-like directory) and a secret key di known to herself only.
There is, further, a publicly known encoding/decoding function that computes from
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every message x and (secret or public) key e a message f(x, e). (The message x and
its code must come from some easily specifiable set H ; this can be e.g. {0, 1}n but can
also be the set of residue classes modulo m. We assume that the message itself contains
the names of the sender and receiver also in “human language”.) For every x ∈ H and
every i with 1 ≤ i ≤ N , we must have

f(f(x, ei), di) = f(f(x, di), ei) = x. (17)

If participant i wants to send a message to j then she sends the message y =
f(f(x, di), ej) instead. From this, j can compute the original message by the formula
x = f(f(y, dj), ei).

For this system to be useable, trivially it must satisfy

(C1) f(x, ei) can be computed efficiently from x and ei.

The security of the system will be guaranteed by

(C2) f(x, di) cannot be computed efficiently even in the knowledge of x, ei and an
arbitrary number of dj1 , . . . , djh

(jr 6= i).

By “efficient”, we mean polynomial time, but the system makes sense under other
resource-bounds too. A function f with the above properties will be called a trap-
door function.

Condition (C1) guarantees that if participant i sends a message to participant j then
she can encode it in polynomial time and the addressee can decode it in polynomial time.
Condition (C2) can be interpreted to say that if somebody encoded a message x with
the public key of a participant i and then she lost the original then no coalition of the
participants can restore the original (efficiently) if i is not among them. This condition
provides the “security” of the system. It implies, besides the classical requirement, a
number of other security conditions.

9.2 Only j can decode a message addressed to j.

Proof. Assume that a band k1, . . . , kr of unauthorized participants finds the mes-
sage f(f(x, di), ej), and knows even who sent it to whom. Suppose that they can
compute x efficiently from this. Then k1, . . . , kr and i together could compute x also
from f(x, ej). Let, namely, z = f(x, ej); then k1, . . . , kr and i knows the message
f(x, ej) = f(f(z, di), ej) and thus using the method of k1, . . . , kj , can compute z. But
from this, they can compute x by the formula x = f(z, di), which contradicts condition
(C2). �

The following can be verified by similar reasoning:

9.3 Nobody can forge a message in the name of i, i.e. participant j receiving a message
that he can successfully decode using the public key of i (and his own private key), can
be sure that the message could have been sent only by i.
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9.4 j can prove to a third person (e.g. in a court of justice) that i has sent the given
message; in the process, the secret elements of the system (the keys di) need not be
revealed.

9.5 j cannot change the message (and have it accepted e.g. in a court as coming from
i) or send it in the name of i to somebody else.

It is not at all clear, of course, whether trapdoor functions exists. Several such
function have been proposed; many of the proposed systems turned out insecure later
on—the corresponding complexity conditions were not true.) In the next subsection, we
describe one such system that is one of the earliest, and is most widely used (and of
course, to our current knowledge, is secure).

9.4 The Rivest-Shamir-Adleman code

In a simpler version of this system (in its abbreviated form, the RSA code), the “post
office” generates two n-digit prime numbers, p and q for itself, and computes the number
m = pq. It publishes this number (but the prime decomposition remains secret!). Then
it generates, for each subscriber, a number ei with 1 ≤ ei < m that is relatively prime to
(p−1) and (q−1). (It can do this by generating a random ei between 0 and (p−1)(q−1)
and checking by the Euclidean algorithm whether it is relatively prime to (p− 1)(q− 1).
If it is not, it tries a new number. It is easy to see that after an expected number of
logn trials, it finds a good number ei with high probability.) Then, using the Euclidean
algorithm, it finds a number di with 1 ≤ di < m such that

eidi ≡ 1 (mod (p− 1)(q − 1)).

(here (p−1)(q−1) = ϕ(m), the number of positive integers smaller than m and relatively
prime to it). The public key is the number ei, the secret key is the number di. The
message x itself is considered a natural number with 0 ≤ x < m (if it is longer then it
will be cut into pieces). The encoding function is defined by the formula

f(x, e) = xe (mod m) 0 ≤ f(x, e) < m.

The same formula serves for decoding, only with d in place of e.
The inverse relation between coding and decoding (formula 17) follows from the

“little” Fermat theorem. By definition, eidi = 1 + ϕ(m)r = 1 + r(p− 1)(q − 1) where r
is a natural number. Thus, if (x, p) = 1 then

f(f(x, ei), di) ≡ (xei )di = xeidi = x(xp−1)r(q−1) ≡ x (mod p).

On the other hand, if p|x then obviously

xeidi ≡ 0 ≡ x (mod p).

Thus
xeidi ≡ x (mod p)
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holds for all x. It similarly follows that

xeidi ≡ x (mod q),

and hence
xeidi ≡ x (mod m).

Since both the first and the last number are between 0 and m − 1 it follows that they
are equal, i.e. f(f(x, ei), di) = x.

It is easy to check condition (C1): knowing x and ei and m, the remainder of xei

after division by m can be computed in polynomial time, as we have seen it in Chapter
3. Condition (C2) holds only in the following, weaker form:

(C2’) f(x, di) cannot be computed efficiently from the knowledge of x and ei.

This condition can be formulated to say that with respect to a composite modulus,
extracting the ei-th root cannot be accomplished in polynomial time without knowing
the prime decomposition of the modulus. We cannot prove this condition (even with the
hypothesis P 6=NP) but at least it seems true according to the present state of number
theory.

Several objections can be raised against the above simple version of the RSA code.
First of all, the post office can decode every message, since it knows the numbers p, q and
the secret keys di. But even if we assume that this information will be destroyed after
setting up the system, unauthorized persons can still misuse the system. In fact, Every
participant of the system can solve any message sent to any other participant. (This
does not contradict condition (C2’) since participant j of the system knows, besides x
and ei, also the key dj .)

Indeed, consider participant j and assume that she got her hands on the message
z = f(f(x, di), ek) sent to participant k. Let y = f(x, di). Participant j solves the
message not meant for her as follows. She computes a factoring u ·v of (ejdj −1), where
(u, ek) = 1 while every prime divisor of v also divides ek. To do this, she computes, by
the Euclidean algorithm, the greatest common divisor v1 of of ei and ejdj − 1, then the
greatest commond divisor v2 of ek and (ejdj −1)/v1, then the greatest commond divisor
v3 of (ejdj −1)/(v1v3), etc. This process terminates in at most t = ⌈log(ejdj − 1)⌉ steps,
i.e. vt = 1. Then v = v1 · · · vt and u = (ejdj − 1)/v gives the desired factoring.

Notice that (ϕ(m), ek) = 1 and therefore (ϕ(m), v) = 1. Since ϕ(m)|ejdj − 1 = uv,
it follows that ϕ(m)|u. Since (u, ek) = 1, there are natural numbers s and t with
sek = tu+ 1. Then

zs ≡ ysek = y(yu)t ≡ y (mod m)

and hence
x ≡ yei ≡ zeis.

Thus, participant j can also compute x.

Exercise 9.1 Show that even if all participants of the system are honest an outsider can
cause harm as follows. Assume that the outsider gets two versions of one and the same
letter, sent to two different participants, say f(f(x, di), ej) and f(f(x, di), ek) where
(ej , ek) = 1 (with a little luck, this will be the case). Then he can reconstruct the text
x.
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Now we descibe a better version of the RSA code. Every participant generates two n-
digit prime numbers, pi and qi and computes the number mi = piqi. Then she generates
for herself a number ei with 1 ≤ ei < mi relatively prime to (pi − 1) and (qi − 1). With
the help of the Euclidean algorithm, she finds a number di with 1 ≤ di < mi for which

eidi ≡ 1 (mod (pi − 1)(qi − 1))

(here, (pi − 1)(qi − 1) = ϕ(mi), the number of positive integers smaller than mi and
relatively prime to it). The public key consists of the pair (ei,mi) and the secret key of
the pair (di,mi).

The message itself will be considered a natural number. If 0 ≤ x < mi then the
encoding function will be defined, as before, by the formula

f(x, ei,m) ≡ xei (mod mi), 0 ≤ f(x, ei,mi) < mi.

Since, however, different participants use different moduli, it will be practical to extend
the definition to a common domain, which can even be chosen to be the set of natural
numbers. Let x be written in a base mi notation: x =

∑

j xjm
j
i , and compute the

function by the formula

f(x, ei,mi) =
∑

j

f(xj , ei,mi)m
j
i .

We define the decoding function similarly, using di in place of ei.
For the simpler version it follows, similarly to what was said above, that these func-

tions are inverses of each other, that (C1) holds, and that it can also be conjectured that
(C2) holds. In this version, the “post office” holds no non-public information, and of
course, each key dj has no information on the other keys. Therefore the above mentioned
errors do not occur.
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10 Parallel algorithms

New technology makes it more urgent to develop the mathematical foundations of par-
allel computation. In spite of the energetic research done, the search for a canonical
model of parallel computation has not settled on a model that would strike the same
balance between theory and practice as the Random Access Machine. The main problem
is the modelling of the communication between different processors and subprograms:
this can happen on immediate channels, along paths fixed in advance, “radio broadcast”
like, etc.

A similar question that can be modelled in different ways is the synchronization of
the clocks of the different processors: this can happen with some common signals, or
not even at all.

In this section, we treat only one model, the so-called parallel Random Access Ma-
chine, which has been elaborated most from a complexity-theoretic point of view. Re-
sults achieved for this special case expose, however, some fundamental questions of the
parallellizability of computations. The presented algorithms can be considered, on the
other hand, as programs written in some high-level language: they must be implemented
according to the specific technological solutions.

10.1 Parallel random access machines

The most investigated mathematical model of machines performing parallel computation
is the parallel Random Access Machine (PRAM). This consists of some fixed number p
of identical Random Access Machines (processors). The program store of the machines
is common and they also have a common memory consisting, say, of the cells x[i] (where
i runs through the integers). It will be convenient to assume (though it would not be
absolutely necessary) that each processor owns an infinite number of program cells u[i].
Beyond this, every processor has a separate memory cell v containing the serial number
of the processor. The processor can read its own name v and can read and write its
own cells x, y, u[i] as well as the common memory cells x[i]. In other words, to the
instructions allowed for the Random Access Machine, we must add the instructions

u[i] := 0; u[i] := u[i] + 1; u[i] := u[i] − 1; u[i] := u[j];

u[i] := u[i] + u[j]; u[i] := u[i]− u[j]; u[i] := u[u[j]]; u[u[i]] := u[j];

u[i] := x[u[j]]; x[u[i]] := u[j]; if u[i] ≤ 0 then goto p;

We write the input into the cells x[1], x[2], . . .. In addition to the input and the common
program, we must also specify how many processors will be used; we can write this into
the cell x[−1]. The processors carry out the program in parallel but in lockstep. (Since
they can refer to their own name they will not necessarily compute the same thing.) We
use a logarithmic cost function: the cost of writing or reading an integer k from a memory
cell x[t] is the total number of digits in k and t, i.e., approximately log2 |k| + log2 |t|.
The next step begins after each processor has finished the previous step. The machine
stops when each processor arrives at a program line in which there is no instruction.
The output is the content of the cells x[i].
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An important question to decide is how to regulate the use of the common memory.
What happens if several processors want to write to or read from the same memory cell?
We referred to this problem already in connection with the definition of the Parallel
Pointer Machine. Several conventions exist for the avoidance of these conflicts. We
mention four of these:

• Two processors must not read from or write to the same cell. We call this the
exclusive-read, exclusive-write (EREW) model. We could also call it com-
pletely conflict-free. This must be understood in such a way that it is the
responsibility of programmer to prevent attempts of simultaneous access to the
same cell. If such an attempt occurs the machine signals program error.

• Maybe the most natural model is the one in which we permit many processors to
read the same cell at the same time but when they want to write this way, this
is considered a program error. This is called the concurrent-read, exclusive-
write (CREW) model, and could also be called half conflict-free.

• Several processors can read from the same cell and write to the same cell but only
if they want to write the same thing. (The machine signals a program error only
if two processors want to write different numbers into the same cell). We call
this model concurrent-read, concurrent-write (CRCW); it can also be called
conflict-limiting.

• Many processors can read from the same cell or write to the same cell. If several
ones want to write into the same cell the processor with the smalles serial number
succeeds: this model is called priority concurrent-read, concurrent-write
(P-CRCW), or shortly, the priority model.

Exercise 10.1

• Prove that one can determine which one of two 0-1-strings of length n is lexico-
graphically larger, using n processors, in O(1) steps on the priority model and in
O(log n) steps on the conflict-free model.

• *Show that on the completely conflict-free model, this actually requires Ω(logn)
steps.

• *How many steps are needed on the other two models?

Exercise 10.2 Show that the sum of two 0-1-sequences of length at most n, as binary
numbers, can be computed with n2 processors in O(1) steps on the priority model.

Exercise 10.3 • Show that the sum of n 0-1-sequences of length at most n as binary
numbers can be computed, using n3 processors, in O(log n) steps on the priority
model.

• *Show that n2 processors are also sufficient for this.
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• *Perform the same on the completely conflict-free model.

It is obvious that the above models are stronger and stronger since they permit more
and more. It can be shown, however, that—at least if the number of processors is not
too great—the computations we can do on the strongest one, the priority model, are not
much faster than the ones performable on the conflict-free model. The following lemma
is concerned with such a statement.

Lemma 10.1 For every program P, there is a program Q such that if P computes
some output from some input with p processors in time t on the priority model then Q
computes on the conflict-free model the same with O(p2) processors in time O(t(log p)2).

Remark 10.1 On the PRAM machines, it is necessary to specify the number of pro-
cessors not only since the computation depends on this but also since this is—besides
the time and the storage—an important complexity measure of the computation. If it
is not restricted then we can solve very difficult problems very fast. We can decide, e.g.,
the 3-colorability of a graph if, for each coloring of the set of vertices and each edge of
the graph, we make a processor that checks whether in the given coloring, the endpoints
of the given edge have different colors. The results must be summarized yet, of course,
but on the conflict-limiting machine, this can be done in a single step.

Proof. A separate processor of the conflict-free machine will correspond to every
processor of the priority machine. These are called supervisor processors. Further,
every supervisor processor will have p subordinate processors. One step of the priority
machine computation will be simulated by a stage of the computation of the conflict-free
machine.

The basic idea of the construction is that whatever is in the priority machine after a
given step of the computation in a given cell z should be contained, in the corresponding
stage of the computation of the conflict-free machine, in each of the cells with addresses
2pz, 2pz + 1, . . . , 2pz + p − 1. If in a step of the priority machine, processor i must
read or write cell z then in the corresponding stage of the conflict-free machine, the
corresponding supervisor processor will read or write the cell with address 2pz+ i. This
will certainly avoid all conflicts since the different processors use different cells modulo
p.

We must make sure, however, that by the end of the stage, the conflict-free machine
writes into each cell 2pz, 2pz+ 1, . . . , 2pz+ p− 1 whatever the priority rule would write
into z in the corresponding step of the priority machine. For this, we insert a phase
consisting of O(log p) auxiliary steps accomplishing this to the end of each stage.

First, each supervisor processor i that in the present stage has written into cell 2pz+i,
writes a 1 into cell 2pz + p+ i. Then, in what is called the “first step” of the phase, it
looks whether there is a 1 in cell 2pz + p + i− 1. If yes, it goes to sleep for the rest of
the phase. Otherwise, it writes a 1 there and “wakes” a subordinate. In general, at the
beginning of step k, processor i will have at most 2k−1 subordinates awake (including,
possibly, itself); these (at least the ones that are awake) will examine the corresponding
cells 2pz + p + i − 2k−1, ..., 2pz + p + i − (2k − 1). The ones that find a 1 go to sleep.
Each of the others writes a 1, wakes a new subordinate, sends it 2k−1 steps left while
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itself goes 2k steps left. Whichever subordinate gets below 2pz + p goes to sleep; if a
supervisor i leaves does this it knows already that it has “won”.

It is easy to convince ourselves that if in the corresponding step of the priority
machine, several processors wanted to write into cell z then the corresponding supervisor
and subordinate processors cannot get into conflict while moving in the interval [2pz +
p, 2pz+2p−1]. It can be seen namely that in the k-th step, if a supervisor processor i is
active then the active processors j ≤ i and their subordinates have written 1 into each
of the 2k−1 positions downwards starting with 2pz + p+ i that are still ≥ 2pz + p. If a
supervisor processor or its subordinates started to the right from them and reaches a cell
≤ i in the k-th step it will necessarily step into one of these 1’s and go to sleep, before
it could get into conflict with the i-th supervisor processor or its subordinates. This
also shows that always a single supervisor will win, namely the one with the smallest
number.

The winner still has the job to see to it that what it wrote into the cell 2pz+ i will be
written into each cell of interval [2pz, 2pz+p−1]. This is easy to do by a procedure very
similar to the previous one: the processor writes the desired value into cell 2pz, then it
wakes a subordinate; the two of them write the desired value into the cells 2pz + 1 and
2pz+2 then they wake one subordinate each, etc. When they all have passed 2pz+p−1
the phase has ended and the next simulation stage can start.

We leave to the reader to plan the waking of the subordinates.
Each of the above “steps” requires the performance of several program instructions

but it is easy to see that only a bounded number is needed, whose cost is, even in
case of the logarithmic-cost model, only O(log p+ log z). In this way, the time elapsing
between two simulating stages is only O(log p(log p + log z)). Since the simulated step
of the priority machine also takes at least log z units of time the running time is thereby
increased only O((log z)2)-fold. �

In what follows if we do not say otherwise we use the conflict-free (EREW) model.
According to the previous lemma, we could have agreed on one of the other models.

It is easy to convince ourselves that the following statement holds.

Proposition 10.2 If a computation can be performed with p processors in t steps with
numbers of at most s bits then for all q < p, it can be performed with q processors
in O(tp/q) steps with numbers of at most O(s + log(p/q)) bits. In particular, it can
be performed on a sequencial Random Access Machine in O(tp) steps with numbers of
length O(s+ log p).

The fundamental question of the complexity theory of parallel algorithms is just
the opposite of this: given is a sequential algorithm with time N and we would like to
implement it on p processors in “essentially” N/p (say, in O(N/p)) steps. Next, we will
overview some complexity classes motivated by this question.

Randomization is, as we will see, an even more important tool in the case of parallel
computations than in the sequential case. The randomized parallel Random Access
Machine differs from the above introduced parallel Random Access Machine only in
that each processor has an extra cell in which, with probability 1/2, there is always
0 or an 1. If the processor reads this bit then a new random bit occurs in the cell.
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The random bits are completely independent (both within one processor and between
different processors).

10.2 The class NC

We say that a program for the parallel Random Access Machine is an NC-program if
there are constants c1, c2 > 0 such that for all inputs x the program computes conflict-
free with O(|x|c1 ) processors in time O((log |x|)c2). (According to Lemma 10.1, it would
not change this definition if we used e.g. the priority model instead.)

The class NC of languages consists of those languages L ⊆ {0, 1}∗ whose character-
istic function can be computed by an NC-program.

Remark 10.2 The goal of the introduction of the class NC is not to model practically
implementable parallel computations. In practice, we can generally use much more
than logarithmic time but (at least in the foreseeable future) only on much fewer than
polynomially many processors. The goal of the notion is to describe those problems
solvable with a polynomial number of operations, with the additional property that
these operations are maximally parallelizable (in case of an input of size n, on the
completely conflict-free machine, log n steps are needed even to let all input bits have
an effect on the output).

Obviously, NC ⊆ P . It is not known whether equality holds here but the answer is
probably no.

We define the randomized NC, or RNC, class of languages on the pattern of the
class BPP. This consists of those languages L for which there is a number c > 0 and
a program computing, on each input x ∈ {0, 1}∗, on the randomized PRAM machine,
with O(|x|c) processors (say, in a completely conflict-free manner), in time O(log |x|c),
either a 0 or an 1. If x ∈ L then the probability of the result 0 is smaller than 1/4, if
x 6∈ L then the probability of the result 1 is smaller than 1/4.

Around the class NC, a complexity theory can be built similar to the one around
the class P. The NC-reduction of a language to another language can be defined and,
e.g. inside the class P, it can be shown that there are languages that are P-complete,
i.e. to which every other language in P is NC-reducible. We will not deal with the details
of this; rather, we confine ourselves to some important examples.

Proposition 10.3 The adjacency-matrices of graphs containing a triangle form a lan-
guage in NC.

Proof. The NC-algorithm is essentially trivial. Originally, let x[0] = 0. First, we
determine the number n of points of the graph. Then we instruct the processor with
serial number i + jn + kn2 to check whether the point triple (i, j, k) forms a triangle.
If no then the processor halts. If yes then it writes a 1 into the 0’th common cell and
halts. Whether we use the conflict-limiting or the priority model, we have x[0] = 1 at
the end of the computation if and only if the graph has a triangle. (Notice that this
algorithm makes O(1) steps.) �
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Our next example is less trivial, moreover, at the first sight, it is surprising: the
connectivity of graphs. The usual algorithms (breadth-first or depth-first search) are
namely strongly sequential: every step depends on the result of the earlier steps. For
the parallelization, we use a trick similar to the one we used earlier for the proof of
Savitch’s theorem.

Proposition 10.4 The adjacency matrices of connected graphs form a language in NC.

Proof. We will describe the algorithm on the conflict-limiting model. Again, we
instruct the processor with serial number i + jn + kn2 to watch the triple (i, j, k). If
it sees two edges in the triple then it inserts the third one. (If several processors want
to insert the same edge then they all want to write the same thing into the same cell
and this is permitted.) If we repeat this t times then, obviously, exactly those pairs of
points will be connected whose distance in the original graph is at most 2t. In this way,
repeating O(log n) times, we obtain a complete graph if and only if the original graph
was connected. �

Clearly, it can be similarly decided whether in a given graph, there is a path con-
necting two given points, moreover, even the distance of two points can be determined
by a suitable modification of the above algorithm.

Exercise 10.4 Give an NC algorithm that in a given graph, computes the distance of
two points.

Proposition 10.5 The product of two matrices (in particular, the scalar product of two
vectors), and the k-th power of an n× n matrix (k ≤ n) is NC-computable.

Proof. We can compute the scalar product of two vectors as follows: we multiply—
parallelly—their corresponding elements; then we group the products obtained this way
in pairs and form the sums; then we group these sums in pairs and form the sums, etc.
Now, we can also compute the product of two matrices since each element of the product
is the scalar product of two vectors, and these can be computed parallelly. Now the k-th
power of an n× n matrix can be computed on the pattern of ab (mod c) (Lemma 3.2).
�

The next algorithm is maybe the most important tool of the theory of parallel com-
putations.

Theorem 10.6 (Csánky’s Theorem) The determinant of an arbitrary integer matrix
can be computed by an NC algorithm. Consequently, the invertible matrices form an NC-
language.

Proof. We present an algorithm proposed by Chistov. The idea is now to try to
represent the determinant by a suitable matrix power-series. Let B be an n× n matrix
and let Bk denote the k × k submatrix in its left upper corner. Assume first that these
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submatrices Bk are not singular, i.e., that their determinants are not 0. Then B is
invertible and according to the known formula for the inverse, we have

(B−1)nn = detBn−1/ detB

where (B−1)nn denotes the element standing in the right lower corner of the matrix
B−1. Hence

detB =
detBn−1

(B−1)nn
.

Continuing this, we obtain

detB =
1

(B−1)nn · (B−1
n−1)n−1,n−1 · · · (B−1

1 )11
.

Let us write B in the form B = I −A where I = In is the n×n unit matrix. Assuming,
for a moment, that the elements of A are small enough, the following series expansion
holds:

B−1
k = Ik +Ak +A2

k + · · · ,
which gives

(B−1
k )kk = 1 + (Ak)kk + (A2

k)kk + · · · .
Hence

1

(B−1
k )kk

=
1

1 + (Ak)kk + (A2
k)kk + · · ·

=1 − [(Ak)kk + (A2
k)kk + · · · ] + [(Ak)kk + (A2

k)kk + · · · ]2 − · · · ,

and hence

detB =

n
∏

k=1

(1 − [(Ak)kk + (A2
k)kk + · · · ] + [(Ak)kk + (A2

k)kk + · · · ]2 − · · · ).

We cannot, of course, compute these infinite series composed of infinite series. We claim,
however, that it is enough to compute only n terms from each series. More exactly, let us
substitute tA in place of A where t is a real variable. For small enough t, the matrices
Ik − tAk are certainly not singular and the above series expansions hold. We gain,
however, more. After substitution, the formula looks as follows:

det(I − tA) =

n
∏

k=1

(1 − [t(Ak)kk + t2(A2
k)kk + · · · ] + [t(Ak)kk + t2(A2

k)kk + · · · ]2 − · · · ).

Now comes the decisive idea: the left-hand side is a polynomial of t of degree at most
n, hence from the power series on the right-hand side, it is enough to compute only the
terms of degree at most n. In this way, det(I − tA) consists of the terms of degree at
most n of the following polynomial:

F (t) =

n
∏

k=1

[

n
∑

j=0

(−
n

∑

m=1

tm(Am
k )kk)j ].
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Now, however complicated the formula defining F (t) may seem, it can be computed
easily in the NC sense. Deleting from it the terms of degree higher than n, we get a
polynomial identical to det(I − tA). Also, as a polynomial identity, our identity holds
for all values of t, not only for the small ones, and no nonsingularity assumptions are
needed. Substituting t = 1 here, we obtain detB. �

Using Theorem 6.3 with random substitutions, we arrive at the following important
application:

Corollary 10.7 The adjacency matrices of the graphs with complete matchings form a
language in RNC.

No combinatorial proof (i.e. one avoiding the use of Csánky’s theorem) is known for
this fact. It must be noted that the algorithm only determines whether the graph has
a complete matching but it does not give the matching if it exists. This, significantly
harder, problem can also be solved in the RNC sense (by an algorithm of Karp, Upfal

and Wigderson).

Exercise 10.5 Consider the following problem. Given a Boolean circuit and its input,
compute its output. Prove that if this problem is in NC then P=NC.
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11 Decision trees

The logical framework of many algorithms can be described by a tree: we start from
the root and in every internal node, the result of a certain “test” determines which way
we continue. E.g., most sorting algorithms make comparisons between certain pairs of
elements and continue the work according to the result of the comparison. We assume
that the tests performed in such computations contain all the necessary information
about the input, i.e., when we arrive at a leaf of the tree, all that is left is to read off
the output from the leaf. The complexity of the tree gives some information about the
complexity of the algorithm; for example, the depth of the tree (the number of edges
in the longest path leaving the root) tells us how many tests must be performed in the
worst case during the computation. We can describe, of course, every algorithm by a
trivial tree of depth 1 (the test performed in the root is the computation of the end
result). This algorithmic scheme makes sense only if we restrict the kind of tests allowed
in the nodes.

We will see that decision trees not only give a graphical representation of the structure
of some algorithms but are also suitable for proving lower bounds on their depth. Such
a lower bound can be interpreted as saying that the problem cannot be solved (for the
worst input) in fewer steps than some given number, if we assume that information
on the input is available only by the permissible tests (for example, in sorting we can
only compare the given numbers with each other and cannot perform e.g. arithmetic
operations on them).

11.1 Algorithms using decision trees

Consider some simple examples.

11.1.1 Binary search

Perhaps the simplest situation in which decision trees are used is binary search. We
want to compute an integer k, about which at the beginning we only that it lies, say, in
the interval [1, N ]. We have an algorithm that, given any integer m, 1 ≤ m ≤ N , can
decide whether a ≤ m is true. Then by calling this algorithm ⌈log2N⌉ times, we can
determine a. We have used this method when we showed that factoring of an integer
can be reduced to the problem of finding a bounded divisor.

We can describe this algorithm by a rooted binary tree: every node will correspond
to an interval [u, v] ⊆ [1, N ]. The root corresponds to the interval [1, N ], and each node
corresponds to the interval of integers that are still possible values for a if we arrive at
the node. The leaves correspond to one-element intervals, i.e., the possible values of a.
For an internal node corresponding to the interval [u, v], we select w = ⌊(u+ v)/2⌋ and
test if a ≤ w. Depending on the outcome of this test, we proceed to one of the children
of the node, which correspond to the intervals [u,w] and [w + 1, v].

11.1.2 Finding a false coin with a one-armed scale

We are given n coins looking identical from the outside. We know that each must weigh
1g; but we also know that there is a false one among them that is lighter than the rest.
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We have a one-armed scale; we can measure with it the weight of an arbitrary subset of
the coins. How many measurements are enough to decide which coin is false?

The solution is simple: with one measurement, we can decide about an arbitrary set
of coins whether the false one is among them. If we put ⌈n/2⌉ coins on the scale, then
after one measurement, we have to find the false coin only among at most ⌈n/2⌉ ones.
This recursion ends in ⌈log2 n⌉ steps.

We can characterize the algorithm by a rooted binary tree. Every vertex v corre-
sponds to a set Xv of coins; arriving into this vertex we already know that the false coin
is to be found into this set. (The root corresponds to the original set, and the leaves
to the 1-element sets.) For every internal node v, we divide the set Xv into two parts,
with numbers of elements ⌈|Xv|/2⌉ and ⌊|Xv|/2⌋. These correspond to the children of
v. Measuring the first one we learn which one contains the false coin.

11.1.3 Finding a false coin with a two-armed scale

Again, we are given n outwardly identical coins. We know that there is a false one among
them that is lighter than the rest. This time we have a two-armed scale but without
weights. On this, we can find out which one of two (disjoint) sets of coins is lighter, or
whether they are equal. How many measurements suffice to decide which coin is false?

Here is a solution. One measurement consists of putting the same number of coins
into each pan. If one side is lighter then the false coin is in that pan. If the two sides
have equal weight then the false coin is among the ones left out. It is most practical
to put ⌈n/3⌉ coins into both pans; then after one measurement, the fals coin must be
found only among at most ⌈n/3⌉ coins. This recursion terminates in ⌈log3 n⌉ steps.

Since one measurement has 3 possible outcomes, the algorithm can be characterized
by a rooted tree in which each internal node has 3 children. Every node v corresponds
to a set Xv of coins; arriving into this node we already know that the false coin is to be
found in this set. (As above, the root corresponds to the original set and the leaves to
the one-element sets.) For each internal node v, we divide the set Xv into three parts,
with ⌈|Xv|/3⌉, ⌈|Xv|/3⌉ and |Xv|−2⌈|Xv|/3⌉ elements. These correspond to the children
of v. Comparing the two first ones we can find out which one of the three contains the
false coin.

11.1.4 Sorting

Given are n elements that are ordered in some way (unknown to us). We know a pro-
cedure to decide the order of two elements; this is called a comparison and considered
an elementary step. We would like to determine the complete ordering using as few
comparisons as possible. Many algorithms are know for this basic problem of data pro-
cessing; we treat this question only to the depth necessary for the illustration of decision
trees.

Obviously,
(

n
2

)

comparisons are enough: with these, we can learn about every pair
of elements, wich which one in the pair is greater, and this determines the order. These
comparisons are not, however, independent: often, we can infer the order of certain pairs
using transitivity. Indeed, it is enough to make

∑n
k=1 ⌈log2 k⌉ ∼ n log2 n comparisons.

Here is the simplest way to see this: suppose that we already determined the ordering of
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the first n− 1 elements. Then already only the n-th element must be “inserted”, which
can obviously be done with ⌈log2 n⌉ comparisons.

This algorithm, as well as any other sorting algorithm working with comparisons,
can be represented by a binary tree. The root corresponds to the first comparison;
depending on its result, the algorithm branches into one of the children of the root.
Here, we make another comparison, etc. Every leaf corresponds to a complete ordering.

Remark 11.1 In the above sorting algorithm, we only counted the comparisons. For
a real implementation, one should also take into account the other operations, e.g. the
movement of data, etc. From this point of view, the above algorithm is not good since
every insertion may require the movement of all elements placed earlier and this may
cause Ω(n2) extra steps. There exist, however, sorting algorithms requiring altogether
only O(n log n) steps.

11.1.5 Convex hull

The determination of the convex hull of n planar points is as basic among the geometrical
algorithms as sorting for data processing. The points are given by their coordinates:
p1 = (x1, y1), . . . , pn = (xn, yn). We assume, for simplicity, that the points are in
general position, i.e. no 3 of them is on one straight line. We want to determine those
indices i0, . . . , ik−1, ik = i0 for which pi0 , . . . , pik−1

, pik
are the vertices of the convex hull

of the given point set, in this order along the convex hull (starting anticlockwise, say,
from the point with the smallest abscissa).

The idea of “insertion” gives a simple algorithm here, too. Sort the elements by their
xi coordinates; this can be done in time O(n log n). Suppose that p1, . . . , pn are already
indexed in this order. Delete the point pn and determine the convex hull of the points
p1, . . . , pn−1: let this be the sequence of points pj0 , . . . , pjm−1 , pjm where j0 = jm = 1.

Now, the addition of pn consists of deleting the arc of the polygon pj0 , . . . , pjm

“visible” from pn and replacing it with the point pn. Let us determine the first and last
elements of the sequence pj0 , . . . , pjm visible from pn, let these be pja and pjb

. Then the
convex hull sought for is pj0 , . . . , pja , pn, pjb

, pjm (Figure 19).
How to determine whether some vertex pjs is visible from pn? The point pn−1 is

evidently among the vertices of the polygon and is visible from pn; let jt = n − 1. If
s < t then, obviously, pjs is visible from pn if and only if pn is below the line pjspjs+1 .
Similarly, if s > t then pjs is visible from pn if and only if pn is above the line pjspjs−1 .
In this way, it can be decided about every pjs in O(1) steps whether it is visible from
pn.

Using this, we can determine a and b in O(log n) steps and we can perform the
“insertion” of the point pn. This recursion gives an algorithm with O(n log n) steps.

It is worth separating here the steps in which we do computations with the coor-
dinates of the points, from the other steps (of combinatorial character). We do not
know namely, how large are the coordinates of the points, whether multiple-precision
computation is needed, etc. Analysing the described algorithm, we can see that the
coordinates needed to be taken into account only in two ways: at the sorting, when we
had to make comparisons among the abscissas, and at deciding whether point pn was
above or below the straight line determined by the points pi and pj . The last one can be
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Figure 19: A simple convex hull algorithm

also formulated by saying that we must determine the orientation of the triangle pipjpk.
This can be done in several ways using the tools of analytic geometry.

The above algorithm can again be described by a binary decision tree: each of its
nodes corresponds either to the comparison of the abscissas of two given points or to the
determination of the orientation of a triangle given by three points. The algorithm gives
a tree of depth O(n logn). (Many other algorithms looking for the convex hull lead to
a decision tree of similar depth.)

11.2 The notion of decision trees

To formalize the notion of a decision tree let us be given the set A of possible inputs, the
set B of possible outputs and a set Φ of functions defined on A with values in {1, . . . , d},
the test-functions. A decision tree is a rooted tree whose internal nodes (including
the root) have d children (the tree is d-regular), its leaves are labelled with the elements
of B, the other nodes with the functions of Φ. We assume that for every vertex, the
edges leaving it are numbered in some order.

Every decision tree determines a function f : A → B. Let namely a ∈ A. Starting
from the root, we walk down to a leaf as follows. If we are in an internal node v then
we compute the test function assigned to v at the place a; if its value is i then we step
further to the i-th child of node v. In this way, we arrive at a leaf w; the value of f(a)
is the label of w.

The question is that for a given function f , what is the decision tree with minimum
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Figure 20: A simple decision tree

depth computing it.
In the simplest case, we want to compute a Boolean function f(x1, . . . , xn) and every

test that can be made in the vertices of the decision tree is the reading in of the value
of one of the variables. In this case, we call the decision tree simple. Every simple
decision tree is binary (2-regular), the internal nodes are indexed with the variables, the
leaves with 0 and 1.

The decision tree corresponding to binary search over the interval [1, 2n] can be
considered as simple, if we regard the consecutive comparisons as asking for the next bit
of the unknown number a. The decision tree for sorting is not simple: there, the tests
(comparisons) are not independent since the ordering is transitive. We denote by D(f)
the minimal depth of a simple decision tree computing a Boolean function f .

Example 11.1 Consider the Boolean function

f(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4).

This is computed by the simple decision tree in Figure 20. This shows that D(f) ≤ 3.
It is easy to see that we cannot compute this funtion by a decision tree of depth 2, and
hence D(f) = 3.

Every decision tree can also be considered a two-person “twenty questions”-like game.
One player (Xavier) thinks of an element a ∈ A, and it is the task of the other player
(Yvette) to determine the value of f(a). For this, she can pose questions to Xavier. Her
questions cannot be, however, arbitrary, she can only ask the value of some test function
in Φ. How many questions do suffice for her to compute the answer? Yvette’s strategy
corresponds to a decision tree, and Xavier plays optimally if with his answers, he drives
Yvette to the leaf farthest away from the root. (Xavier can “cheat, as long as he is not
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caught”—i.e., he can change his mind about the element a ∈ A as long as the new one
still makes all his previous answers correct. In case of a simple decision tree, Xavier has
no such worry at all.)

11.3 Nondeterministic decision trees

The idea learned in Chapter 5, nondeterminism, helps in other complexity-theoretic
investigations, too. In the decision-tree model, the same idea can be formulated as
follows (we will only consider the case of simple decision trees). Let f : {0, 1}n →
{0, 1} be the function to be computed. Two numbers characterize the nondeterministic
decision-tree complexity (similarly to having two complexity classe for non-deterministic
polynomial time, namely NP and co-NP). For every input x, let D(f, x) denote the
minimum number of those variables whose value already determines the value of f(x).
Let

D0(f) = max{D(f, x) : f(x) = 0}, D1(f) = max{D(f, x) : f(x) = 1}.
In other words, D0(f) is the smallest number with the property that for all inputs x
with f(x) = 0, we can test D0(f) variables in such a way that knowing these, the value
of the function is already determined (it may depend on x which variables we will test).
The number D1(f) can be characterized similarly. Obviously,

D(f) ≥ max{D0(f), D1(f)}.
It can be seen from the examples below that equality does not necessarily hold here.

Example 11.2 Assign a Boolean variable xe to each edge e of the complete graph Kn.
Then every assignment corresponds to an n-point graph (we connect with edges those
pairs whose assigned value is 1). Let f be the Boolean function with

(

n
2

)

variables whose
value is 1 if in the graph corresponding to the input, the degree of every node is at least
one and 0 otherwise (i.e. if there is an isolated point). Then D0(f) ≤ n−1 since if there
is an isolated point in the graph it is enough to know about the n − 1 edges leaving it
that they are not in the graph. It is also easy to see that we cannot infer an isolated
point from the adjacency or nonadjacency of n− 2 pairs, and thus

D0(f) = n− 1.

Similarly, if there are no isolated points in a graph then this can be proved by the
existence of n−1 edges (it is enough to know one edge leaving each node and one of the
edges even covers 2 nodes). If the input graph is an (n− 1)-star then fewer than n− 1
edges are not enough. Therefore

D1(f) = n− 1.

Thus, whichever is the case, we can know the answer after n−1 lucky questions. On the
other hand, if we want to decide which one is the case then we cannot know in advance
which edges to ask; it can be shown that the situation is as bad as it can be, namely

D(f) =

(

n

2

)

.
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We return to the proof of this in the next section (exercise 11.8).

Example 11.3 Let now G be an arbitrary but fixed n-point graph an let us assign a
variable to each of its vertices. An assignment of the variables corresponds to a subset of
the vertices. Let the value of the function f be 0 if this set is independent in the graph
and 1 otherwise. This property can also be simply expressed by a Boolean formula:

f(x1, . . . , xn) =
∨

ij∈E(G)

(xi ∧ xj).

If the value of this Boolean function is 1 then this will be found out already from testing
2 vertices, but of course not from testing a single point, i.e.

D1(f) = 2.

On the other hand, if after testing certain points we are sure that the set is independent
then the vertices that we did not ask must form an independent set. Thus

D0(f) ≥ n− α

where α is the maximum number of independent points in the graph. It can also be
proved (see Theorem 11.8) that if n is a prime and a cyclic permutation of the points of
the graph maps the graph onto itself, and the graph has some edges but is not complete,
then

D(f) = n.

We see therefore that D(f) can be substantially larger than the maximum of D0(f)
and D1(f), moreover, it can be that D1(f) = 2 and D(f) = n. However, the following
beautiful relation holds:

Theorem 11.1
D(f) ≤ D0(f)D1(f).

Proof. We use induction over the number n of variables. If n = 1 then the inequality
is trivial.

Let (say) f(0, . . . , 0) = 0; then k ≤ D0(f) variables can be chosen such that fixing
their values to 0, the function is 0 independently of the other variables. We can assume
that the first k variables have this property.

Next, consider the following decision algorithm. We ask the value of the first k
variables; let the obtained answers be a1, . . . , ak. Fixing these, we obtain a Boolean
function

g(xk+1, . . . , xn) = f(a1, . . . , ak, xk+1, . . . , xn).

Obviously, D0(g) ≤ D0(f) and D1(g) ≤ D1(f). We claim that the latter inequality can
be strenghened:

D1(g) ≤ D1(f) − 1.

Consider an input (ak+1, . . . , an) of g with g(ak+1, . . . , an) = 1. Together with the bits
a1, . . . , ak, this gives an input of the Boolean function f for which f(a1, . . . , an) = 1.
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According to the definition of the quantity D1(f), one can choose m ≤ D1(f) variables,
say, xi1 , . . . , xim of f such that fixing them at the value ai, the value of f becomes 1
independently of the other variables. One of the first k variables must occur among these
m variables; otherwise, f(0, . . . , 0, ak+1, . . . , an) would have to be 0 (due to the fixing
of the first k variables) but would also have to be 1 (due to the fixing of xi1 , . . . , xim),
which is a contradiction. Thus, in the function g, at the position ak+1, . . . , ak, only
m− 1 variables must be fixed to obtain the identically 1 function. From this, the claim
follows. From the induction hypothesis,

D(g) ≤ D0(g)D1(g) ≤ D0(f)(D1(f) − 1)

and hence
D(f) ≤ k +D(g) ≤ D0(f) +D(g) ≤ D0(f)D1(f).

�

In Example 11.3, we could define the function by a disjunctive 2-normal form and
D1(f) = 2 was true. This is not an accidental coincidence:

Proposition 11.2 If f is expressible by a disjunctive k-normal form then D1(f) ≤ k.
If f is expressible by a conjunctive k-normal form then D0(f) ≤ k.

Proof. It is enough to prove the first assertion. Let (a1, . . . , an) be an input for which
the value of the function is 1. Then there is an elementary conjunction in the disjunctive
normal form whose value is 1. If we fix the variables occurring in this conjunction then
the value of the function will be 1 independently of the values of the other variables. �

For monotone functions, the connection expressed in the previous proposition is even
tighter:

Proposition 11.3 A monotonic Boolean function is expressible by a disjunctive [con-
junctive] k-normal form if and only if D1(f) ≤ k [D0(f) ≤ k].

Proof. According to Proposition 11.2, it is sufficient to see that if D1(f) = k then f is
expressible by a disjunctive k-normalform. Let {xi1 , . . . , xim} be a subset of the variables
minimal with respect to containment, that can be fixed in such a way as to make the
obtained function is identically 1. (Such a function is called a minterm.) Notice that
then we had to fix every variable xij necessarily to 1: due to the monotonicity, this
fixing gives the identically 1 function, and if a variable could also be fixed to 0 then it
would not have to be fixed to begin with.

We will show that m ≤ k. Let us namely assign the value 1 to the variables
xi1 , . . . , xim and 0 to the others. According to the foregoing, the value of the func-
tion is 1. By the definition of the quantity D1(f), we can fix in this assignment k values
in such a way as to make the obtained function identically 1. By the above remarks,
we can assume that we only fix 1’s, i.e. we only fix some of the variables xi1 , . . . , xim .
But then due to the minimality of the set {xi1 , . . . , xim}, we had to fix all of them, and
hence m ≤ k.
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Let us prepare for every minterm S the elementary conjunction ES =
∧

xi∈S xi and
take the disjunction of these. By what was said above, we obtain a disjunctive k-normal
form this way. It can be verified trivially that this defines the function f . �

11.4 Lower bounds on the depth of decision trees

We mentioned that decision trees as computation models have the merit that non-trivial
lower bounds can be given for their depth. First we mention, however, a non-trivial lower
bound also called information-theoretic estimate.

Lemma 11.4 If the range of f has t elements then the depth of every decision tree of
degree d computing f is at least logd t.

Proof. A d-regular rooted tree of depth h has at most dh leaves. Since every element
of the range of f must occur as a label of a leaf it follows that t ≥ dh. �

As an application, let us take an arbitrary sorting algorithm. The input of this is a
permutation a1, . . . , an of the elements 1, 2, . . . , n, its output is the same, while the test
functions compare two elements:

ϕij(a1, . . . , an) =

{

1, if ai < aj

0, otherwise.

Since there are n! possible outputs, the depth of any binary decision tree computing
the complete order is at least logn! ∼ n logn. The sorting algorithm mentioned in the
introduction makes at most ⌈logn⌉+ ⌈log(n− 1)⌉+ · · ·+ ⌈log 1⌉ ∼ n logn comparisons.

This bound is often very weak; if e.g. only a single bit must be computed then it says
nothing. Another simple trick for proving lower bounds is the following observation.

Lemma 11.5 Assume that there is an input a ∈ A such that no matter how we choose
k test functions, say, ϕ1, . . . , ϕk, there is an a′ ∈ A for which f(a′) 6= f(a) but ϕi(a

′) =
ϕi(a) holds for all 1 ≤ i ≤ k. Then the depth of every decision tree computing f is
greater than k.

For application, let us see how many comparisons suffice to find the largest one of
n elements. We have seen (championship by elimination) that n − 1 comparisons are
enough for this. Lemma 11.4 gives only logn for lower bound; but we can apply Lemma
11.5 as follows. Let a = (a1, . . . , an) be an arbitrary permutation, and consider k < n−1
comparison tests. The pairs (i, j) for which ai and aj will be compared form a graph
G over the underlying set {1, . . . , n}. Since it has fewer than n − 1 edges this graph
falls into two disconnected parts, G1 and G2. Without loss of generality, let G1 contain
the maximal element and let p denote its number of vertices. Let a′ = (a′1, . . . a

′
n) be

the permutation containing the numbers 1, . . . , p in the positions corresponding to the
vertices of G1 and the numbers p + 1, . . . , n in those corresponding to the vertices of
G2; the order of the numbers within both sets must be the same as in the original
permutation. Then the maximal element is in different places in a and in a′ but the
given k tests give the same result for both permutations.
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In what follows we show estimates for the depth of some more special decision trees,
applying, however, some more interesting methods. First we mention a result which
gives a lower bound of unusual character for the depth of decision trees.

Theorem 11.6 Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function. Let N denote
the number of those substitutions making the value of the function “1” and let 2k be the
largest power of 2 dividing N . Then the depth of any decision tree computing f is at
least n− k.

Proof. Consider an arbitrary decision tree of depth d that computes the function f ,
and a leaf of this tree. Here, m ≤ d variables are fixed, therefore there are at least 2n−m

inputs leading to this leaf. All of these correspond to the same function value, therefore
the number of inputs leading to this leaf and giving the function value “1” is either 0 or
or 2n−m. This number is therefore divisible by 2n−d. Since this holds for all leaves, the
number of inputs giving the value “1” is divisible by 2n−d and hence k ≥ n− d. �

We call a Boolean function f of n variables evasive if it cannot be computed by a
decision tree of length smaller than n. It follows from Theorem 11.6 that if a Boolean
function has an odd number of substitutions making it “1” then the function is evasive.

We obtain another important class of evasive functions by symmetry-conditions. A
Boolean function is called symmetric if every permutation of its variables leaves its
value unchanged. E.g., the functions x1 + · · · + xn, x1 ∨ · · · ∨ xn and x1 ∧ · · · ∧ xn are
symmetric. A Boolean function is symmetric if and only if its value depends only on
how many of its variables are 0 or 1.

Proposition 11.7 Every non-constant symmetric Boolean function is evasive.

Proof. Let f : {0, 1}n → {0, 1} be the Boolean function in question. Since f is not
constant, there is a j with 1 ≤ j ≤ n such that if j − 1 variables have value 1 then the
function’s value is 0 but if j variables are 1 then the function’s value is 1 (or the other
way around).

Using this, we can propose the following strategy to Xavier. Xavier thinks of a 0-1-
sequence of length n and Yvette can ask the value of each of the xi. Xavier answers 1 on
the first j − 1 questions and 0 on every following question. Thus after n− 1 questions,
Yvette cannot know whether the number of 1’s is j − 1 or j, i.e. she cannot know the
value of the function. �

Symmetric Boolean functions are very special; the following class is significantly more
general. A Boolean function of n variables is called weakly symmetric if for all pairs
xi, xj of variables, there is a permutation of the variables that takes xi into xj but does
not change the value of the function. E.g. the function

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ · · · ∨ (xn−1 ∧ xn) ∨ (xn ∧ x1)

is weakly symmetric but not symmetric. The question below (the so-called generalized
Aandera-Rosenberg-Karp conjecture) is open:
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Conjecture 11.1 If a non-constant monotone Boolean function is weakly symmetric
then it is evasive.

We show that this conjecture is true in an important special case.

Theorem 11.8 If a non-constant monotone Boolean function is weakly symmetric and
the number of its variables is a prime number then it is evasive.

Proof. Let p be the number of variables (emphasizing that this number is a prime).
We use the group-theoretic result that if a prime p divides the order of a group, then the
group has an element of order p. In our case, those permutations of the variables that
leave the value of the function invariant form a group, and from the week symmetry it
follows that the order of this group is divisible by p. Thus the group has an element
of order p. This means that with a suitable labeling of the variables, the substitution
x1 → x2 → · · · → xp → x1 does not change the value of the function.

Now consider the number

M =
∑

f(x1, . . . , xp)(p− 1)x1+···+xp , (18)

where the summation extends to all systems of values (x1, . . . , xp) ∈ {0, 1}p. By an
argument that is quite similar to the proof of Theorem 11.6, we can see that if f is
non-evasive, then M is divisible by p.

It follows that in the definition of M , if in some term, not all the values x1, . . . , xp

are the same, then p identical terms can be made from it by cyclic substitution. The
contribution of such terms is therefore divisible by n. Since the function is not constant
and is monotone, it follows that f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, from which it can
be seen that M gives remainder (−1)p modulo p. �

We get important examples of weakly symmetric Boolean functions taking any graph
property. Consider an arbitrary property of graphs, e.g. planarity; we only assume that
if a graph has this property then every graph isomorphic with it also has it. We can
specify a graph with n points by fixing its vertices (let these be 1, . . . , n), and for all
pairs i, j ⊆ {1, . . . , n}, we introduce a Boolean variable xij with value 1 if i and j are
connected and 0 if they are not. In this way, the planarity of n-point graph can be
considered a Boolean function with

(

n
2

)

variables. Now, this Boolean function is weakly
symmetric: for every two pairs, say, {i, j} and {u, v}, there is a permutation of the
vertices taking i into u and j into v. This permutation also induces a permutation on
the set of point pairs that takes the first pair into the second one and does not change
the planarity property.

A graph property is called trivial if either every graph has it or no one has it. A
graph property is monotone if whenever a graph has it each of its subgraphs has it. For
most graph properties that we investigate (connecivity, the existence of a Hamiltonian
circuit, the existence of complete matching, colorability, etc.) either the property itself
or its negation is monotonic.

The Aandera-Rosenberg-Karp conjecture, in its original form, concerns graph prop-
erties:
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Conjecture 11.2 Every non-trivial monotonic graph property is evasive, i.e., every
decision tree that decides such a graph property and that can only test whether two
nodes are connected, has depth

(

n
2

)

.

This conjecture is proved for a number of graph properties: for a general property,
what is known is only that the tree has depth Ω(n2) (Rivest and Vuillemin) and
that the theorem is true if the number of points is a prime power (Kahn, Saks and

Sturtevant). The analogous conjecture is also proved for bipartite graphs (Yao).

Exercise 11.1 Prove that fewer measurements do not suffice in either problem 11.1.2
or problem 11.1.3.

Exercise 11.2 Show that to pick the median of 2n+ 1 numbers,
(a) at least 2n comparisons are needed;
(b)* O(n) comparisons suffice.

Exercise 11.3 Show that the problem of sorting n real numbers can be reduced in a
linear number of steps to the problem of determining the convex hull of n planar points.

Exercise 11.4 Show that the second phase of the above algorithm, i.e. the determina-
tion of the convex hull of the points p1, . . . , pi for i = 2, . . . , n, can be performed in O(n)
steps provided that the points are already sorted by their x coordinates.

Exercise 11.5 Give an example showing that in Proposition 11.3, the condition of
monotonicity cannot be omitted.

Exercise 11.6 Given an n-variable Boolean function f , construct the following poly-
nomial: Ψf (t) =

∑

f(x1, . . . , xn)tx1+···+xn where the summation extends to all systems
of values (x1, . . . , xn) ∈ {0, 1}n. Prove that if f can be computed by a decision tree of
depth d, then Ψf (t) is divisible by (t+ 1)n−d.

Exercise 11.7 Prove that the connectedness of a graph is a evasive property.

Exercise 11.8
(a) Prove that if n is even then on n fixed points, the number of graphs not containing

isolated points is odd.
(b) If n is even then the graph property that in an n-point graph there is no isolated

point, is evasive.
(c)* This statement holds also for odd n.

Exercise 11.9 A tournament is a complete graph each of whose edges is directed.
Each tournament can be described by

(

n
2

)

bits saying how the individual edges of the
graph are directed. In this way, every property of tournamentse can be considered
an

(

n
2

)

-variable Goolean function. Prove that the tournament property that there is a
0-degree vertex is evasive.
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Exercise 11.10 (a) If we allow a polynomial of degree n2 as test function then a decision
tree of depth 1 can be given to decide whether n numbers are different.

(b) If we allow degree n polynomials as test functions then a depth n decision tree
can be given to decide whether n numbers are different.

Exercise 11.11 Given are 2n different real numbers: x1, . . . , xn, y1, . . . , yn. We want
to decide whether it is true that ordering them by magnitude, there is a xj between
every pair of yi’s. Prove that this needs Ω(n logn) comparisons.
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12 Communication complexity

With many algorithmic and data processing problems, the main difficulty is the transport
of information between different processors. Here, we will discuss a model which—in
the simplest case of 2 participating processors—attempts to characterise the part of
complexity due to the moving of data.

Let us be given thus two processors, and assume that each of them knows only part
of the input. Their task is to compute something from this; we will only consider the
case when this something is a single bit, i.e., they want to determine some property
of the (whole) input. We abstract from the time- and other cost incurred by the local
computation of the processors; we consider therefore only the communication between
them. We would like to achieve that they solve their task having to communicate as few
bits as possible. Looking from the outside, we will see that one processor sends a bit ε1
to the other one; then one of them (maybe the other one, maybe the same one) sends a
bit ε2, and so on. At the end, both processors must “know” the bit to be computed.

To make it more graphic, instead of the two processors, we will speak of two players,
Alice and Bob. Imagine that Alice is in Europe and Bob in New Zeeland; then the
assumption that the cost of communication dwarfs the cost of local computations is
rather realistic.

What is the algorithm in the area of algorithmic complexity is the protocol in the
area of communication complexity. This means that we prescribe for each player, for
each stage of the game where his/her input is x and bits ε1, . . . , εk were sent so far
(including who sent them) whether the next turn is his/her (this can only depend on
the messages ε1, . . . , εk and not on x; it must namely be also known to the other player
to avoid conflicts), and if yes then—depending on these—what bit must be sent. Each
player knows this protocol, including the “meaning” of the messages of the other player
(in case of what inputs could the other one have sent it). We assume that both players
obey the protocol.

It is easy to give a trivial protocol: Let Alice send Bob the part of the input known
to her. Then Bob can already compute the end result and communicate it to Alice using
a single bit. We will see that this can be, in general, far from the optimum. We will
also see that in the area of communication complexity, some notions can be formed that
are similar to those in the area of algorithmic complexity, and these are often easier to
handle.

12.1 Examples

We start with some examples showing that the trivial protocol described above is not
always optimal. (The examples, except the first one, are not entirely simple. Later we’ll
see that indeed, for many of the simple communication tasks the trivial protocol is best
possible.)

Example 12.1 Suppose that both Alice and Bob have two bits, and they want to decide
whether the binary sum of each input is the same. The trivial protocol would be that
one of them, say Alice, sends her input to Bob, who then does all the computation (not
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Alice’s tree

Bob’s tree

x y

Figure 21:

too hard) and returns a bit telling Alice the answer. but of course, instead of sending
both bits, it suffices to send the binary sum, which saves one bit.

One can argue that in this example, the protocol is still the trivial one: the only
important information about Alice’s input is the binary sum of her bits, so she does
does send Bob all but the redundant information she has.

Example 12.2 There is a tree T with n nodes, known to both players. Alice has subtree
TA and Bob has subtree TB. They wan to decide whether the subtrees have a common
point.

The trivial protocol uses obviously logM bits where M is the number of subtrees.
M can even be greater than 2n−1 if e.g. T is a star. So the trivial protocol may take n
bits.

Let us argue that the easy savings in example 12.1 don’t apply here: for different
subtrees, Alice’s message must be different. If Alice gives the same message for polygons
TA and T ′

A and, say, TA 6⊆ T ′
A then TA has a vertex v that is not in T ′

A; if Bob’s subtree
consists of the single point v then he cannot find the answer based on this message.

Consider, however, the following protocol: Alice chooses a vertex x ∈ V (TA) and
sends it to Bob (we reserve a special message for the case when TA is empty; in this
case, they will be done ). If x is also a vertex of the tree TB then they are done (Bob
has a special message for this case). If not, then Bob determines the point of TB closest
to x (this is the node where the path from x to any node of TB hits TB). He sends this
node y to Alice.

Now if y is in TA, then Alice knows that the two trees have a common point; if y is
not in TA then the two trees have no common points at all. She sends one bit to tell
the result.

This protocol uses only 1 + 2⌈log(n+ 1)⌉ bits (Figure TREE-COMM).
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Example 12.3 Given is a graph G with n points. Alice knows a point set SA spanning
a complete subgraph and Bob knows an independent SB point set in the graph. They
want to decide whether the two subgraphs have a common point.

If Alice wants to give the complete information to Bob about the point set known to
her then logM bits would be needed, where M is the number of complete subgraphs.
This can be, however, even 2n/2, i.e. (in the worst case) Alice must use Ω(n) bits. The
situation is similar with Bob.

The following protocol is significantly more economical. Alice checks whether the set
SA has a vertex with degree at most n/2 − 1. If there is one then it sends to Bob a 1
and then the name of such a vertex v. Then both of them know that Alice’s set consists
only of v and some of its neighbors, i.e. they reduced the problem to a graph with n/2
vertices.

If every node of SA has degree larger than n/2− 1 then Alice sends to Bob only a 0.
Then Bob checks whether the set SB has a point with degree larger than n/2 − 1. If it
has then it sends Alice a 1 and the name of such a node w. Similarly to the foregoing,
after this both of them will know that besides w, the set SB can contain only points
that are not neighbors of w, and they thus again succeeded in reducing the problem to
a graph with at most (n+ 1)/2 vertices.

Finally, if every vertex of SB has degree at most n/2 − 1, Bob sends a 0 to Alice.
After this, they know that their sets are disjoint.

The above turn uses at most O(log n) bits and since it decreases the number of
vertices of the graph to half, it will be repeated at most logn times. Therefore the
complete protocol is only O((log n)2). More careful computation shows that the number
of used bits is at most ⌈logn⌉(2 + ⌈logn⌉)/2.

12.2 Communication matrix and protocol-tree

Let Alice’s possible inputs be a1, . . . , an and Bob’s possible inputs b1, . . . , bm (since the
local computation is free it is indifferent for us how these are coded). Let cij be the
value to be computed for inputs ai and bj. The matrix C = (cij)

n
i=1

m
j=1 is called the

communication matrix of the problem in question. This matrix completely describes
the problem: both players know the whole matrix C. Alice knows the index i of a row
of C, while Bob knows the index j of a column of C. Their task is to determine the
element cij . The trivial protocol is that e.g. Alice sends Bob the number i; this means
⌈logn⌉ bits. (If m < n then it is better, of course, to proceed the other way.)

Let us see first what a protocol means for this matrix. First of all, the protocol
must determine who starts. Suppose that Alice sends first a bit ε1. This bit must
be determined by the index i known to Alice; in other words, the rows of C must be
divided in two parts according to ε1 = 0 or 1. The matrix C is thus decomposed into two
submatrices, C0 and C1. This decomposition is determined by the protocol, therefore
both players know it. Alice’s message determines which one of C0 and C1 contains her
row. From now on therefore the problem has been narrowed down to the corresponding
smaller matrix.

The next message decomposes C0 and C1. If the sender is Bob then he divides the
columns into two classes; if it is Alice then she divides the rows again. It is not important
that the second message have the same “meaning”, i.e., that it divide the same rows
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[columns] in the matrices C0 and C1; moreover, it is also possible that it subdivides the
rows of C0 and the columns of C2 (Alice’s message “0” means that “I have more to say”,
and her message “1” that “it is your turn”).

Proceeding this way, we see that the protocol corresponds to a decomposition of the
matrix to ever smaller submatrices. In each “turn”, every actual submatrix is divided
into two submatrices either by a horizontal or by a vertical split. We will call such a
decomposition into submatrices a guillotine-decomposition. Soha se hasznaljuk (It
is important to note that rows and columns of the matrix can be divided into two parts
in an arbitrary way; their original order plays no role.)

When does this protocol stop? If the players have narrowed down the possibilities to
a submatrix C′ then this means that both know that the row or column of the other one
belongs to this submatrix. If from this, they can tell the result in all cases then either
all elements of this submatrix are 0 or all are 1.

In this way, the determination of communication complexity leads to the following
combinatorial problem: in how many turns can we decompose a given 0-1 matrix into
matrices consisting of all 0’s and all 1’s, if in each turn, every submatrix obtained so far
can only be split in two, horizontally or vertically? (If we obtain an all-0 or all-1 matrix
earlier we stop splitting it. But sometimes, it will be more useful to pretend that we
keep splitting even this one: formally, we agree that an all-0 matrix consisting of 0 rows
cam be split from an all-0 matrix as well as from an all-1 matrix.)

We can make the protocol even more graphic with the help of a binary tree. Every
point of the tree is a submatrix of C. The root is the matrix C, its left child is C0 and
its right child is C1. The two children of every matrix are obtained by dividing its rows
or columns into two classes. The leaves of the tree are all-0 or all-1 matrices.

Following the protocol, the players move on this tree from the root to some leaf.
If they are in some node then whether its children arise by a horizontal or vertical
split determines who sends the next bit. The bit is 0 or 1 according to whether the
row [column] of the sender is in the left or right child of the node. If they arrive to
a vertex then all elements of this matrix are the same and this is the answer to the
communication problem. The time requirement of the protocol is the depth of this
tree. The communication complexity of matrix C is the smallest possible time
requirement of all protocols solving it. We denote it by κ(C).

Note that if we split each matrix in each turn (i.e. if the tree is a complete binary
tree) then exactly half of its leaves is all-0 and half is all-1. This follows from the fact
that we have split all matrices of the penultimate “generation” into an all-0 matrix and
an all-1 matrix. In this way, if the depth of the tree is t then among its leaves, there are
2t−1 all-1 (and just as many all-0). If we stop earlier on the branches where we arrive
earlier at an all-0 or all-1 matrix it will still be true that the number of all-1 leaves is
at most 2t−1 since we could continue the branch formall by making one of the split-off
matrices “empty”.

This observation leads to a simple but important lower bound on the communication
complexity of the matrix C. Let rk(C) denote the rank of matrix C.

Lemma 12.1
κ(C) ≥ 1 + log rk(C).
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Proof. Consider a protocol-tree of depth κ(C) and let L1, . . . , LN be its leaves. These
are submatrices of C. Let Mi denote the matrix (having the same size as C) obtained
by writing 0 into all elements of C not belonging to Li. By the previous remark, we see
that there are at most 2κ(C)−1 non-0 matrices Mi; it is also easy to see that all of these
have rank 1. Now,

C = M1 +M2 + · · · +MN ,

and thus, using the well-known fact from linear algebra that the rank of the sum of
matrices is not greater than the sum of their rank,

rk(C) ≤ rk(M1) + · · · + rk(MN ) ≤ 2κ(C)−1.

This implies the lemma. �

Corollary 12.2 If the rows of matrix C are linearly independent then the trivial protocol
is optimal.

Consider a simple but important communication problem to which this result is
applicable and which will be an important example in several other aspects.

Example 12.4 Both Alice and Bob know some 0-1 sequence of length n; they want to
decide whether the two sequences are equal.

The communication matrix belonging to the problem is obviously a 2n × 2n unit
matrix. Since its rank is 2n no protocol is better for this problem than the trivial (n+1
bit) one.

By another, also simple reasoning, we can also show that almost this many bits must
be communicated not only for the worst input but for almost all inputs:

Theorem 12.3 Consider an arbitary communication protocoll deciding about two 0-1-
sequence of length n whether they are identical, and let h > 0. Then the number of
sequences a ∈ {0, 1}n for the protocol uses fewer than h bits on input (a, a) is at most
2h.

Proof. For each input (a, b), let J(a, b) denote the “record” of the protocol, i.e. the
0-1-sequence formed by the bits sent to each other. We claim that if a 6= b then J(a, a) 6=
J(b, b); this implies the theorem trivially since the number of h-length records is at most
2h.

Suppose that J(a, a) = J(b, b) and consider the record J(a, b). We show that this is
equal to J(a, a).

Suppose that this is not so, and let the i-th bit be the first one in which they differ.
On the inputs (a, a), (b, b) and (a, b) not only the first i − 1 bits are the same but
also the direction of communication. Alice namely cannot determine in the first i − 1
steps whether Bob has the sequence a or b, and since the protocol determines for her
whether it is her turn to send, it determines this the same way for inputs (a, a) and
(a, b). Similarly, the i-th bit will be sent in the same direction on all three inputs, say,
Alice sends it to Bob. But at this time, the inputs (a, a) and (b, b) seem to Alice the

167



same and therefore the i-th bit will also be the same, which is a contradiction. Thus,
J(a, b) = J(a, a).

The protocol terminates on input (a, b) by both players knowing that the two se-
quences are different. But from Adel’s point of view, her own input as well as the
communication are the same as on input (a, a), and therefore the protocol comes to
wrong conclusion on that input. This contradiction proves that J(a, a) 6= J(b, b). �

One of the main applications of communication complexity is that sometimes we
can get a lower bound on the number of steps of algorithms by estimating the amount
of communication between certain data parts. To illustrate this we give a solution for
an earlier exercise. A palindrome is a string with the property that it is equal to its
reverse.

Theorem 12.4 Every 1-tape Turing machine needs Ω(n2) steps to decide about a se-
quence of length 2n whether it is a palindrome.

Proof. Consider an arbitrary 1-tape Turing machine deciding this question. Let us
seat Alice and Bob in such a way that Alice sees cells n, n− 1, . . . , 0,−1, . . . of the tape
and Bob sees its cells n+ 1, n+ 2, . . .; we show the structure of the Turing machine to
both of them. At start, both see therefore a string of length n and must decide whether
these strings are equal (Alice’s sequence is read in reverse order).

The work of the Turing machine offers a simple protocol to Alice and Bob: Alice
mentally runs the Turing machine as long as the scanning head is on her half of the
tape, then she sends a message to Bob: “the head moves over to you with this and this
internal state”. Then Bob runs it mentally as long as the head is in his half, and then
he tells Alice the internal state with which the head must return to Alice’s half, etc. So,
if the head moves over k times from one half to the other one then they send each other
log |Γ| bits (where Γ is the set of states of the machine). At the end, the Turing machine
writes the answer into cell 0 and Alice will know whether the word is a palindrome. For
the price of 1 bit, she can let Bob also know this.

According to Theorem 12.3, we have therefore at most 2n/2 palindroms with
k log |Γ| < n/2, i.e. for most inputs, the head passed between the cells n and (n + 1)
at least cn times, where c = 1/(2 log |Γ|). This is still only Ω(n) steps but a similar
reasoning shows that for all h ≥ 0, with the exception of 2h · 2n/2 inputs, the machine
passes between cells (n− h) and (n − h+ 1) at least cn times. For the sake of proving
this, consider a palindrom α of length 2h and write in front of it a sequence β of length
n − h and behind it a sequence γ of length n − h. The sequence obtained this way is
a palindrome if and only if β = γ−1 where we denoted by γ−1 the inversion of γ. By
Theorem 12.3 and the above reasoning, for every α there are at most 2n/2 strings β for
which on input βαβ−1, the head passes between cells n− h and n−h+1 fewer than cn
times. Since the number of α’s is 2h the assertion follows.

If we add up this estimate for all h with 0 ≤ h ≤ n/2 the number of exceptions is at
most

2n/2 + 2 · 2n/2 + 4 · 2n/2 + · · · + 2n/2−1 · 2n/2 < 2n,

hence there is an input on which the number of steps is at least (n/2) · (cn) = Ω(n2). �
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12.3 Non-deterministic communication complexity

As with algorithms, the nondeterministic version plays an important role also with
protocols. This can be defined—in a fashion somewhat analogous to the notion of
“witness”, or “testimony”—in the following way. We want that for every input of Alice
and Bob for which the answer is 1, a “superior being” can reveal a short 0-1 sequence
convincing both Alice and Bob that the answer is indeed 1. They do not have to believe
the revelation of the “superior being” but if they signal anything at all this can only
be that on their part, they accept the proof. This non-deterministic protocol consists
therefore of certain possible “revelations” x1, . . . , xn ∈ {0, 1}∗ all of which are acceptable
for certain inputs of Alice and Bob. For a given pair of inputs, there is an xi acceptable
for both of them if and only if for this pair of inputs, the answer to the communication
problem is 1. The length of the longest xi is the complexity of the protocol. Finally,
the nondeterministic communication complexity of matrix C is the minimum
complexity of all non-deterministic protocols applicable to it; we denote this by κND(C)

Example 12.5 Suppose that Alice and Bob know a polygon each in the plane, and
they want to decide whether the two polygons have a common point. If the superior
being wants to convince the players that their polygons are not disjoint she can do this
by revealing a common point. Both players can check that the revealed point indeed
belongs to their polygon.

We can notice that in this example, the superior being can also easily prove the
negative answer: if the two polygons are disjoint then it is enough to reveal a straight
line such that Alice’s polygon is on its left side, Bob’s polygon is on its right side. (We
do not discuss here the exact number of bits in the inputs and the revelations.)

Example 12.6 In Example 12.4, if the superior being wants to prove that the two
strings are different it is enough for her to declare: “Alice’s i-th bit is 0 while Bob’s
is not.” This is—apart from the textual part, which belongs to the protocol—only
⌈logn⌉+1 bits, i.e. much less than the complexity of the optimal deterministic protocol.

We remark that even the superior being cannot give a proof that two words are equal
in fewer than n bits, as we will see right away.

Let x be a possible revelation of the superior being and letHx be the set of all possible
pairs (i, j) for which x “convinces” the players that cij = 1. We note that if (i1, j1) ∈ Hx

and (i2, j2) ∈ Hx then (i1, j2) and (i2, j1) also belong to Hx: since (i1, j1) ∈ Hx, Alice,
possessing i1, accepts the revelation x; since (i2, j2) ∈ Hx, Bob, possessing j2, accepts
the revelation x; thus, when they have (i1, j2) both accept x, hence (i1, j2) ∈ Hx.

We can therefore also consider Hx as a submatrix of C consisting of all 1’s. The
submatrices belonging to the possible revelations of a nondeterministic protocol cover
the 1’s of the matrix C since the protocol must apply to all inputs with answer 1 (it is
possible that a matrix element belongs to several such submatrices). The 1’s of C can
therefore be covered with at most 2κND(C) all-1 submatrices.

Conversely, if the 1’s of the matrix C can be covered with 2t all-1 submatrices then
it is easy to give a non-deterministic protocol of complexity t: the superior being reveals
only the number of the submatrix covering the given input pair. Both players verify
whether their respective input is a row or column of the revealed submatrix. If yes then
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they can be convinced that the corresponding matrix element is 1. We have thus proved
the following statement:

Lemma 12.5 κND(C) is the smallest natural number t for which the 1’s of the matrix
can be covered with 2t all-1 submatrices.

In the negation of Example 12.6, the matrix C is the 2n×2n unit matrix. Obviously,
only the 1× 1 submatrices of this are all-1, the covering of the 1’s requires therefore 2n

such submatrices. Thus, the non-deterministic complexity of this problem is also n.
Let κ(C) = s. Then C can be decomposed into 2s submatrices half of which are

all-0 and half are all-1. According to Lemma 12.5 the nondeterministic communication
complexity of C is therefore at most s− 1. Hence

κND(C) ≤ κ(C) − 1.

Example 12.6 shows that there can be a big difference between the two quantities.
Let C denote the matrix obtained from C by changing all 1’s to 0 and all 0’s to 1.

Obviously, κ(C) = κ(C). Example 12.6 also shows that κND(C) and κND(C) can be
very different. On the basis of the previous remarks, we have

max{1 + κND(C), 1 + κND(C)} ≤ κ(C).

The following important theorem (Aho, Ullman and Yannakakis) shows that here,
already, the difference between the two sides of the inequality cannot be too great.

Theorem 12.6
κ(C) ≤ (2 + κND(C)) · (2 + κND(C)).

We will prove a sharper inequality. In case of an arbitrary 0-1 matrix C, let ̺(C)
denote the largest number t for which C has a t× t submatrix in which—after a suitable
rearrangement of the rows and columns—there are all 1’s in the main diagonal and all
0’s everywhere above the main diagonal. Obviously,

̺(C) ≤ rk(C),

and Lemma 12.5 implies
log ̺(C) ≤ κND(C).

The following inequality therefore implies theorem 12.6.

Theorem 12.7
κ(C) ≤ 1 + log ̺(C)(κND(C) + 2).

Proof. We use induction on log ̺(C). If ̺(C) ≤ 1 then the protocol is trivial. Let
̺(C) > 1 and p = κND(C). Then the 0’s of the matrix C can be covered with 2p all-0
submatrices, say, M1, . . . ,M2p . We want to give a protocol that decides the communi-
cation problem with at most (p + 2) log ̺(C) bits. The protocol fixes the submatrices
Mi, this is therefore known to the players.

For every submatrix Mi, let us consider the matrix Ai formed by the rows of C
intersecting Mi and the matrix Bi formed by the columns of C intersecting Mi. The
basis of the protocol is the following, very easily verifiable, statement:
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Claim 12.8
̺(Ai) + ̺(Bi) ≤ ̺(C).

Now, we can prescribe the following protocol:
Alice checks whether there is an index i for which Mi intersects her row and for

which ̺(Ai) ≤ 1
2̺(C). If yes then she sends “1” and the index i to Bob and the first

phase of protocol has ended. If not then she sends “0”. Now, Bob checks whether there
is an index i for which Mi intersects his column and ̺(Bi) ≤ 1

2̺(C). If yes then he
sends a “1” and the index i to Alice. Else he sends “0”. Now the first phase has ended
in any case.

If either Alice or Bob find a suitable index in the first phas then by the communication
of at most p+ 2 bits, they have restricted the problem to a matrix C′ (= Ai or Bi) for
which ̺(C′) ≤ 1

2̺(C). Hence the theorem follows by induction.
If both players sent “0” in the first phase then they can finish the protocol: the

answer is “1”. Indeed, if there was a 0 in the intersection of Alice’s row and Bob’s
column then this would belong to some submatrix Mi. However, for these submatrices,
we have on the one hand

̺(Ai) >
1

2
̺(C)

(since they did not suit Alice), on the other hand

̺(Bi) >
1

2
̺(C)

since they did not suit Bob. But this contradicts the above Claim. �

It is interesting to formulate another corollary of the above theorem (compare it with
Lemma 12.1):

Corollary 12.9
κ(C) ≤ 1 + log(1 + rk(C))(2 + κND(C)).

To show the power of Theorems 12.6 and 12.7 consider the examples treated in
Subsection 12.1. If C is the matrix corresponding to Example 12.2 (in which 1 means
that the subtrees are disjoint) then κND(C) ≤ ⌈logn⌉ (it is sufficient to name a common
vertex). It is also easy to obtain that κND(C) ≤ 1 + ⌈log(n− 1)⌉ (if the subtrees are
disjoint then it is sufficient to name an edge of the path connecting them, together with
telling that after deleting it, which component will contain TA and which one TB). It
can also be shown that the rank of C is 2n. Therefore whichever of the theorems 12.6
and 12.7 we use, we get a protocol using O((log n)2) bits. This is much better than the
trivial one but is not as good as the special protocol treated in subsection 12.1.

Let now C be the matrix corresponding to Example 12.3. It is again true that
κND(C) ≤ ⌈logn⌉, for the same reason as above. It can also be shown that the rank of
C is exactly n. From this it follows, by Theorem 12.7, that κ(C) = O((log n)2) which
is (apart from a constant factor) the best know result. It must be mentioned that what
is know for the value of κND(C), is only the estimate κND = O((log n)2) coming from
the inequality κND ≤ κ.
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Remark 12.1 We can continue dissecting the analogy of algorithms and protocols a
little further. Let us be given a set H of (for simplicity, quadratic) 0-1 matrices. We say
that H ∈ Pcomm if the communication complexity of every matrix C ∈ H is not greater
than a polynomial of log logn where n is the number of rows of the matrix. (I.e., if the
complexity is a good deal smaller than the trivial 1+logn.) We say that H ∈ NPcomm if
the non-deterministic communication complexity of every matrix C ∈ H is not greater
than a polynomial of log logn. We say that H ∈ co−NPcomm if the matrix set { :C ∈ H}
is in NPcomm. Then Example 12.6 shows that

Pcomm 6= NPcomm,

and Theorem 12.6 implies

Pcomm = NPcomm ∩ co−NPcomm.

12.4 Randomized protocols

In this part, we give an example showing that randomization can decrease the complexity
of protocols significantly. We consider again the problem whether the inputs of the two
players are identical. Both inputs are 0-1 sequences of length n, say x and y. We
can also view these as natural numbers between 0 and 2n − 1. As we have seen, the
communication complexity of this problem is n.

If the players are allowed to choose random numbers then the question can be settled
much easier, by the following protocol. The only change on the model is that both players
have a random number generator; these generate independent bits (it does not restrict
generality if we assume that the bits of the two players are independent of each other,
too). The bit computed by the two players will be a random variable; the protocol is
good if this is equal to the “true” value with probability at least 2/3.

12.10 Protocol Alice chooses a random prime number p in the interval 1 ≤ p ≤ N
and divides x by p with remainder. Let the remainder by r; then Alice sends Bob the
numbers p and r. Bob checks whether y ≡ r (mod p). If not then he determines that
x 6= y. If yes then he concludes that x = y.

First we note that this protocol uses only 2 logN bits since 1 ≤ r ≤ p ≤ N . The
problem is that it may be wrong; let us find out in what direction and with what
probability. If x = y then it gives always the right result. If x 6= y then it is conceivable
that x and y give the same remainder at division by p and so the protocol arrives at a
wrong conclusion. This occurs if p divides the difference d = |x − y|. Let p1, . . . , pk be
the prime divisors of d, then

d ≥ p1 · · · pk ≥ 2 · 3 · 5 · · · · · q,

where q is the k-th prime number.
(Now we will use some number-theoretical facts. For those who are unfamiliar with

them but feel the need for completeness we include a proof of some weaker but still
satisfactory versions of these facts in the next section.)
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It is a known number-theoretical fact (see the next section for the proof) that for
large enough q we have, say,

2 · 3 · 5 · · · · · q > e
3
4 q > 2q

Since d < 2n it follows from this that q < n and therefore k ≤ π(n) (where π(n)
is the number of primes up to n). Hence the probability that we have chosen a prime
divisor of d can be estimated as follows:

P(p | d) =
k

π(N)
≤ π(n)

π(N)
.

Now, according to the prime number theorem, we have π(n) ≍ n/ logn and so if we
choose N = cn then the above bound is asymptotically 1/c), i.e. it can be made arbi-
trarily small with the choice of c. At the same time, the number of bits to be transmitted
is only 2 logN = 2 logn+ constant.

Remark 12.2 The use of randomness does not help in every communication problem
this much. We have seen in one of the exercises that determining the disjointness or the
parity of the intersection of two sets behaves, from the point of view of deterministic pro-
tocols, as the decision of the identity of 0-1 sequences. These problems behave, however,
already differently from the point of view of protocols that also allow randomization:
Chor and Goldreich have shown that Ω(n) bits are needed for the randomized compu-
tation of the parity of intersection, and Kalyanasundaram and Schnittger proved
similar lower bound for the randomized communication complexity of the decision of
disjointness of two sets.

Exercise 12.1 Show that the following communication problems cannot be solved with
fewer than the trivial number of bits (n+1): The inputs of Alice and Bob are one subset
each of an n-element set, X and Y . They must decide whether

• X and Y are disjoint;

• |X ∩ Y | is even.

Exercise 12.2 (a) Prove that in Example 12.2, any protocol requires at least logn bits.

(b)* Refine the protocol in this Exampleso that it uses only logn+ log logn+1 bits.

Exercise 12.3 Prove claim 12.8.

Exercise 12.4 Show that in Theorems 12.6 and 12.7 and in Corollary 12.9, with more
careful planning, the factor (2 + κND) can be replaced with (1 + κND).
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13 Interactive proofs

13.1 How to save the last move in chess?

Alice and Bob are playing chess over the phone. They want to interrupt the game for
the night; how can they do it so that the person to move should not get the improper
advantage of being able to think about his move whole night? At a tournament, the last
move is not made on the board, only written down, put in an envelope, and deposited
with the referee. But now the two players have no referee, no envelope, no contact
other than the telephone line. The player making the last move (say, Alice) has to tell
something; but this information should not be enough to determine the move, Bob would
gain undue advantage. The next morning (or whenever they continue the game) she has
to give some additional information, some “key”, which allows Bob to reconstruct the
move.

Surely this is impossible?! If she gives enough information the first time to uniquely
determine his move, Bob will know her move; if the information given the first time
allows several moves, then she can think about it overnight, and change her mind without
being noticed. If we measure information in the sense of classical information theory,
then there is no way out of this dilemma. But complexity comes to our help: it is not
enough to communicate information, it must also be processed.

To describe a solution, we need a few words on algorithmic number theory. Given
a natural number N , it can be tested in polynomial time whether it is a prime. These
algorithms are also practically quite efficient, and work well up to several hundred digits.
However, all the known prime testing algorithms have the (somewhat strange) feature
that if they conclude that N is not a prime, they do not (usually) find a decomposition
of N into a product of two smaller natural numbers (usually, they conclude that N is
anot a prime by finding that N violates Fermat’s “Little” Theorem). It seems impossible
to find the prime factorization of a natural number N in polynomial time.

(Of course, very powerful supercomputers and massively parallel systems can be used
to find decompositions by brute force for fairly large numbers; the current limit is around
a 100 digits, and the difficulty grows very fast (exponentially) with number of digits. To
find the prime decomposition of a number with 400 digits is way beyond the possibilities
of computers in the foreseeable future.)

Returning to our problem, Alice and Bob can agree to encode every move as a 4-digit
number. Alice extends these four digits to a prime number with 200 digits. (She can
randomly extend the number and then test if the resulting number is a prime. By the
Prime Number Theorem, she will have a success out of every ln 10200 ≈ 400 trials.)
She also generates another prime with 201 digits and computes the product of them.
The result is a number N with 400 or 401 digits; she sends this number to Bob. Next
morning, she sends both prime factors to Bob. He checks that they are primes, their
product is N , and reconstructs Alice’s move from the first four digits of the smaller
prime.

The number N contains all the information about her move: this consists of the first
for digits of the smaller prime factor of N . Alice has to commit herself to the move when
sending N . To find out the move of Alice, Bob would have to find the prime factors of
N ; this is, however, hopeless. So Bob only learns the move when the factors are revealed
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the next morning.
What Alice and Bob have established is an electronic “envelope”: a method to deposit

information at a certain time that can be retrieved at a given later time, and cannot
be changed in the meanwhile. The key ingredient of their scheme is complexity: the
computational difficulty to find the factorization of an integer. In this scheme, factoring
could be replaced by any other problem in NP that is (probably) not in P.

13.2 How to check a password — without knowing it?

In a bank, a cash machine works by name and password. This system is safe as long as
the password is kept secret. But there is one week point in security: the computer of
the bank must store the password, and the programmer may learn it and later misuse
it.

Complexity theory provides a scheme where the bank can verify that the costumer
does indeed know the password — without storing the password itself. One solution
uses the same construction as our telephone chess example. The password is a 200-digit
prime number P (this is, of course, too long for everyday use, but it illustrates the idea
best). When the costumer chooses the password, he also chooses another prime with
201 digits, forms the product N of the two primes, and tells the bank the number N .
When the teller is used, the costumer tells his name and the password P . The computer
of the bank checks whether or not P is a divisor of N ; if so, it accepts P as a proper
password. The division of a 400 digit number by a 200 digit number is a trivial task for
a computer.

Let us assume now that a programmer learns the number N stored along with the
files of our costumer. To use this in order to impersonate the costumer, he has to find
a 200-digit number that is a divisor of N ; but this is essentially the same problem as
finding the prime factorization of N , and, as remarked above, is hopelessly difficult.
So — even though the all the necessary information is contained in the number N —
the computational complexity of the factoring problem protects the password of the
costumer!

There are many other schemes to achieve the same. Let us describe another one that
we shall also use later. Recall that a Hamilton cycle in the graph is a closed polygon
that goes through every node exactly once.

We can use this notion for a password scheme as follows. The costumer chooses
a polygon H on 200 nodes (labelled 1,2,. . . ,200) as his password (this means that the
password is a certain ordering of these labels, like (7, 50, 1, . . . , 197, 20, 3)). Then he
adds some further edges randomly, and gives the resulting graph G to the bank. When
the costumer uses the teller, the computer simply checks that every edge of the polygon
encoded by the password is an edge of the graph G stored for the given costumer, and
if this checks out, it accepts the password.

The safety of this scheme depends on the fact that given a graph G with a few
hundred nodes (and with an appropriate number of edges), it is hopelessly difficult to
find a Hamilton cycle in it (even if we know that it exists). The number of edges to
be added is a difficult issue. If we add many edges to hide the original Hamilton cycle
well (say, const·n2) then we create too many new Hamilton cycles and one can find one
of them in polynomial time (see Karp***). On the other hand, if we add only const·n
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new edges (so that we create only a few new Hamilton cycles) then again there is a
polynomial time algorithm to find a Hamilton cycle (Frieze***). Perhaps the “right”
number is const·n logn (which is the threshold where Hamilton cycles disjoint from the
original begin to appear.

Many other problems in mathematics (in a sense, every problem in NP that is not
in P) gives rise to a password scheme.

13.3 How to use your password — without telling it?

The password scheme discussed in the previous section is secure if the program is hon-
est; but what happens if the program itself contains a part that simply reads off the
password the costumer uses, and tells it to the programmer? In this case, the password
is compromised if it is used but once. There does not seem to be any way out — how
could one use the passport without telling it to the computer?

It sounds paradoxical, but there is a scheme which allows the costumer to convince
the bank that he knows the password — without giving the slightest hint as to what the
password is! I’ll give an informal description of the idea (following Blum 1987), by
changing roles: let me be the costumer and you (the audience) play the role of the
comnputer of the bank. I’ll use two overhead projectors. The graph G shown on the
first projector is the graph known to the bank; I label its nodes for convenience. My
password is a Hamilton cycle (a polygon going through each node exactly once) in this
graph, which I know but don’t want to reveal.

I have prepared two further tranparencies. The first contains a polygon with the
same number of nodes as G, drawn with random positions for the nodes and without
labels. The second transparency, overlayed the first, contains the labels of the nodes
and the edges that complete it to a drawing of the graph G (with the nodes in different
positions). The two tranparencies are covered by a sheet of paper.

Now the audience may choose: should I remove the top sheet or the two top sheets?
No matter which choice is made, the view contains no information about the Hamilton
cycle, since it can be predicted: if the top sheet is removed, what is shown is a re-drawing
of the graph G, with its nodes in random positions; if the two top sheets are removed,
what is shown is a polygon with the right number of nodes, randomly drawn in the
plane.

But the fact that the audience sees what is expected is an evidence that I know a
Hamilton cycle in G! For suppose that G contains no Hamilton cycle, or at least I don’t
know such a cycle. How can I prepare the two transparencies? Either I cheat by drawing
something different on the bottom transparency (say, a polygon with fewer nodes, or
missing edges), or by having a different graph on the two transparencies together.

Of course, I may be lucky (say, I draw a polygon with fewer edges and the audience
opts to view the two transparencies together) and I will not be discovered; but if I cheat,
I only have a chance of 1/2 to get away with it. We can repeat this 100 times (each
time with a brand new drawing!); then my chance for being lucky each time is less than
2−100, which is much less than the probability that a meteorite hits the building during
this demonstration. So if a 100 times in a row, the audience sees what it expects, this
is a proof that I know a Hamilton cycle in the graph!
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To make this argument precise, we have to get rid of non-mathematical notions like
overhead projectors and transparencies. The reader may figure out how to replace these
by envelopes, which have been mathematically defined in section 1.

The most interesting aspect of the scheme described above is that it extends the
notion of a proof, thought (at least in mathematics) to be well established for more than
2000 years. In the classical sense, a proof is written down entirely by the author (whom
we call the Prover), and then it is verified by the reader (whom we call the Verifier).
Here, there is interaction between the Prover and the Verifier: the action taken by the
Prover depends on “questions” by the Verifier. The notion of interactive proof systems
was introduced independently by Goldwasser and Micali and by Babai around 1985,
and has lead to many deep and surprising results in computer science and mathematical
logic.

There is another feature which distinguishes this scheme from a classical proof: it also
makes use of lack of information, namely, that I cannot possibly know in advance the
choice of the audience. (If I am telling, say, Gauss’ proof that the regular 7-gon cannot
be constructed by compass and ruler, then it remains a valid proof even if I anticipate
the questions from the audience, or even have a friend asking the questions I wish.) In
a sense, a password scheme is also an interactive proof: my password is a proof that I
have the right to access the account — and again, a certain “lack of information” is a
key assumption, namely, that no unauthorized person can possibly know my password.

The kind of interactive proof described in this section, where the Verifier gets no
information other than a single bit telling that the claim of the Prover is correct, is
called a zero-knowledge proof. This notion was introduced by Goldwasser and Micali.

13.4 How to prove non-existence?

Everybody familiar with the notion of the class NP knows that it is easy to prove that
a graph is Hamiltonian: it suffices to exhibit a Hamiltonian cycle. But how to prove if
it is not Hamiltonian?

There are many problems (e.g, the existence of a perfect matching, or embeddability
in the plane), when there is also an easy way to prove non-existence; in other words,
these problems are in NP∩co-NP. For these problems, the existence of such a proof
often depends on rather deep theorems, such as the Marriage Theorem of Frobenius and
König, or Tutte’s theorem, or Kuratowski’s Theorem on planarity. But for the Hamilton
cycle problem no similar result is known; in fact, if NP 6=co-NP then no NP-complete
problem can have such a “good characterization”.

It turns out that with interaction, things get easier, and a Prover (being computa-
tionally very powerful himself) can convince a Verifier (who works in polynomial time
and, in particular, is able to follow proofs only if they have polynomial length relative
to the input size) about nonexistence. We start with the relatively simple problem of
graph isomorphism:

13.1 Given two graphs G1 and G2, are they isomorphic?

Trivially, the problem is in NP, and it is not known whether it is in co-NP (it is
probably not). However, there is a simple interactive protocol by which the Prover can
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convince the verifier that the two graphs are not isomorphic.
The Verifier selects one of the two graphs at random (each with probability 1/2, and

randomly relabels its nodes, to get a third graph G3. She then asks the Prover to guess
which of G1 and G2 it comes from.

If the two graphs are not isomorphic, the Prover can run any simple isomorphism
test to tell which of G1 and G2 is isomorphic to G3. (This may take exponential time,
but the Prover is very powerful, and can do this.) On the other hand, if the two graphs
are isomorphic, the Prover only sees 3 isomorphic graphs, and has only a chance of 1/2
to guess the answer correctly.

One can design an interactive protocol to prove that a given graph has no Hamilto-
nian cycle, is not 3-colorable, etc. In fact, it suffices to design such a protocol for the
negation of any NP-complete problem; then all problems in NP can be reduced to it.
We shall sketch the protocol, due to Nisan, that works for the following NP-complete
problem:

13.2 Given a polynomial p(x1, . . . , xn) with integral coefficients (say, of degree n), is
there a point y ∈ {0, 1}n such that f(y) 6= 0?

Trivially, the problem is in NP. But how to prove if the polynomial vanishes on
{0, 1}n?

The property of f the Prover wants to prove is equivalent to saying that

∑

x1,...,xn∈{0,1}

p2(x1, . . . , xn) = 0. (19)

Of course, the sum on the left hand side has an enormous number of terms, so the
Verifier cannot check it directly. So the Prover suggests to consider the one-variable
polynomial

f1(x) =
∑

x2,...,xn∈{0,1}

p2(x, x2, . . . , xn),

and offers to reveal its explicit form:

f1(x) = a0 + a1x+ · · · + adx
d, (20)

where d ≤ n. The Verifier checks, using this form, that f(0)+f(1) = 0; this is easy. But
how to know that (20) is the true form of f1(x)? To verify the coefficients one-by-one
would mean to reduce an instance in n variables to d + 1 instances in n − 1 variables,
which would lead to a hopelessly exponential protocol with more than dn steps.

Here is the trick: the Verifier chooses a random value ξ ∈ {0, . . . , n3}, and requests
a proof of the equality

f1(ξ) = a0 + a1ξ + · · · + adξ
d. (21)

Note that if the polynomials on both sides of (21) are distinct, then they agree on at
most d ≤ n places, and hence the probability that the randomly chosen integer ξ is one
of these places is at most n/n3 = 1/n2. So if the Prover is cheating, the chance that he
is lucky at this point is at most 1/n2.
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Now (21) can be written as

∑

x2,...,xn∈{0,1}

p2(ξ, x2 . . . , xn) = b, (22)

where the verifier easily calculates the value b = a0 + a1ξ + · · · + adξ
d. This is of the

same form as (19) (except that the right hand side is not 0, which is irrelevant), and the
Prover can prove recursively that (22) holds. The amount of exchange is O(d log n) bits
per iteration, which gives a total O(dn log n) bits; the total computational time used by
the verifier is clearly also polynomial.

By the theory of NP-completeness, it follows that every problem in co-NP has
polynomial-time interactive proofs. But the truth is much more interesting. This proto-
col has been improved by Lund, Fortnow, Karloff and Nisan (1990) and Shamir (1990)
to show that every problem in PSPACE has polynomial-time interactive proofs. (It is
easy to see that, conversely, every polynomial-time interactive proof translates into a
polynomial-space algorithm.)

13.5 How to handle submissions that keep the main result se-

cret?

Our last two examples come from a field which causes much headache to many of us:
editing scientific journals. These are “fun” examples and their purpose is to illuminate
the logic of interactive proofs rather then propose real-life applications (although with
the fast development of e-mail, electronic bulletin boards, on-line reviewing, and other
forms of electronic publications — who knows?).

A typical impasse situation in journal editing is caused by the following letter: “I
have a proof of Fermat’s Last Theorem, but I won’t send you the details because I am
afraid you’d steal it. But I want you to announce the result.” All we can do is to point
out that the policy of the Journal is to publish results only together with their proofs
(whose correctness is verified by two referees). There is no way to guarantee that the
editor and/or the referee, having read the proof, does not publish it under his own name
(unfortunately, this does seem to happen occasionally).

The result sketched in the section 3, however, can resolve the situation. One feels
that the situation is similar: the author has to convince the editor that he has a proof,
without giving any information about the details of the proof. Now the theory of NP-
completeness gives the following: for every mathematical statement T and number k
one can construct a graph G such that T has a proof of length at most k if and only if
G has a Hamilton cycle. So the editor can come up with the following suggestion upon
receiving the above letter: “Please construct the graph corresponding to Fermat’s last
theorem and the length of your proof, and prove me, using Blum’s protocol, that this
graph has a Hamilton cycle.” This takes some interaction (exchange of correspondance),
but in principle it can be done.
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13.6 How to referee exponentially long papers?

Probabilistically Checkable Proofs

But of course, the real difficulty with editing a Journal is to find referees, especially for
longer papers. Who wants to spend months to read a paper of, say, 150 pages, and look
for errors in the complicated formulas filling its pages? And, unfortunately, the devil is
often hidden in the little details: a “-” instead of a “+” on the 79-th page may spoil the
whole paper. . .

Recent results of Babai et al (1990) offer new possibilities. Let us give, first, two
informal descriptions of what turns out to be the same fact.

Assume that instead of one, we have two Provers. They are isolated, so that they
cannot communicate with each other, only with the Verifier. It is clear that this makes
it more difficult for them to cheat (see any crime drama), and so they may succeed
in convincing the Verifier about some truth that they could not individually convince
him about. Does this really happen? Babai at al. (1990) gave a protocol that allows
two provers to give a polynomial time interactive proof for every property that has an
“ordinary” proof of exponential length.

It is interesting to point out that this is the first result where we see that inteeraction
really helps, without any unproven complexity hypothesis like P 6=NP: it is known that
there are properties whose shortest proofs grow exponentially with the input size of the
instance.

The protocol of Babai et al. is a very involved extension of the protocol desribed in
section 4, and we cannot even sketch it here.

There is another interpretation of these results. It is commonplace in mathematics
that sometimes making a proof longer (including more detail and explanation) makes it
easier to read. Can this be measured? If a proof is written down compactly, without
redundancy, then one has to read the whole proof in order to check its correctness. One
way of interpreting the results mentioned above is that there is a way to write down
a proof so that a referee can check the correctness of the theorem by reading only a
tiny fraction of it. The proof becomes longer than necessary, but not much longer. The
number of characters the referee has to read is only about the logarithm of the original
proof length! To be precise, if the original proof has length N then the new proof can be
checked by reading O(logN) characters; see Feige at al (1991), Safra***. So a 2000-page
proof (and such proofs exist!), can be checked by reading a few lines! What a heaven
for referees and editors!

This modified write-up of the proof may be viewed as an “encoding”; the encoding
protects against “local” errors just like classical error-correcting codes protect against
“local” errors in telecommunication. The novelty here is the combination of ideas from
error-correcting codes with complexity theory.

Let us state the result formally. Let A be a randomized algorithm that for every
x, y ∈ {0, 1}∗ computes a bit A(x, y). We say that A is a verifier for a language
L ⊆ {0, 1}2 with one-sided error if for every positive integer n there exists a positive
integer m such that for every x ∈ {0, 1}n,

(a) if x ∈ L, then there exists a y ∈ {0, 1}m such that A(x, y) = 0 with probability
1;
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(b) if x /∈ L, then for all y ∈ {0, 1}m, the probability that A(x, y) = 0 is less than
1/2.

We say that the verifier is (f, g, h)-lazy, if it works in O(f(|x|)) time, uses O(g(|x|))
random bits, and reads O(h(|x|)) bits of the string y.

Clearly NP consists of those languages which have a (nconst, 0, nconst)-lazy verifier.
The following theorem, called the PCP Theorem, was proved by Arora, Lund, Mot-

wani, Safra, Sudan and Szegedy in 1992. The proof is involved and not given here.

Theorem 13.3 For every language in NP there is an (nconst, logn, 1)-lazy verifier.

One should note that we don’t need witnesses y longer than a polynomial in |x|.
Indeed, the verifier uses a most c1 logn bits, so the total number of outcomes for his
coin flips is at most nc1 . Furthermore, for any outcome of the coin flips, he reads at
most c2 bits of y. So there are at most c2n

c1 bits in y that are ever read; we can dispose
of the rest.

The main application of the PCP Theorem is that it implies lower bounds on how
well combinatorial optimization problems can be approximated. We illustrate this by
the following. Recall that the clique number ω(G), the maximum number of nodes in a
clique of G, is NP-hard to compute.

Theorem 13.4 Suppose that there is a polynomial time algorithm that computes and
approximation f(G) of the clique number such that for every graph G, ω(G) ≤ f(G) ≤
2ω(G). Then P = NP .

Proof. Let L ⊆ {0, 1}∗ be any NP-complete language, say 3-SAT. By the PCP
Theorem, it has an (nconst, logn, 1)-lazy verifier A. For a fixed length n = |x|, let A use
k ≤ c1 logn random bits and read b bits of y.

For a given string x ∈ {0, 1}∗, we construct a graph Gx as follows. The nodes of Gx

will be certain pairs (z, u), where y ∈ {0, 1}k and u ∈ {0, 1}b. To decide if such a pair is
a node, we start the algorithm A with the given x and with z as its random bits. After
some computation, it tries to look up b entries of y; we give it the bits u1, . . . , ub. At
the end, it outputs 0 or 1; we take (z, u) as a node of G if it outputs 1.

To decide if two pairs (z, u) and (z′, u′) are adjacent, let us also remember which
positions in y the algorithm A tried to read when starting with (x, u), and also when
starting with (x, u′). If there is one and the same position read both times, but the
corresponding bits of u and u′ are different, we say that there is a conflict. If there is
no conflict, and we connect (z, u) and (z′, u′) by an edge. Note that the graph Gx can
be constructed in polynomial time.

Suppose that x ∈ L. Then this has a proof (witness) y ∈ {0, 1}m. For every sequence
z = z1 . . . zk of random bits, we can specify a string u ∈ {0, 1}b such that (z, u) ∈ V (Gx),
namely the string of bits that the algorithm reads when started with inputs x, y and z.
Furthermore, it is trivial that between these there is no conflict, so these 2k nodes form
a clique. Thus in this case ω(Gx) ≥ 2k.

Now suppose that x /∈ L, and assume that the nodes (z, u), (z′, u′), . . . , (z(N), u(N))
form a clique in Gx. The strings z, z′, . . . must be different; indeed, if (say) z = z′, then
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A tries to look up the same positions in y in both runs, so if there is no conflict, then
we must have u = u′.

We create a string y as follows. We start with m empty positions. We run A with
input x and random bits z, and we insert the bits of u in the b positions which the
algorithm tries to look up. Then we repeat this with random bits z′; if we need to
write in a position we already have a bit in, we don’t have to change it since (z, u) and
(z′, u′) are connected by an edge. Similarly, we can enter the bits of u′′, . . . u(N) in the
appropriate positions without having to overwrite previously entered bits.

At the end, certain positions in y will be filled. We fill the rest arbitrarily. It is clear
from the construction that for the string y constructed this way,

Pr(A(x, y) = 1) ≥ N

2k
,

and so by condition (b), N < 2k−1. So if x /∈ L then ω(Gx) < 2k−1.
Now if a polynomial time algorithm exists that computes a value f(Gx) such that

ω(Gx) ≤ f(Gx) ≤ 2ω(Gx), then we have f(Gx) ≥ ω(Gx) ≥ 2k if x ∈ L, but f(Gx) ≤
2ω(Gx) < 2k if x /∈ L, so we can decide whether x ∈ L in polynomial time. Since L is
NP-complete, this implies that P = NP . �

Exercise 13.1 Design a 0-knowledge protocol that proves that a given graph is 3-
colorable.

Exercise 13.2 Prove that problem 13.2 is NP-complete.
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14 The complexity of algebraic computations

(To be written)
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15 Circuit complexity

15.1 Introduction

A central, but extremely difficult problem in the theory of computation is to prove
lower bounds on the time and space complexity of various computational tasks. The
key problem is whether P = NP , but much simpler questions remain unanswered. The
approach of classical logic, trying to extend the methods that were used in Chapter 2
to prove undecidability results, seems to fail badly.

Another, more promising approach to proving lower bounds on the computational
complexity of a problem is combinatorial. This approach focuses on the Boolean circuit
model of computation, and tries to analyze the (rather complex) flow of information
through the steps of the computation. We illustrate this method by a beautiful (but
rather difficult) proof in this spirit (it might underline the difficulty of these questions
that this is perhaps the easiest proof to tell in this area!).

We discuss two very simple functions, already introduced in Chapter 1: the majority
function

MAJORITY(x1, . . . , xn) =

{

1, if at least n/2 of the variables is 1;

0, otherwise.

and the parity function or XOR function

PARITY(x1, . . . , xn) = x1 + x2 + · · · + xn (mod 2).

These functions are of course very easy to compute, but suppose we want to do it in
parallel in very little time? Instead of going into the complications of PRAMs, let us
consider a more general model of parallel computation, namely, Boolean circuits with
small depth.

At this point, we have to make an important remark: if we restrict the fan-in (in-
degree) of the Boolean circuit to 2, then it is easy to see that we need at least logn
depth, just to get an output node which is dependent on all the inputs (see exercise).
However, we will allow arbitrary fan-in and fan-out (this is analogous to the concurrent-
read-concurrent-write model of parallel computation).

We can recall now from Chapter 1 that every Boolean function can be computed by
a Boolean circuit of depth 2. However, it is easy to see that even for simple functions like
the majority function, the resulting circuit is exponentially large. On the other hand,
if we have a polynomial time algorithm to compute such a function, then this can be
converted (again, as described in Chapter 1) to a Boolean circuit of polynomial size.
However. this circuit will have large (typically linear, if you are careful, logarithmic)
depth.

Can we simultaneously restrict the size to polynomial and the depth to less than
logarithmic? The answer is negative even for quite simple functions. In a series of
increasingly stronger results, Furst–Saxe–Sipser, Ajtai, Yao and Hastad proved that
every constant-depth circuit computing the parity function has exponential size, and the
every polynomial-size circuit computing the parity function has (essentially) logarithmic
depth. Let us state the result in detail (the proof is too complex to be given here).
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Theorem 15.1 Every circuit with n input bits and depth d that computes the parity

function has at least 2(1/10)n1/(d−1)

gates.

Not much later Razborov proved analogous results for the majority function. In
fact, he proved a stronger result by allowing circuits that may have parity gates, or XOR
gates, in addition to the usual AND, OR and NOT gates, where a parity gate computes
the binary sum of any number of bits. The proof, though not easy, can be reproduced
here for the enjoyment of the truely interested.

15.2 Lower bound for the Majority Function

Let us start with the exact statement of the theorem.

Theorem 15.2 If C is a circuit of depth d, with AND, OR, XOR, and NOT gates that

computes the majority function of n input bits, then C has at least 2n(1/2d)

/10
√
n gates.

We would not really need all these types of gates (just like we don’t need both AND
and OR gates in a Boolean circuit). We can assume without loss of generality that the
circuit uses only NOT, XOR and OR gates, since these can be used to simulate AND
gates within constant depth and polynomial size (see exercise).

The idea of the proof is to introduce “approximations” of the gates used during the
computation. Using the approximate gates, instead of the real gates, one computes
an approximation of the majority function. The quality of the approximation will be
measured in terms of the number of inputs on which the modified circuit differs from
the original. The main point of the approximation is to keep the computed function
“simple” in some sense. We will show that every “simple” function, and in particular the
approximation we compute, differs from the majority function on a significant fraction
of the inputs. Since the approximation of each gate has a limited effect on the function
computed, we can conclude that many approximations had to occur.

The proof will be easier to describe if we generalize the result to a family of closely
related functions, the k-threshold functions fk. The k-threshold function is 1 when at
least k of the inputs are 1. It is easy to see that if there is a circuit of size s that computes
the majority function of 2n− 1 elements in depth d, then for each k, 1 ≤ k ≤ n, there
is a circuit of depth d and size at most s that computes the k-threshold function on n
elements (see exercise). Therefore, any exponential lower bound for fk implies a similar
bound for the majority function. We shall consider k = ⌈(n+h+1)/2⌉ for an appropriate
h.

Each Boolean function can be expressed as a polynomial over the two-element field
GF (2). In fact, such a representation can be computed following the computation
described by the circuit. If p1 and p2 are polynomials representing two functions, then
p1+p2 is the polynomial corresponding to the XOR of the two functions. The polynomial
p1p2 corresponds to their AND, which makes it easy to see that (p1 + 1)(p2 + 1) + 1
corresponds to their OR. The polynomial 1 − p corresponds to the negation of the
function represented by the polynomial p.

The measure of simplicity of a Boolean function f for this proof is the degree of the
polynomial representing the function or for short, the degree of the function. Note that
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the inputs have degree 1, i.e., they are very simple. But the degree may grow very fast
as we follow the circuit; in fact, since we do not restrict fan-in, a single OR gate can
produce a function with arbitrarily high degree!

The trick is to show that these functions can be approximated by polynomials of low
degree. The following lemma will serve as the basis for the approximation.

Lemma 15.3 Let g1, . . . , gm be Boolean functions of degree at most h. If r ≥ 1 and
f = ∨m

i=1gi, then there is a function f ′ of degree at most rh that differs from f on at
most 2n−r inputs.

Proof. Let us go through the indices 1, 2, . . . ,m one by one, and for each such number,
flip a coin. If we get HEAD, we select this number; else, we move on. Let I1 be the set
of numbers selected (so I1 is a random subset of {1, . . . ,m}). We repeat this experiment
r times, to get the random subsets I1, . . . , Ir. Let

fj =
∑

i∈Ij

gi,

and consider f ′ = ∨r
j=1fj. We claim that the probability that f ′ satisfies the require-

ments of the lemma is non-zero.
It is clear that the degree of the polynomial for f ′ is at most rh. Furthermore,

consider an input α; we claim that the probability that f ′(α) 6= f(α) is at most 2−r. To
see this, consider two cases. If gi(α) = 0 for every i, then both f(α) = 0 and f ′(α) = 0.
On the other hand, if there exists an index i for which gi(α) = 1, then f(α) = 1 and
for each j, fj(α) = 0 independently with probability at most 1/2. Therefore, f ′(α) = 0
with probability at most 2−r, and the expected number of inputs on which f ′ 6= f is
at most 2n−r. Hence for at least one particular choice of the sets Ij , the polynomial f ′

differs from f on at most 2n−r inputs. �

Next we show that any function of low degree has to differ from the k-threshold
function on a significant fraction of the inputs.

Lemma 15.4 Let n/2 ≤ k ≤ n. Every polynomial with n variables of degree h =
2k − n− 1 differs from the k-threshold function on at least

(

n
k

)

inputs.

Proof. Let g be a polynomial of degree h and let B denote the set of vectors where it
differs from fk. Let A denote the set of all 0-1 vectors of length n containing exactly k
1’s.

For each Boolean function f , consider the summation function f̂(x) =
∑

y≤x f(y).
It is trivial to see that the summation function of the monomial xi1 . . . xir is 1 for the
incidence vector of the set {i1, . . . , ir} and 0 on all other vectors. Hence it follows that

f has degree at most h if and only if f̂ vanishes on all vectors with more than h 1’s. In
contrast to this, the summation function of the k-threshold fk is 0 on all vectors with
fewer than k 1’s, but 1 on all vectors with exactly k 1’s.
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Consider the matrix M = (mab) whose rows are indexed by the members of A, whose
columns are indexed by the members of B, and

mab =

{

1, if a ≥ b,

0, otherwise.

We want to show that the columns of this matrix generate the whole space GF (2)A.
This will imply that |B| ≥ |A| =

(

n
k

)

.
Let a1, a2 ∈ A and let a1 ∧ a2 denote their coordinatewise minimum. Then we have,

by the definition of B,

∑

b≤a1
b∈B

ma2b =
∑

b≤a1∧a2
b∈B

1 =
∑

u≤a1∧a2

(

fk(u) + g(u)
)

=
∑

u≤a1∧a2

fk(u) +
∑

u≤a1∧a2

g(u).

The second term of this last expression is 0, since a1 ∧ a2 contains at least h + 1 1’s.
The first term is also 0 except if a1 = a2. The columns of M therefore generate the unit
vector corresponding to the coordinate a1, and so they generate the whole space. �

It is easy now to complete the proof theorem 15.2. Assume that there is a circuit
of size s and depth d to compute the k-threshold function for inputs of size n. Now
apply Lemma 15.3 with r = ⌊n1/(2d)⌋ to approximate the OR gates in this circuit. The
functions computed by the gates at the ith level will be approximated by polynomials
of degree at most ri. Therefore, each resulting approximation pk of the k-threshold
function will have degree at most rd. Lemma 15.4 implies that for k = ⌈(n+ rd + 1)/2⌉,
the polynomial pk differs from the k-threshold function on at least

(

n
k

)

inputs. This

shows that s2n−r ≥
(

n
k

)

. From this, routine calculations yield that

s ≥
(

n

k

)

2r−n >
2r

√
πn

,

which establishes the desired exponential lower bound.

15.3 Monotone circuits

Perhaps the deepest result on circuit complexity was obtained by Razborov in 1985. The
main point is that he does not make any assumption on the depth of the circuit; but,
unfortunately, he still has to make a rather strong restriction, namely monotonicity. A
Boolean circuit is monotone, if all of its input nodes are unnegated variables, and it has
no NOT gates. Obviously, such a circuit can compute only monotone functions; but it
is not difficult to see that every monotone function can be computed by a monotone
circuit. The monotonicity of the function is not a serious restriction; many interesting
functions in NP (e.g. matching, clique, colorability etc.) are monotone. For example,
the k-clique function is defined as follows: it has

(

n
2

)

variables xij , 1 ≤ i < j ≤ n, and its
value is 1 if and only if the graph described by the particular setting of the variables has
a clique of size k. Since some of these are NP-complete, it follows that every problem
in NP can be reduced in polynomial time to the computation of a monotone function in
NP.
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Razborov gave a superpolynomial lower bound on the monotone circuit complexity of
the clique problem, without any restriction on the depth. This result was strengthened
by Andreev, Alon and Boppana, to an exponential lower bound on the monotone circuit
complexity of the k-clique function.

Unfortunately, while, as we have seen, restricting the functions to monotone functions
does not mean a substantial restriction of generality, the restriction of the circuits to
monotone circuits does. É. Tardos constructed a family of monotone Boolean functions
which can be computed in polynomial time, but need an exponential number of gates if
we use a monotone circuit.

Exercise 15.1 If a Boolean circuit has fan-in 2, and it computes a function in n vari-
ables that depends on each of its variables, then its depth is at least logn.

Exercise 15.2 (a) Show that the negation of a variable can be computed by using only
XOR gates, if we can use the constant 1. (b) Show that the AND of n variables can
be computed by a circuit using NOT, OR and XOR gates, with constant depth and
polynomial size.

Exercise 15.3 Suppose that there is a circuit of size s that computes the majority
function of 2n − 1 elements in depth d. Show that for each k, 1 ≤ k ≤ n, there is
a circuit of depth d and size at most s that computes the k-threshold function on n
elements.
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