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illuminating example of a Cayley graph of exponential growth on which simple randomwalk has zero entropy (and zero speed) was described by Kaimanovich and Vershik (1983).Random walks on this Cayley graph with bias toward the identity element will be the focusof the present article. These are not group-invariant random walks, but they do capturethe growth rate of the group: Lyons (1995) showed that such biased random walks on anyCayley graph are transient for all values of the bias less than the exponential growth rateof the group. Here, we prove the surprising result that this inward biasing can change thespeed from zero to a positive number.More precisely, for � > 0, de�ne the �-biased random walk RW� on a connectedlocally �nite graph with a distinguished vertex � as the time-homogeneous Markov chainhXn ; n � 0i with the following transition probabilities. The distance jvj from a vertexv to � is the number of edges on a shortest path joining the two vertices. Suppose thatv is a vertex of the graph. Let v1; : : : ; vk (k � 1 unless v = �) be the neighbors of vat distance jvj � 1 from � and u1; : : : ; uj (j � 0) be the other neighbors of v. Then thetransition probabilities are p(v; vi) = �=(k�+ j) for i = 1; : : : ; k and p(v; ui) = 1=(k�+ j)for i = 1; : : : ; j. This is a reversible Markov chain with edge weights (or conductances)��n on edges at distance n from �. Note that simple random walk, when all neighborsare equally likely, is the particular case � = 1. In the special case of a Cayley graph, wetake � to be the identity element. De�ne the growth rate of a �nitely generated groupG, denoted grG, to be the limit as n!1 of the nth root of the number of vertices in itsCayley graph at distance n from �. The result of Lyons (1995) mentioned above is thatRW� is transient for � < grG and recurrent for � > grG. This may not be surprising ifwe think of the Cayley graph of G as being something like spherically symmetric; after all,it is vertex transitive. However, this point of view is not well justi�ed. For example, thereare amenable groups of exponential growth; thus, the balls in these groups do not formF�lner sets. For one such group, called G1 by Kaimanovich and Vershik (1983, Section6.1), we show that the speed of RW� is positive for 1 < � < grG1 = ' := (1 + p5)=2,although it vanishes for � = 1. This demonstrates how far this Cayley graph is frombeing spherically symmetric since on any spherically symmetric graph, the speed of RW�is monotone decreasing (when it exists).The group G1, also known as the lamplighter group, is de�ned as a semidirect productG1 :=ZnPx2Z Z2 of Zwith the direct sum of copies of Z2 indexed by Z; for m;m0 2 Zand �; �0 2Px2Z Z2, the group operation is(m;�)(m0; �0) := (m+m0; � �S�m�0) ;where S is the left shift, S(�)(j) := �(j + 1), and � is componentwise addition modulo 2.2



We call an element � 2Pm2Z Z2 a con�guration and call �(k) the bit at k. We identifyZ2 with f0; 1g. The �rst component of an element x = (m;�) 2 G1 is called the positionof the marker in the state x, denoted M(x). Generators of G1 are (1;0), (�1;0), and(0;10). The reason for the name of this group is that we may think of a streetlamp ateach integer with the con�guration � representing which lights are on, namely, those where� = 1. We also may imagine a lamplighter at the position of the marker. The �rst twogenerators of G1 correspond to the lamplighter taking a step either to the right or to theleft (leaving the lights unchanged); the third generator corresponds to ipping the light atthe position of the lamplighter. See Figure 1.1.
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000 0 0000000 0Figure 1.1. A typical element of G1; the ags are de�ned in (1.1).Simple random walk on G1 thus corresponds to the marker moving according tosimple random walk on Zwith delays one-third of the time when it changes the bit at itslocation. However, RW� is quite di�erent in that the con�guration inuences the transitionprobabilities of the marker as a random walk onZ. Namely, for � > 1, there is a tendencyfor the walk to return to the initial state �, which means that the marker has a greatertendency to change bits to 0 than to 1. In order to do so, rather than head for the origin,the marker heads for the bit equal to 1 that is on the same side of the origin as the markerand is most extreme since this is a shortest path back to �.Theorem 1.1. Whenever 1 < � < ', the speed of RW� on G1 is a.s. a strictly positiveconstant. In fact, a lower bound for the speed is given bylimn!1 jXnjn � limn!1 jM(Xn)jn � (�� 1)(p�+ 1� �)3�(2 + �)(1 + ��p�+ 1) > 0 a.s.As a corollary, we see that for RW� with 1 < � < ', there are non-constant boundedharmonic functions on G1, e.g., the function whose value at x is the probability that thebit at the origin is eventually 0 given that the random walk starts at x.A crucial element in the proof of Theorem 1.1 is the 1-dimensionality of the underlyingspaceZ. This allows an easy determination of the shortest paths from � to any element ofG1, so that the transition probabilities for RW� admit simple expressions in terms of thecon�guration; see below. In contrast, the higher-dimensional analogues of G1 require the3
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0Figure 1.2. The lower bound for speed in Theorem 1.1.solution of a traveling-salesman problem to determine the transition probabilities of RW�and it is unknown whether the speed is still positive.Coming back to the 1-dimensional situation, consider outward-biased random walkson G1, i.e., RW� for 0 < � < 1. Surprisingly, these escape from the identity even moreslowly than simple random walk:Proposition 1.2. Whenever 0 < � < 1, the speed of RW� on G1 is a.s. 0. In fact,lim infn!1 jXnjlogn > 0 and lim supn!1 jXnjlogn <1 a.s.This is much easier to prove than Theorem 1.1; see Section 4. Also, it follows fromstandard shift-coupling techniques that the only bounded harmonic functions are the con-stants when 0 < � < 1.To make explicit the distances and transition probabilities on G1, de�neagR := supfk � 0 ; �(k) = 1g and agL := inffk � 0 ; �(k) = 1g : (1:1)We call these the right and left ags; note that when �(k) = 0 for all k � 0, we haveagR = �1 and similarly for agL. When m � 0, we havej(m;�)j = 2jagL ^ 0j+m+ 2(agR �m)+ +Xk2Z �(k) (1:2)4



and similarly when m < 0. The transition probabilities are as follows for the case m � 0;the case m < 0 is symmetric. First, we have p(�; x) = 1=3 for all the generators x of G1.If (m;�) 6= � and agR < m, then p�(m;�); (m � 1; �)� = �=(�+ 2) andp�(m;�); (m+ 1; �)� = p�(m;�); (m;� � 1m)� = 1=(�+ 2) :If agR =m, then p�(m;�); (m;��1m)� = �=(�+2) and the other transition probabilitiesare 1=(� + 2). Finally, if m < agR and �(m) = 0, then p�(m;�); (m + 1; �)� = �=(� + 2)and the other transition probabilities are 1=(�+ 2), while if �(m) = 1, thenp�(m;�); (m+ 1; �)� = p�(m;�); (m;� � 1m)� = �=(2� + 1)and p�(m;�); (m � 1; �)� = 1=(2�+ 1).Thus, RW� on G1 can be studied directly as a random walk interacting with a dy-namical environment on Z, without any reference to the group structure. However, theonly proof we know that establishes positivity of speed for all � 2 (1; ') uses explicitlythe structure of the Cayley graph. Simpler comparison arguments are available to showpositivity of speed for � in the smaller range (1; 1:5).x2. The Fibonacci Tree and Semitightness.In this section, we begin our analysis of the dynamics of RW�. We �rst obtain a lowerbound on the escape probability from � by using a subtree of the Cayley graph. This isthen given a \stationary" version. Next, we prove that the marker is unlikely to be muchcloser to the origin than are the ags and, �nally, that when the marker is at a ag, theexpected time until a ag separates the marker from the origin is �nite.We �rst de�ne a subgraph of G1 which is a tree rooted at �. The vertices consistof states x = (m;�) for which m � agR(x) and �(k) = 0 for all k < 0. Each vertex(m;�) with agR(m;�) = m has the single child (m + 1; �) and each vertex (m;�) withagR(m;�) < m has the two children (m + 1; �) and (m;� � 1m). This is called theFibonacci tree (see Figure 2.1). Since the number of vertices at distance n from the rootof the Fibonacci tree is asymptotically a constant times 'n, this shows that grG1 � '.From this, it is not hard to see that an upper bound for the number of vertices at distancen from � in the Cayley graph of G1 is a constant times Pk�n 'k, which, again, is justasymptotically a constant times 'n. Hence, grG1 = '.Transience of RW� implies that lim sup jM(Xn)j = 1, but it does not immediatelyimply that lim jM(Xn)j exists. In fact, this limit does exist when 1 < � < ', so that the5



Figure 2.1.marker tends either to1 or to �1. These cases are clearly symmetric and it is convenientto deal with them separately by removing a half line. Thus, de�ne the subset G+1 � G1to be the set of (m;�) such that m � 0 and �(j) = 0 for all j < 0. Observe that for anyx 2 G+1 , the shortest paths connecting x to � in G1 are contained in G+1 . Thus RW�on G+1 has the same transitions as RW� on G1 except that transitions where the markermoves to �1 are suppressed. We use the method of Lyons (1995) to show that RW� istransient on G+1 .Lemma 2.1. Assume that 1 < � < '. The probability that RW� on G+1 started from �never returns to � is at least h(�), whereh(�) := p�+ 1� �2(1 + ��p�+ 1) > 0 :In particular, RW� is transient on G+1 .Proof. Observe that the Fibonacci tree is also a subgraph of G+1 . Let C(�) denote thee�ective conductance of the Fibonacci tree from the root to in�nity. Observe that if vin generation n has two children, then the e�ective conductance from v to in�nity in thedescendant subtree rooted at v is ��nC(�). Since the edges incident to � have conductance1, the obvious recursions of the Fibonacci tree and the usual series-parallel laws give theequation C(�) = 11 + �=C(�) + 11 + �+ �2=C(�) :Since the Fibonacci tree is subperiodic, C(�) > 0 for � < ' by Lyons (1990), whence theunique positive solution is C(�) = p�+ 1� �1 + ��p�+ 1 : (2:1)6



By Rayleigh's Monotonicity Principle (see Doyle and Snell (1984)), the e�ective conduc-tance from � to in�nity in G+1 is at least the conductance on any subgraph, hence at leastC(�). The escape probability of RW� on G+1 from �, i.e., the probability that the randomwalk never returns to �, is at least C(�) divided by the total conductance incident to �(see again Doyle and Snell); the latter is 2, which proves the lemma.We are interested in looking at the con�guration from the viewpoint of the marker inorder to �nd a stationary measure and thus be able to use ergodic theory. Now, after a longtime, RW� on G+1 will be far right of the root and many bits will be 1. In order to allow(in the limit) in�nitely many 1's to the left of the marker, de�ne the space � � G1 � G+1to be the set of (m;�) 2 Z� f0; 1gZ such that Pj>0 �(j) < 1. Let RW(�1)� denote theMarkov chain on � obtained by ignoring the left ag and not assigning any special statusto the origin of Z. More precisely, de�ne ag := supfk 2 Z; �(k) = 1g. The transitionsgive relative weights 1 for the marker moving away from the ag, � for the marker movingtoward the ag, and ��(m) for ipping the bit at the marker.Lemma 2.2. For k 2Z, letAk := fx 2 � ; ag(x) < M(x) � kg :Suppose that hY0; Y1; : : :i is the Markov chain RW(�1)� started from any initial state withag(Y0) < M(Y0). ThenP[Yn =2 AM(Y0) for all n > 0] � 22 + �h(�) :Proof. Without loss of generality, we may assume that M(Y0) = 0. De�ne the mapQ : �! G+1 by Q(m;�) := (maxfm; 0g; �1[0;1)) :Observe that Q(Yn) will sometimes remain constant, but that the (possibly �nite) sequenceof successive changes of state will have the distribution of RW�.It is evident that if Yn 2 A0, then Q(Yn) = Q(Y0). Therefore, the event fYn =2A0 for all n > 0g contains the event fQ(Yn) 6= Q(Y0) for all n > 0g. Conditional onfQ(Y1) 6= Q(Y0)g, the probability of fQ(Yn) 6= Q(Y0) for all n > 0g is at least h(�) byLemma 2.1. Thus P[Yn =2 A0 for all n > 0] � h(�)P[Q(Y1) 6= Q(Y0)]= 22 + �h(�) :We now establish the semitightness property that the marker is unlikely to be far tothe left of the ag. Let Fn := �(Y0; : : : ; Yn).7



Lemma 2.3. Let hYni be the Markov chain RW(�1)� and Dn := ag(Yn) �M(Yn). IfD0 = 0, then for any n; k � 1 and 1 < � < ',P[Dn = k] � ��(k�1)=2 1 + 2�(p� � 1)2 :Proof. For any r � 0, let �r := minfn � r ; Dn � 0g. Set � := (1 + 2�)=(� + 2p�) > 1and de�ne Vn := (p�)Dn�n :We show that fVn^�r ; n � rg is a supermartingale. Observe that jDn+1 � Dnj � 1 aslong as Dn > 0. Let p(n)+ and p(n)� denote the conditional probabilities of Dn respectivelyincreasing by one and decreasing by one conditional on Fn. Then for r � n < �r,E[V(n+1)^�r j Fn] = E[Vn+1 j Fn] = �Vn �1 + (p�� 1)p(n)+ + ( 1p� � 1)p(n)� �� �Vn 1 + p�� 1 + ( 1p� � 1)�1 + 2� ! = Vn = Vn^�rsince the numerator is negative and the only possibilities for the vector (p(n)+ ; p(n)� ) are(1 + 2�)�1(1; �) or (2 + �)�1(1; �).It follows that on the event Dr = 1 and for n � r,E[Vn^�r j Fr] � Vr = p��rand therefore by Markov's inequality,P[Dn = k; �r � n j Fr] � P[Vn^�r = �k=2�n j Fr] � ��(k�1)=2��(n�r) (2:2)on fDr = 1g. Now decomposing the event fDn = kg according to the last r such thatDr = 1, we get P[Dn = k] = nXr=1P�Dn = k; maxfj � n ; Dj = 1g = r� :The rth summand is at most the right-hand side of (2.2), and summing over r yields thedesired bound since 1=(1� ��1) = (1 + 2�)=(p�� 1)2.Finally, we show that when the marker is at the ag, the time until the marker is tothe right of the ag has �nite mean. 8



Lemma 2.4. Let hYni be the Markov chain RW(�1)� with M(Y0) = ag(Y0). If � is the�rst time that M(Y� ) > ag(Y� ), thenE[� ] � 1 + 2��� 1 :Proof. Set bDn := max�ag(Yn)�M(Yn);�1�. Note that for n < � , we haveE[ bDn+1 j Fn] � bDn � �� 11 + 2� :Let Wn := bDn + � � 11 + 2�n :Then fWn^� ; n � 0g is a supermartingale. By the optional stopping theorem (see Durrett(1991), Theorem 7.6), we get that0 � E[W� ] = E[ bD� ] + �� 11 + 2�E[� ] = �1 + � � 11 + 2�E[� ] :x3. Proof of the theorem.We are now in a position to look at the con�guration from the viewpoint of the marker.Recall that S denotes the left shift operator on f0; 1gZ . Let �� := f� ; Pj>0 �(j) < 1gand ag�(�) := supfk 2Z; �(k) = 1g. De�ne S� : �! �� byS�(m;�) := Sm(�)and set �n := S�(Yn). De�ne�n :=M(Yn)�M(Yn�1) 2 f�1; 0; 1gfor n � 1 and �0 := 0, say. Observe that h(�n;�n) ; n � 0i is a Markov chain.The transition probability kernel for h(�n;�n)i is denoted K��(�; �) and may be de-scribed as follows. When �n(0) = 0,�n+1 = 8<: sign(ag�(�n)) with probability �=(2 + �),�sign(ag�(�n)) with probability 1=(2 + �),0 with probability 1=(2 + �).When �n(0) = 1 and ag�(�n) = 0,�n+1 = 8<: 1 with probability 1=(2 + �),�1 with probability 1=(2 + �),0 with probability �=(2 + �) ,9



and when �n(0) = 1 but ag�(�n) > 0,�n+1 =8<: 1 with probability �=(1 + 2�),�1 with probability 1=(1 + 2�),0 with probability �=(1 + 2�) .Finally, �n+1 = �S�n+1�n if �n+1 = �1,�n � 10 if �n+1 = 0. (3:1)Note that S� takes the set fag(x) < M(x)g to the set fag� < 0g. Suppose thatag�(�0) < 0. Let n(k) be the kth return time of the sequence h�ji to fag� < 0g andZk := n(k)Xj=1 �j =M(Yn(k))�M(Y0) :If Zk � 0, then Yn(k) 2 AM(Y0). It follows from Lemma 2.2 that from any initial state withag� < 0, P[Zk > 0 for all k > 0] � 2h(�)2 + � : (3:2)Now assume that ag�(�0) = 0. Equip �� � f�1; 0; 1g with the metricd�(�; �); (�0; �0)� := j� � �0j+ 1Xj=�1 2jj�(j)� �0(j)j :With this metric, for any j0, the set f(�; �) ; 8j > j0 �(j) = 0g is compact. ByLemma 2.3, it follows that the laws of (�n;�n) are tight. Thus, the Ces�aro averagesn�1Pnj=1 Law(�j ;�j) are tight and have a subsequential weak� limit �0. Since the transi-tion probabilities K�� are continuous, �0 must be stationary for K��. Passing to an ergodiccomponent yields a stationary ergodic Markov chain (K��; �) (Rosenblatt 1971). Inducingthe Markov system (K��; �) on the subset fag� < 0g of the state space (see Petersen(1983)) yields a measure �0 for which the increments Zk+1�Zk form a stationary ergodicsequence.A little thought shows that Zk+1 � Zk is either �1, 0, or 1. Let Rk denote thecardinality of the range fZ1; : : : ; Zkg. From (3.2), it follows thatlimk!1Zk=k = limk!1Rk=k = P�0 [Zk 6= 0 for all k > 0] a.s. ; (3:3)where the second equality uses Theorem 6.3.1 of Durrett (1991). Hence by the ergodictheorem and (3.2), E�0 [Z2 � Z1] � 2h(�)2 + � : (3:4)10



By the tower proof of Kac's lemma (Petersen 1983), we haveE�[�1] = �fag� < 0gE�0 [Z2 � Z1] :By Kac's lemma itself, the reciprocal of �fag� < 0g is the expected return time tofag� < 0g. If the return time is not 1, then ag�(�1) = 0 and the expected additionaltime needed to return to fag� < 0g is, by Lemma 2.4, at most (1 + 2�)=(� � 1). Hencethe total expected return time is bounded by 1+(1+2�)=(��1) = 3�=(��1). Combinedwith (3.4), this yields s� := E�[�1] � 2(�� 1)3�(2 + �)h(�) : (3:5)Note that this is the lower bound in the statement of Theorem 1.1.Let p0 be the probability that RW� in G+1 started from (1;0) does not return to thein�nite set of states where the marker is at the origin. By the obvious coupling to G+1 ,the probability that the partial sumsPnj=1�j remain nonnegative is p0 starting from anystate in fag� < 0g. To see that p0 > 0, letT := inffn � 1 ; nXj=1�j < 0g ;which corresponds on � to the �rst time that the marker is not to the right of its startingpoint. According to the Maximal Ergodic Lemma (Durrett (1991), Theorem 6.2.2),E� ��11fT<1g� � 0 ;whence p0 = P[T =1] > 0 by (3.5).We use this to transfer the bound (3.5) to G1 by coupling RW� on G1 to the Markovchain K�� on �� with initial distribution � conditioned on fag� < 0g. Let hX0;X1; : : :i bethe Markov chain RW� on G1 starting from any state with M(X0) > agR(X0) � 0, andde�ne eT := inffn � 1 ; M(Xn) �M(X0)g :Let (�0;�0) have the conditional distribution (� j ag�(�0) < 0). For 1 � n < eT , de�ne�n :=M(Xn) �M(Xn�1). This produces by (3.1) a sequence h�n ; 0 � n < eT i; if eTis �nite, then continue the chain (�n;�n) independently by using the kernel K��. Notethat with this coupling, T = eT , and in particular, P[eT = 1] = p0. Thus, on the eventfeT =1g, the speed of the marker equalslimn!1M(Xn)=n = limn!1 1n nXj=1�j = E�[�1] = s� a.s. (3:6)11



by the ergodic theorem.Let N(k) be the �rst n > k such thatM(Xn) > agR(Xn) � 0 or M(Xn) < agL(Xn) � 0 :Then N(k) <1 a.s. and by the coupling argument of the preceding paragraph,P� limn!1 jM(Xn)j=n = s� �� X0;X1; : : : ;XN(k)� � p0 :Therefore the speed of the marker equals s� almost surely by the L�evy 0-1 law.We calculate the speed s0� of RW� by using (1.2) and the above coupling. LetUn := ��n(0) � �n�1(0)�1f�n=0g :Let Xn = (M(Xn); �n) be the Markov chain RW� on G1 starting from any state withM(X0) > agR(X0) � 0. On the event feT =1g, the coupling gives1nXk2Z �n(k) = 1nXk2Z �0(k) + 1n nXi=1 Ui ! E�[U1] a.s. (3:7)as n!1 by the ergodic theorem. The bound in Lemma 2.3 and the Borel-Cantelli lemmaimply that 1n�agR(Xn)�M(Xn)�+ ! 0 a.s. (3:8)Combining equations (1.2), (3.6), (3.7), and (3.8), we arrive atlimn!1 jXnj=n = s� +E�[U1] =: s0� (3:9)a.s. on feT =1g. Using symmetry and the L�evy 0-1 law as before shows that this equationholds a.s. and completes the proof.Remark. An alternative expression for E�[U1] is E�[�0(0)1fT=1g], which shows that thisexpectation is strictly positive. We omit the argument.12



x4. Continuity of Speed and Outward-biased Random Walks.Proposition 4.1. Both almost sure limitss� = limn!1 jM(Xn)j=n and s0� = limn!1 jXnj=nare continuous for � 2 [1; '). As � " ', both speeds tend to 0.Note that by the criterion of Nash-Williams (1959), RW' is recurrent.Proof. The continuity at � = 1 follows from the trivial boundss0� � 2s� = 2E�[M(X1)�M(X0)] � 2 �� 11 + 2� :For the continuity at points in (1; '), we need to make explicit the dependence of � on �,so denote the stationary measures by ��. It follows from the positivity of s� that thesemeasures are unique, but we do not need that fact. Instead, we may rely simply on thefact that s� and s0� are the same for all stationary measures since they have the valuesdetermined on G1. By Lemma 2.3, any collection f�� ; 1 < �min � � < 'g is tight.Since K�� is continuous in �, it follows that as � ! �0 2 (1; '), the measures �� have aweak�-limit point ��0 on �� which is K��0-stationary. Therefore, s� ! s�0 and s0� ! s0�0by the de�nitions (3.5) and (3.9).The proof that the speeds tend to 0 as � " ' requires another approach. As above,it su�ces to show that the speed of the marker s� ! 0 as � " '. Now this speed can beestimated in �� by inducing on the set fag� < 0g. Recall that Zk denotes the change inposition of the marker after k visits to fag� < 0g. From (3.3), we haves� � limk!1Zk=k = P�0 [Zk 6= 0 for all k > 0] :Checking the de�nitions shows that this last probability equals the probability for RW�to escape from � in G+1 . By Doyle and Snell (1984), this escape probability is the ratioof the e�ective conductance from � to in�nity divided by the sum of the conductancesincident to �. We bound the e�ective conductance by shorting all vertices at the samedistance from � (see Doyle and Snell (1984), Chapter 6). The shorted graph is equivalentto a graph on N with the edge conductance between n and n + 1 equal to ��n times thenumber of edges in G+1 at distance n from �. Since this last number is at most c'n forsome constant c, the e�ective resistance is at leastXn�0 (�=')nc = 'c('� �) :13



This �nally gives the bound s� � c('� �)2' :We now turn to outward-biased random walks on G1 and show that they escape at alogarithmic rate from the identity.Proof of Proposition 1.2. It su�ces to show this on G+1 . Let Lk be the position of themarker after it has moved k times. This stochastically dominates an asymmetric simplerandom walk on N, where the latter has probability �=(1+ �) of moving to the right. Theexpected time for the asymmetric walk to reach l is O(��l) (see Chung (1960), p. 65).Therefore, the same is true for hLki, whence the Borel-Cantelli lemma shows thatlim infk maxfLj ; j � kglog k > 0 a.s.Since the ag grows linearly in maxfLj ; j � kg, the lower bound of the propositionfollows.For the upper bound, note that from an initial state (0; �) with �(j) = 1 and j � 1,the number of visits of the marker to 0 before the �rst visit to j is geometric with meanat least c��j for some positive constant c. Therefore, from any state (j; �), the time untilthe marker is at j + 1 is at least c��j with probability bounded below by some � > 0,since the probability is bounded below that the next state has �(j) = 1 and subsequentlythe marker visits 0 before returning to j.Consequently, the probability that the marker reaches k from k � pk in less thanc��(k�pk) steps is at most (1� �)pk. The Borel-Cantelli lemma then yields thatlim supn!1 M(Xn)logn <1 a.s.This completes the proof (on G+1 ).Remark. The above argument shows that lim supn!1M(Xn)= logn = 1=j log �j a.s.Questions: The groups Gk, de�ned like G1 but with Zk in place of Z, also play animportant role in Kaimanovich and Vershik (1983): for k � 3, these yielded the �rstexamples of a symmetric �nitary measure on an amenable group which admits non-constantbounded harmonic functions. The speed of simple random walk on Gk is 0 i� k � 2. Isit true that the speed of RW� is positive on Gk for 1 < � < grGk? What can one sayabout the asymptotic shape of the con�guration on Gk? Is the speed of RW� positive for1 < � < grG when G is an arbitrary �nitely generated group?Acknowledgement: We are grateful to Vadim Kaimanovich for useful comments.14
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