Probability on Graphs and Groups — First problem set

Gábor Pete

http://www.math.bme.hu/~gabor

March 29, 2022

The number of dots • is the value of an exercise. Please hand in solutions, at least for 12 points, by April 5 Tue. If you need an extension for some reason, April 8 Friday is OK. I hope to have two more exercise sheets during the course.

- ▷ Exercise 1. Consider a GW process with offspring distribution ξ , with $\mathbb{E}\xi = \mu > 1$ and $\mathbb{D}^2\xi = \sigma^2 < \infty$. Let Z_n be the size of the *n*th level, with $Z_0 = 1$, the root. Using the conditional variance formula $\mathbb{D}^2[Z_n] = \mathbb{E}\left[\mathbb{D}^2[Z_n \mid Z_{n-1}]\right] + \mathbb{D}^2\left[\mathbb{E}[Z_n \mid Z_{n-1}]\right]$, show that $\mathbb{E}\left[Z_n^2\right] \leq C_{\mu,\sigma}(\mathbb{E}Z_n)^2$.
- Exercise 2. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \text{Geom}(1/2) 1$. Draw the tree into the plane with root ρ , add an extra vertex ρ' and an edge (ρ, ρ') , and walk around the tree, starting from ρ' , going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ' : let this be process be $\{X_t\}_{t=0}^{2n}$, which is positive everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T.

Figure 1: The contour walk around a tree.

- (a) Using the memoryless property of Geom(1/2), show that $\{X_t\}$ is SRW on \mathbb{Z} .
- (b) Using a martingale argument, show that $\mathbb{P}[T \text{ has height } \geq n] = 1/n$.
- (c) Using another martingale argument: what is the expected size of the nth generation conditioned on being non-empty?
- (d) ••• Show that for any $\epsilon > 0$ there exists $K < \infty$ such that, conditioning T to have height at least n, with probability at least 1ϵ the height will be at most Kn, and the total volume will be between n^2/K and Kn^2 . (Hint: the typical speed of an unconditioned SRW is given by the Central Limit Theorem. But how do you compare the speed of conditioned and unconditioned trajectories?)

Recall that the α -dimensional **Hausdorff measure** of a metric space (X, d) is defined by

$$\mathcal{H}_{\alpha}(X) := \lim_{\epsilon \to 0} \inf \left\{ \sum_{i=1}^{\infty} \operatorname{diam}(U_i)^{\alpha} : \bigcup_{i} U_i \supset X, \sup_{i} \operatorname{diam}(U_i) < \epsilon \right\}.$$

Then $\dim_H(X) := \inf\{\alpha : \mathcal{H}_{\alpha}(X) = 0\}$ is the **Hausdorff dimension**, while

$$\overline{\dim}_M(X) := \overline{\lim}_{\epsilon \to 0} \frac{\log N_{\epsilon}(X)}{\log(1/\epsilon)} \quad \text{and} \quad \underline{\dim}_M(X) := \underline{\lim}_{\epsilon \to 0} \frac{\log N_{\epsilon}(X)}{\log(1/\epsilon)}$$

are the **upper and lower Minkowski dimensions**, where $N_{\epsilon}(X)$ is the infimum number of subsets of diameter at most $\epsilon > 0$ that are needed to cover X.

- \triangleright Exercise 3. Show that for any metric space (X, d) there is at most one $\alpha \ge 0$ such that $\mathcal{H}_{\alpha}(X) \in (0, \infty)$.
- ▷ **Exercise 4.** •• For $\alpha \in (0, \infty)$, consider $X_{\alpha} := \{n^{-\alpha}, n = 1, 2, ...\} \subset [0, 1]$, with the metric inherited from \mathbb{R} . Find the Minkowski and Hausdorff dimensions of X_{α} .
- Exercise 5. Recall the metric $d(\xi, \eta) = b^{-|\xi \wedge \eta|}$, for any b > 1, on the boundary ∂T of a locally finite infinite tree without leaves that we considered in class. Also recall that to any $x \in V(T)$ we associated the clopen (both closed and open) set $B_x := \{\xi \in \partial T : x \in \xi\}$, and if Π is a cutset between the root and infinity, then $B_{\Pi} := \{B_x : x \in \Pi\}$ is obviously a cover of ∂T .
 - (a) Give a countable covering by disjoint closed sets of the boundary of the binary tree that does not arise from a cutset between the root and infinity. (Note: this issue is completely neglected in the Lyons-Peres book.)
 - (b) •• For any countable covering $\{U_i\}$ of any ∂T with $\sum_i \operatorname{diam}(U_i)^{\alpha} < \infty$, and any $\epsilon > 0$, construct a finite cutset Π such that the associated covering B_{Π} satisfies

$$\sum_{x \in \Pi} \operatorname{diam}(B_x)^{\alpha} < \sum_i \operatorname{diam}(U_i)^{\alpha} + \epsilon.$$

- (c) Deduce from the previous item that $br(T) = b^{\dim_H(\partial T)}$.
- (d) Show that $\overline{\operatorname{gr}}(T) = b^{\overline{\dim}_M(\partial T)}$ and $\operatorname{gr}(T) = b^{\underline{\dim}_M(\partial T)}$.

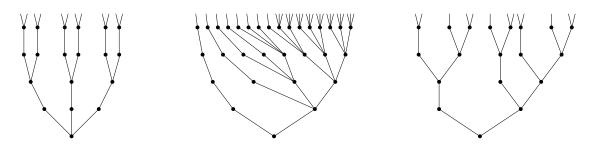


Figure 2: A quasi-transitive tree, the 3-1 tree, and the Fibonacci tree.

- ▷ **Exercise 6.** Find the branching number of each of the three trees on Figure 2:
 - (a) A quasi-transitive tree, with degree 3 and degree 2 vertices alternating.
 - (b) The so-called 3-1-tree, which has 2^n vertices on each level n, with the left 2^{n-1} vertices each having one child, the right 2^{n-1} vertices each having three children; the root has two children.
 - (c) •• The Fibonacci tree, which is a directed universal cover of the directed graph with vertices $\{1, 2\}$ and edges $\{(12), (21), (22)\}$. (There are two directed covers, with root either 1 or 2.)
- ▷ Exercise 7. •• Show that SRW on the 3-1 tree above is recurrent, but the Nash-Williams criterion does not work.
- ▷ **Exercise 8.** Consider the nearest neighbour RW on \mathbb{Z} with $\mathbb{P}[X_{t+1} = X_t + 1] = p > 1/2$, and the function $h(i) := \{(1-p)/p\}^i$ for $i \in \mathbb{Z}$.
 - (a) Show that $M_t := h(X_t)$ is a martingale. Using the Optional Stopping Theorem for bounded MGs, find $\mathbb{P}_i[\tau_a < \tau_b]$ for $a \le i \le b$.
 - (b) From the previous part, find $\mathbb{P}_i[\tau_0 < \infty]$. Then give a simply reason why it has to be exactly exponentially decreasing in *i*.
- ▷ **Exercise 9.** Show that a Markov chain (V, P) has a reversible measure if and only if for all oriented cycles $x_0, x_1, \ldots, x_n = x_0$, we have $\prod_{i=0}^{n-1} p(x_i, x_{i+1}) = \prod_{i=0}^{n-1} p(x_{i+1}, x_i)$.

Recall the definition of **effective resistance** between vertices a and z in a finite graph:

$$\mathcal{R}(a \leftrightarrow z) := \frac{v(z) - v(a)}{\||\nabla v\||},$$

where v is the voltage function between a and z with v(z) > v(a). We can then also define $\mathcal{R}(A \leftrightarrow Z)$ for any two disjoint subsets $A, Z \subset V(G)$, by collapsing all the points in A and Z to a single vertex a and z, respectively, keeping all the edges leaving A and Z. We can also define $\mathcal{C}(A \leftrightarrow Z) := 1/\mathcal{R}(A \leftrightarrow Z)$.

- ▷ Exercise 10. •• Show that effective resistances add up when combining networks in series, while effective conductances add up when combining networks in parallel.
- ▷ Exercise 11 ("Green's function is the inverse of the Laplacian"). Let (V, P) be a transient Markov chain with a stationary measure π , associated Laplacian $\Delta = I - P$, and Green's function $G(x, y) := \sum_{n=0}^{\infty} p_n(x, y)$. Assume that the function $y \mapsto G(x, y)/\pi_y$ is in $L^2(V, \pi)$. Let $f: V \longrightarrow \mathbb{R}$ be an arbitrary function in $L^2(V, \pi)$. Solve the equation $\Delta u = f$.

Recall Thomson's principle:

 $\mathcal{R}(a \leftrightarrow z) = \inf \Big\{ \mathcal{E}(\theta) : \theta \text{ is a flow from } a \text{ to } z \text{ with strength } |||\theta||| \ge 1 \Big\},$

where, with a slight abuse of notation, we use the notation for Dirichlet energy also for the *r*-energy of a general flow: $\mathcal{E}(\theta) := \langle \theta, \theta \rangle_r$.

Note furthermore that **Dirichlet's principle** can be reformulated as follows:

$$\mathcal{R}(a \leftrightarrow z)^{-1} = \inf \Big\{ \mathcal{E}(f) : f \text{ is a function } V \longrightarrow \mathbb{R} \text{ with } f(a) \le 0 \text{ and } f(z) \ge 1 \Big\}.$$

- ▷ Exercise 12. Using the above two principles and the methods from March 29, prove the following:
 - (a) If a = (0,0) and z = (n,n) in the square $G = \{0,\ldots,n\}^2 \subset \mathbb{Z}^2$, then $\mathcal{R}(a \leftrightarrow z) \simeq \log n$.
 - (b) For the square annulus $\{-n, \ldots, n\}^2 \setminus \{-k, \ldots, k\}^2 \subset \mathbb{Z}^2$, if A denotes the set of inner boundary vertices (at ℓ^{∞} -distance k from the origin), and Z denotes the outer boundary (the vertices at ℓ^{∞} -distance n from the origin), then $\mathcal{R}(A \leftrightarrow Z) \simeq \log(n/k)$.
 - (c) •• Consider the wedge $\mathcal{W}_h := \{(x, y, z) \in \mathbb{Z}^3 : x \ge 0, |z| \le h(x)\}$, where $h(x) := (\log x)^{\alpha}$ for some $\alpha > 0$. For what values of α can you prove that \mathcal{W}_h is recurrent? transient?
- \triangleright Exercise 13. On any locally finite graph G, call $h: V(G) \longrightarrow \mathbb{R}$ infinity-harmonic if, for every $x \in V(G)$,

$$h(x) = \frac{1}{2} \left(\min_{y \sim x} h(y) + \max_{y \sim x} h(y) \right).$$

(The reason for this name is that these functions minimize the L^{∞} -norm of the gradient in a strong sense, just like usual harmonic functions minimize the L^2 -norm, the Dirichlet energy.)

- (a) Show that every non-constant infinity-harmonic function h grows at least linearly in some direction: there is a sequence of vertices $(x_i)_{i\geq 0}$ such that $\liminf_{i\to\infty} h(x_i)/d(x_0, x_i) > 0$.
- (b) Design a random walk (i.e., a time-independent Markov process) $(X_t)_{t\geq 0}$ with nearest-neighbour jumps such that $M_t := h(X_t)$ is a martingale.
- (c) Show that the process $\Delta_t := \mathbb{D}[M_{t+1} | X_t]$ is almost surely non-decreasing in $t \ge 0$. Deduce that $\mathbb{D}[M_t]$ grows at least linearly in t. (I'm not claiming that on every graph, every h, for every process (X_t) such that $h(X_t)$ is a MG, there is this linear growth of the variance. But for every h there is such a process, and I bet that your construction in (b) does in fact have this property.)