Probability on Graphs and Groups - Second problem set

Gábor Pete
http://www.math.bme.hu/~gabor

May 12, 2022

The number of dots ${ }^{\bullet}$ is the value of an exercise. Please hand in solutions, at least for 12 points, by May 13 , Friday. I will add a couple of more exercises next week. Some of the exercises appeared in the Stochastic Models course, as well - don't hand them in if you already did them then.
\triangleright Exercise 1. ${ }^{\bullet}$ For what primes p, q is there a semidirect product $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}$ that is not a direct product? (Hint: you do not have to know what exactly the group $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is; it is enough to use Cauchy's theorem on having an element of order q in any group of size n, for any prime $q \mid n$. But, in fact, Aut $\left(\mathbb{Z}_{p}\right)$ is always cyclic, because there exist primitive roots modulo any prime.)
\triangleright Exercise 2. \cdot Show that $\mathbb{Z}^{2} \rtimes_{M} \mathbb{Z}$ with $M=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is isomorphic to the Heisenberg group.

Figure 1: A Cayley graph of the Heisenberg group.
$\triangleright \quad$ Exercise 3. We say that a bounded degree graph $G(V, E)$ has d-dimensional volume growth if there exist $0<c<C<\infty$ such that $c r^{d}<\left|B_{r}(o)\right|<C r^{d}$ for any $o \in V$ and every large enough $r>r^{*}(o)$.
(a) - Show that if a group has a finitely generated Cayley graph with d-dimensional volume growth, then all its finitely generated Cayley graphs have d-dimensional volume growth.
(b) •• Show that the discrete Heisenberg group has 4-dimensional volume growth.

The Diestel-Leader graph $\operatorname{DL}(k, \ell)$ is the so-called horocyclic product of \mathbb{T}_{k+1} and $\mathbb{T}_{\ell+1}$: pick an end of each tree, organize all the vertices into layers labeled by \mathbb{Z} with labels tending to $+\infty$ towards that end (with the location of the zero level being arbitrary), then let $V(G)$ consist of all the pairs $(v, w) \in \mathbb{T}_{k+1} \times \mathbb{T}_{\ell+1}$ with labels $(n,-n)$ for some $n \in \mathbb{Z}$, with an edge from (v, w) to $\left(v^{\prime}, w^{\prime}\right)$ if $\left(v, v^{\prime}\right) \in E\left(\mathbb{T}_{k+1}\right)$ and $\left(w, w^{\prime}\right) \in E\left(\mathbb{T}_{\ell+1}\right)$. See Figure 2 .
\triangleright Exercise 4.
(a) - Show that the Cayley graph of the lamplighter group $\Gamma=\mathbb{Z}_{2} \imath \mathbb{Z}$ with generating set $S=\{\mathrm{R}, \mathrm{L}, \mathrm{s}\}$ is indeed that graph that we discussed.
(b) •• Show that the Cayley graph of the lamplighter group $\Gamma=\mathbb{Z}_{2} \imath \mathbb{Z}$ with generating set $S=\{\mathrm{R}, \mathrm{Rs}, \mathrm{L}, \mathrm{sL}\}$ is the Diestel-Leader graph $\operatorname{DL}(2,2)$. How can we obtain $\operatorname{DL}(p, p)$ from $\mathbb{Z}_{p} \imath \mathbb{Z}$?

Figure 2: The Diestel-Leader graph $\operatorname{DL}(3,2)$. A path: $(u, a),(v, b),(w, c),\left(v, b^{\prime}\right),\left(u, a^{\prime}\right),(t, z),\left(u^{\prime}, a^{\prime}\right)$.
\triangleright Exercise 5. •• Show that $\mathrm{DL}(k, \ell)$ is amenable iff $k=\ell$.
\triangleright Exercise 6. ${ }^{\bullet \bullet}$ Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.

$\triangleright \quad$ Exercise 7.

(a) •• Recall (or look it up in Durrett's book) that the reflection principle implies the following: if $\left\{X_{k}\right\}_{k \geq 0}$ is SRW on \mathbb{Z}, and $M_{n}=\max _{k \leq n} X_{k}$, then

$$
2 \mathbb{P}\left[X_{n} \geq t\right] \geq \mathbb{P}\left[M_{n} \geq t\right]
$$

Using this, prove that for SRW on the lamplighter group $\oplus_{\mathbb{Z}} \mathbb{Z}_{2} \rtimes \mathbb{Z}$, with the usual lazy generators (go left, go right, switch, do nothing), the return probability is at least $p_{n}(o, o) \geq \exp (-c \sqrt{n})$, for some absolute constant $c>0$. (Note that the subexponential decay corresponds to the graph being amenable.)
(b) ••• Find a smarter version of the above strategy, giving $p_{n}(o, o) \geq \exp \left(-c n^{1 / 3}\right)$, which is actually sharp.

The following three exercises together prove that the total variation mixing time (when the TV-distance goes below $1 / 4$) of the $1 / 2$-lazy random walk X_{0}, X_{1}, \ldots on the hypercube $\{0,1\}^{k}$ is $\sim \frac{1}{2} k \log k$. Then the fourth one proves that the uniform mixing time (when the L^{∞}-distance goes below $1 / e$) is $\sim k \log k$.
\triangleright Exercise 8. ${ }^{\bullet \bullet}$ Let Y_{t} be the number of missing coupons at time t in the coupon collector's problem with k coupons. Show that, for $\alpha \in(0,1)$ fixed,

$$
\mathbb{E} Y_{\alpha k \log k} \sim k^{1-\alpha} \quad \text { and } \quad \mathbb{D} Y_{\alpha k \log k}=o\left(k^{1-\alpha}\right)
$$

Using Markov's and Chebyshev's inequalities, deduce that $Y_{\alpha k \log k} / \sqrt{k} \rightarrow 0$ or ∞ in probability, for $\alpha>1 / 2$ and $<1 / 2$, respectively.
$\triangleright \quad$ Exercise 9. ${ }^{\bullet}$ Let $\mathbf{N}\left(\mu, \sigma^{2}\right)$ denote the normal distribution. Show that, for any sequence $\sigma_{k} \rightarrow \sigma \in(0, \infty)$, we have that $d_{\mathrm{TV}}\left(\mathrm{N}\left(0, \sigma^{2}\right), \mathrm{N}\left(\mu_{k}, \sigma_{k}^{2}\right)\right) \rightarrow 0$ or 1 , for $\mu_{k} \rightarrow 0$ and $\mu_{k} \rightarrow \infty$, respectively. Using this and the local version of the de Moivre-Laplace theorem, prove that

$$
d_{\mathrm{TV}}\left(\operatorname{Binom}(k, 1 / 2), \operatorname{Binom}\left(k-k^{\beta}, 1 / 2\right)+k^{\beta}\right) \rightarrow \begin{cases}0 & \text { if } \beta<1 / 2 \\ 1 & \text { if } \beta>1 / 2\end{cases}
$$

$\triangleright \quad$ Exercise 10.
(a) • For $X_{0}=(0,0, \ldots, 0) \in\{0,1\}^{k}$, let the distribution of X_{t} be μ_{t}. What is it, conditioned on $\left\|X_{t}\right\|_{1}=\ell$?
(b) • What is the distribution of $\|Z\|_{1}$, where Z has distribution π, uniform on $\{0,1\}^{k}$?
(c) ${ }^{\bullet \bullet}$ Let Y_{t} be the number of coordinates that have not been rerandomized by time t in X_{t}. Compare the distribution of $k-\left\|X_{t}\right\|_{1}$, conditioned on $Y_{t} \geq y$, to $\operatorname{Binom}(k-y, 1 / 2)+y$. Deduce from the previous parts and the previous exercises that $d_{\mathrm{TV}}\left(\mu_{\alpha n \log n}, \pi\right) \rightarrow 0$ or 1 , for $\alpha>1 / 2$ and $<1 / 2$, respectively.
\triangleright Exercise 11. ••Using Exercise 8, show that the uniform mixing time of the hypercube $\{0,1\}^{k}$ is $\sim k \log k$.
$\triangleright \quad$ Exercise 12. ${ }^{\bullet}$ Consider a reversible Markov chain P on a finite state space V with reversible distribution π and absolute spectral gap $g_{\text {abs }}$. This exercise explains why $T_{\text {relax }}=1 / g_{\text {abs }}$ is called the relaxation time.

Show that $g_{\text {abs }}>0$ implies that $\lim _{t \rightarrow \infty} P^{t} f(x)=\mathbb{E}_{\pi} f$ for all $x \in V$. Moreover,

$$
\operatorname{Var}_{\pi}\left[P^{t} f\right] \leq\left(1-g_{\mathrm{abs}}\right)^{2 t} \operatorname{Var}_{\pi}[f]
$$

with equality at the eigenfunction corresponding to the λ_{i} giving $g_{\text {abs }}=1-\left|\lambda_{i}\right|$. Hence $T_{\text {relax }}$ is the time needed to reduce the standard deviation of any function to $1 / e$ of its original standard deviation.
\triangleright Exercise 13. This exercise explains why it is hard to construct large expanders. A covering map $\varphi: G^{\prime} \longrightarrow$ G between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by $N_{G}(v)$ the subgraph induced by $v \in G$ and all its neighbours, we require that each connected component of the subgraph of G^{\prime} induced by the full inverse image $\varphi^{-1}\left(N_{G}(v)\right)$ be isomorphic to $N_{G}(v)$.
(a) • If $G^{\prime} \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho\left(G^{\prime}\right) \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq \rho\left(\mathbb{T}_{k}\right)=\frac{2 \sqrt{k-1}}{k}$. (Hint: use the return probability definition of $\rho(G)$.)
(b) • If $G^{\prime} \longrightarrow G$ is a covering map of finite graphs, then $\lambda_{2}\left(G^{\prime}\right) \geq \lambda_{2}(G)$, i.e., the larger graph is a worse expander. (Hint: eigenfunctions on G can be "lifted" to G^{\prime}.)
\triangleright Exercise 14. • Give a sequence of d-regular transitive graphs $G_{n}=\left(V_{n}, E_{n}\right)$ with $\left|V_{n}\right| \rightarrow \infty$ that mix rapidly, $t_{\text {mix }}^{\mathrm{TV}}(1 / 4)=O\left(\log \left|V_{n}\right|\right)$, but do not form an expander sequence. (You may accept here that transitive expanders do exist.)
\triangleright Exercise 15. Fix $d \in \mathbb{Z}_{+}$, take d independent uniformly random permutations π_{1}, \ldots, π_{d} on $[n]$, and consider the bipartite graph $V=[2 n], E=\left\{\left(v, n+\pi_{i}(v)\right): 1 \leq i \leq d, 1 \leq v \leq n\right\}$.
(a) - Show that the number of multiple edges remains tight as $n \rightarrow \infty$.
(b) •• Show that, for every fixed r, the proportion of vertices whose r-neighbourhood is not a d-regular tree of depth r tends to 0 in probability.
(c) •• Show that there exists some $c=c_{d}>0$, independent of n, such that the Cheeger constant of the graph is at least c with probability tending to 1 .

