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The number of dots • is the value of an exercise. Please hand in solutions, at least for 12 points, by May

13, Friday. I will add a couple of more exercises next week. Some of the exercises appeared in the Stochastic

Models course, as well — don’t hand them in if you already did them then.

ExerciseB 1. •• For what primes p, q is there a semidirect product Zp o Zq that is not a direct product?

(Hint: you do not have to know what exactly the group Aut(Zp) is; it is enough to use Cauchy’s theorem

on having an element of order q in any group of size n, for any prime q|n. But, in fact, Aut(Zp) is always

cyclic, because there exist primitive roots modulo any prime.)

ExerciseB 2. • Show that Z2 oM Z with M =

(
1 1

0 1

)
is isomorphic to the Heisenberg group.
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Figure 1: A Cayley graph of the Heisenberg group.

ExerciseB 3. We say that a bounded degree graph G(V,E) has d-dimensional volume growth if there exist

0 < c < C <∞ such that crd < |Br(o)| < Crd for any o ∈ V and every large enough r > r∗(o).

(a) • Show that if a group has a finitely generated Cayley graph with d-dimensional volume growth, then

all its finitely generated Cayley graphs have d-dimensional volume growth.

(b) •• Show that the discrete Heisenberg group has 4-dimensional volume growth.

The Diestel-Leader graph DL(k, `) is the so-called horocyclic product of Tk+1 and T`+1: pick an end

of each tree, organize all the vertices into layers labeled by Z with labels tending to +∞ towards that end (with

the location of the zero level being arbitrary), then let V (G) consist of all the pairs (v, w) ∈ Tk+1×T`+1 with

labels (n,−n) for some n ∈ Z, with an edge from (v, w) to (v′, w′) if (v, v′) ∈ E(Tk+1) and (w,w′) ∈ E(T`+1).

See Figure 2.

ExerciseB 4.

(a) • Show that the Cayley graph of the lamplighter group Γ = Z2 o Z with generating set S = {R, L, s} is

indeed that graph that we discussed.

(b) •• Show that the Cayley graph of the lamplighter group Γ = Z2 oZ with generating set S = {R,Rs, L, sL}
is the Diestel-Leader graph DL(2, 2). How can we obtain DL(p, p) from Zp o Z?
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Figure 2: The Diestel-Leader graph DL(3, 2). A path: (u, a), (v, b), (w, c), (v, b′), (u, a′), (t, z), (u′, a′).

ExerciseB 5. •• Show that DL(k, `) is amenable iff k = `.

ExerciseB 6. ••• Consider the standard hexagonal lattice. Show that if you are given a bound B <∞, and

can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.

ExerciseB 7.

(a) •• Recall (or look it up in Durrett’s book) that the reflection principle implies the following: if {Xk}k≥0
is SRW on Z, and Mn = maxk≤nXk, then

2P[Xn ≥ t ] ≥ P[Mn ≥ t ] .

Using this, prove that for SRW on the lamplighter group ⊕ZZ2 o Z, with the usual lazy generators

(go left, go right, switch, do nothing), the return probability is at least pn(o, o) ≥ exp(−c
√
n), for

some absolute constant c > 0. (Note that the subexponential decay corresponds to the graph being

amenable.)

(b) •••• Find a smarter version of the above strategy, giving pn(o, o) ≥ exp(−cn1/3), which is actually

sharp.

The following three exercises together prove that the total variation mixing time (when the TV-distance

goes below 1/4) of the 1/2-lazy random walk X0, X1, . . . on the hypercube {0, 1}k is ∼ 1
2k log k. Then the

fourth one proves that the uniform mixing time (when the L∞-distance goes below 1/e) is ∼ k log k.

ExerciseB 8. •• Let Yt be the number of missing coupons at time t in the coupon collector’s problem with

k coupons. Show that, for α ∈ (0, 1) fixed,

EYαk log k ∼ k1−α and DYαk log k = o(k1−α).

Using Markov’s and Chebyshev’s inequalities, deduce that Yαk log k/
√
k → 0 or∞ in probability, for α > 1/2

and < 1/2, respectively.
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ExerciseB 9. •• Let N(µ, σ2) denote the normal distribution. Show that, for any sequence σk → σ ∈ (0,∞),

we have that dTV

(
N(0, σ2), N(µk, σ

2
k)
)
→ 0 or 1, for µk → 0 and µk → ∞, respectively. Using this and the

local version of the de Moivre–Laplace theorem, prove that

dTV

(
Binom(k, 1/2), Binom(k − kβ , 1/2) + kβ

)
→

{
0 if β < 1/2 ,

1 if β > 1/2 .

ExerciseB 10.

(a) • ForX0 = (0, 0, . . . , 0) ∈ {0, 1}k, let the distribution ofXt be µt. What is it, conditioned on ‖Xt‖1 = `?

(b) • What is the distribution of ‖Z‖1, where Z has distribution π, uniform on {0, 1}k?

(c) •• Let Yt be the number of coordinates that have not been rerandomized by time t in Xt. Compare the

distribution of k − ‖Xt‖1, conditioned on Yt ≥ y, to Binom(k − y, 1/2) + y. Deduce from the previous

parts and the previous exercises that dTV

(
µαn logn, π

)
→ 0 or 1, for α > 1/2 and < 1/2, respectively.

ExerciseB 11. •• Using Exercise 8, show that the uniform mixing time of the hypercube {0, 1}k is ∼ k log k.

ExerciseB 12. •• Consider a reversible Markov chain P on a finite state space V with reversible distribution

π and absolute spectral gap gabs. This exercise explains why Trelax = 1/gabs is called the relaxation time.

Show that gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P tf ] ≤ (1− gabs)2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence Trelax is the time

needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

ExerciseB 13. This exercise explains why it is hard to construct large expanders. A covering map ϕ : G′ −→
G between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by NG(v)

the subgraph induced by v ∈ G and all its neighbours, we require that each connected component of the

subgraph of G′ induced by the full inverse image ϕ−1(NG(v)) be isomorphic to NG(v).

(a) • If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G),

i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then

ρ(G) ≥ ρ(Tk) = 2
√
k−1
k . (Hint: use the return probability definition of ρ(G).)

(b) • If G′ −→ G is a covering map of finite graphs, then λ2(G′) ≥ λ2(G), i.e., the larger graph is a worse

expander. (Hint: eigenfunctions on G can be “lifted” to G′.)

ExerciseB 14. • Give a sequence of d-regular transitive graphs Gn = (Vn, En) with |Vn| → ∞ that mix

rapidly, tTV
mix(1/4) = O(log |Vn|), but do not form an expander sequence. (You may accept here that transitive

expanders do exist.)

ExerciseB 15. Fix d ∈ Z+, take d independent uniformly random permutations π1, . . . , πd on [n], and

consider the bipartite graph V = [2n], E = {(v, n+ πi(v)) : 1 ≤ i ≤ d, 1 ≤ v ≤ n}.
(a) • Show that the number of multiple edges remains tight as n→∞.

(b) •• Show that, for every fixed r, the proportion of vertices whose r-neighbourhood is not a d-regular

tree of depth r tends to 0 in probability.

(c) •• Show that there exists some c = cd > 0, independent of n, such that the Cheeger constant of the

graph is at least c with probability tending to 1.
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