Probability on Graphs and Groups — Second problem set

GÁBOR PETE http://www.math.bme.hu/~gabor

May 12, 2022

The number of dots • is the value of an exercise. Please hand in solutions, at least for 12 points, by May 13, Friday. I will add a couple of more exercises next week. Some of the exercises appeared in the Stochastic Models course, as well — don't hand them in if you already did them then.

- ▷ **Exercise 1.** •• For what primes p, q is there a semidirect product $\mathbb{Z}_p \rtimes \mathbb{Z}_q$ that is not a direct product? (Hint: you do not have to know what exactly the group $\operatorname{Aut}(\mathbb{Z}_p)$ is; it is enough to use Cauchy's theorem on having an element of order q in any group of size n, for any prime q|n. But, in fact, $\operatorname{Aut}(\mathbb{Z}_p)$ is always cyclic, because there exist primitive roots modulo any prime.)
- $\triangleright \quad \text{Exercise 2. } \bullet \text{ Show that } \mathbb{Z}^2 \rtimes_M \mathbb{Z} \text{ with } M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ is isomorphic to the Heisenberg group.}$

Figure 1: A Cayley graph of the Heisenberg group.

- ▷ **Exercise 3.** We say that a bounded degree graph G(V, E) has d-dimensional volume growth if there exist $0 < c < C < \infty$ such that $cr^d < |B_r(o)| < Cr^d$ for any $o \in V$ and every large enough $r > r^*(o)$.
 - (a) Show that if a group has a finitely generated Cayley graph with *d*-dimensional volume growth, then all its finitely generated Cayley graphs have *d*-dimensional volume growth.
 - (b) •• Show that the discrete Heisenberg group has 4-dimensional volume growth.

The **Diestel-Leader graph** $DL(k, \ell)$ is the so-called **horocyclic product** of \mathbb{T}_{k+1} and $\mathbb{T}_{\ell+1}$: pick an end of each tree, organize all the vertices into layers labeled by \mathbb{Z} with labels tending to $+\infty$ towards that end (with the location of the zero level being arbitrary), then let V(G) consist of all the pairs $(v, w) \in \mathbb{T}_{k+1} \times \mathbb{T}_{\ell+1}$ with labels (n, -n) for some $n \in \mathbb{Z}$, with an edge from (v, w) to (v', w') if $(v, v') \in E(\mathbb{T}_{k+1})$ and $(w, w') \in E(\mathbb{T}_{\ell+1})$. See Figure 2.

- \triangleright Exercise 4.
 - (a) Show that the Cayley graph of the lamplighter group $\Gamma = \mathbb{Z}_2 \wr \mathbb{Z}$ with generating set $S = \{\mathsf{R}, \mathsf{L}, \mathsf{s}\}$ is indeed that graph that we discussed.
 - (b) •• Show that the Cayley graph of the lamplighter group $\Gamma = \mathbb{Z}_2 \wr \mathbb{Z}$ with generating set $S = \{\mathsf{R}, \mathsf{Rs}, \mathsf{L}, \mathsf{sL}\}$ is the Diestel-Leader graph $\mathsf{DL}(2, 2)$. How can we obtain $\mathsf{DL}(p, p)$ from $\mathbb{Z}_p \wr \mathbb{Z}$?

Figure 2: The Diestel-Leader graph DL(3,2). A path: (u, a), (v, b), (w, c), (v, b'), (u, a'), (t, z), (u', a').

- \triangleright Exercise 5. •• Show that $\mathsf{DL}(k, \ell)$ is amenable iff $k = \ell$.
- \triangleright Exercise 6. ••• Consider the standard hexagonal lattice. Show that if you are given a bound $B < \infty$, and can group the hexagons into countries, each being a connected set of at most *B* hexagons, then it is not possible to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.

\triangleright Exercise 7.

(a) •• Recall (or look it up in Durrett's book) that the reflection principle implies the following: if $\{X_k\}_{k\geq 0}$ is SRW on \mathbb{Z} , and $M_n = \max_{k\leq n} X_k$, then

$$2\mathbb{P}[X_n \ge t] \ge \mathbb{P}[M_n \ge t].$$

Using this, prove that for SRW on the lamplighter group $\bigoplus_{\mathbb{Z}}\mathbb{Z}_2 \rtimes \mathbb{Z}$, with the usual lazy generators (go left, go right, switch, do nothing), the return probability is at least $p_n(o, o) \ge \exp(-c\sqrt{n})$, for some absolute constant c > 0. (Note that the subexponential decay corresponds to the graph being amenable.)

(b) •••• Find a smarter version of the above strategy, giving $p_n(o, o) \ge \exp(-cn^{1/3})$, which is actually sharp.

The following three exercises together prove that the total variation mixing time (when the TV-distance goes below 1/4) of the 1/2-lazy random walk X_0, X_1, \ldots on the hypercube $\{0, 1\}^k$ is $\sim \frac{1}{2}k \log k$. Then the fourth one proves that the uniform mixing time (when the L^{∞} -distance goes below 1/e) is $\sim k \log k$.

▷ **Exercise 8.** •• Let Y_t be the number of missing coupons at time t in the coupon collector's problem with k coupons. Show that, for $\alpha \in (0, 1)$ fixed,

$$\mathbb{E} Y_{\alpha k \log k} \sim k^{1-\alpha}$$
 and $\mathbb{D} Y_{\alpha k \log k} = o(k^{1-\alpha}).$

Using Markov's and Chebyshev's inequalities, deduce that $Y_{\alpha k \log k}/\sqrt{k} \to 0$ or ∞ in probability, for $\alpha > 1/2$ and < 1/2, respectively.

▷ Exercise 9. •• Let $\mathsf{N}(\mu, \sigma^2)$ denote the normal distribution. Show that, for any sequence $\sigma_k \to \sigma \in (0, \infty)$, we have that $d_{\mathrm{TV}}(\mathsf{N}(0, \sigma^2), \mathsf{N}(\mu_k, \sigma_k^2)) \to 0$ or 1, for $\mu_k \to 0$ and $\mu_k \to \infty$, respectively. Using this and the local version of the de Moivre–Laplace theorem, prove that

$$d_{\mathrm{TV}}(\mathsf{Binom}(k,1/2),\,\mathsf{Binom}(k-k^{\beta},1/2)+k^{\beta}) \to \begin{cases} 0 & \text{if } \beta < 1/2\,,\\ 1 & \text{if } \beta > 1/2\,. \end{cases}$$

\triangleright Exercise 10.

- (a) For $X_0 = (0, 0, \dots, 0) \in \{0, 1\}^k$, let the distribution of X_t be μ_t . What is it, conditioned on $||X_t||_1 = \ell$?
- (b) What is the distribution of $||Z||_1$, where Z has distribution π , uniform on $\{0,1\}^k$?
- (c) •• Let Y_t be the number of coordinates that have not been rerandomized by time t in X_t . Compare the distribution of $k ||X_t||_1$, conditioned on $Y_t \ge y$, to $\mathsf{Binom}(k y, 1/2) + y$. Deduce from the previous parts and the previous exercises that $d_{\mathrm{TV}}(\mu_{\alpha n \log n}, \pi) \to 0$ or 1, for $\alpha > 1/2$ and < 1/2, respectively.
- ▷ Exercise 11. •• Using Exercise 8, show that the uniform mixing time of the hypercube $\{0,1\}^k$ is ~ $k \log k$.
- ▷ Exercise 12. •• Consider a reversible Markov chain P on a finite state space V with reversible distribution π and absolute spectral gap g_{abs} . This exercise explains why $T_{relax} = 1/g_{abs}$ is called the relaxation time. Show that $g_{abs} > 0$ implies that $\lim_{t\to\infty} P^t f(x) = \mathbb{E}_{\pi} f$ for all $x \in V$. Moreover,

$$\operatorname{Var}_{\pi}[P^{t}f] \leq (1 - g_{\operatorname{abs}})^{2t} \operatorname{Var}_{\pi}[f],$$

with equality at the eigenfunction corresponding to the λ_i giving $g_{abs} = 1 - |\lambda_i|$. Hence T_{relax} is the time needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

- ▷ Exercise 13. This exercise explains why it is hard to construct large expanders. A covering map $\varphi : G' \longrightarrow G$ between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by $N_G(v)$ the subgraph induced by $v \in G$ and all its neighbours, we require that each connected component of the subgraph of G' induced by the full inverse image $\varphi^{-1}(N_G(v))$ be isomorphic to $N_G(v)$.
 - (a) If $G' \to G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho(G') \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq \rho(\mathbb{T}_k) = \frac{2\sqrt{k-1}}{k}$. (Hint: use the return probability definition of $\rho(G)$.)
 - (b) If $G' \longrightarrow G$ is a covering map of finite graphs, then $\lambda_2(G') \ge \lambda_2(G)$, i.e., the larger graph is a worse expander. (Hint: eigenfunctions on G can be "lifted" to G'.)
- ▷ Exercise 14. Give a sequence of *d*-regular transitive graphs $G_n = (V_n, E_n)$ with $|V_n| \to \infty$ that mix rapidly, $t_{\min}^{\text{TV}}(1/4) = O(\log |V_n|)$, but do not form an expander sequence. (You may accept here that transitive expanders do exist.)
- ▷ Exercise 15. Fix $d \in \mathbb{Z}_+$, take d independent uniformly random permutations π_1, \ldots, π_d on [n], and consider the bipartite graph $V = [2n], E = \{(v, n + \pi_i(v)) : 1 \le i \le d, 1 \le v \le n\}.$
 - (a) Show that the number of multiple edges remains tight as $n \to \infty$.
 - (b) •• Show that, for every fixed r, the proportion of vertices whose r-neighbourhood is not a d-regular tree of depth r tends to 0 in probability.
 - (c) •• Show that there exists some $c = c_d > 0$, independent of n, such that the Cheeger constant of the graph is at least c with probability tending to 1.