Stochastic models — homework problems

Gábor Pete

http://www.math.bme.hu/~gabor

November 17, 2013

 \triangleright Exercise 1. Prove that for Green's function of simple random walk on a connected graph, for real z > 0,

$$G(x, y|z) < \infty \iff G(r, w|z) < \infty$$

Therefore, by Pringsheim's theorem, we have that rad(x, y) is independent of x, y.

▷ **Exercise 2.** Compute $\rho(\mathbb{T}_{k,\ell})$, where $\mathbb{T}_{k,\ell}$ is a tree such that if $v_n \in \mathbb{T}_{k,\ell}$ is a vertex at distance *n* from the root,

$$\deg v_n = \begin{cases} k & n \text{ even} \\ \ell & n \text{ odd} \end{cases}$$

- Exercise 3 ("Green's function is the inverse of the Laplacian"). Let (V, P) be a transient Markov chain with a stationary measure π and associated Laplacian $\Delta = I - P$. Assume that the function $y \mapsto G(x, y)/\pi_y$ is in $L^2(V, \pi)$. Let $f: V \longrightarrow \mathbb{R}$ be an arbitrary function in $L^2(V, \pi)$. Solve the equation $\Delta u = f$.
- ▷ **Exercise 4.** Give an example of a random sequence $(M_n)_{n=0}^{\infty}$ such that $\mathbf{E}[M_{n+1} | M_n] = M_n$ for all $n \ge 0$, but which is not a martingale w.r.t. the filtration $\mathscr{F}_n = \sigma(M_0, \ldots, M_n)$.
- Exercise 5. Consider asymmetric simple random walk (X_i) on \mathbb{Z} , with probability p > 1/2 for a right step and 1 p for a left step. Find a martingale of the form r^{X_i} for some r > 0, and calculate $\mathbf{P}_k[\tau_0 > \tau_n]$. Then find a martingale of the form $X_i \mu i$ for some $\mu > 0$, and calculate $\mathbf{E}_k[\tau_0 \wedge \tau_n]$. (Hint: to prove that the second martingale is uniformly integrable, first show that $\tau_0 \wedge \tau_n$ has an exponential tail.)
- ▷ Exercise 6. Using the de Moivre-Laplace Central Limit Theorem, show that

(i) for SRW on \mathbb{Z} , the expected distance from the starting point after n steps is $\mathbf{E} \operatorname{dist}(X_0, X_n) \simeq \sqrt{n}$. (ii) Same for SRW Y_0, Y_1, \ldots on the lamplighter graph $\mathbb{Z}_2 \wr \mathbb{Z}$. For this, first show the following lemma, using the reflection principle: for SRW on \mathbb{Z} , let $M_n := \max\{0 = X_0, X_1, \ldots, X_n\}$, then

$$\mathbf{P}[M_n \ge t] \le 2\mathbf{P}[X_n \ge t].$$

\triangleright Exercise 7.

(i) For SRW on \mathbb{Z}^2 , show that the expected number of vertices visited by time n is

$$\mathbf{E}|\{X_0, X_1, \dots, X_n\}| \asymp n/\log n.$$

(ii) Show that on the lamplighter graph $\mathbb{Z}_2 \wr \mathbb{Z}^2$, the distance is $\mathbf{E} \operatorname{dist}(Y_0, Y_n) \asymp n/\log n$.

\triangleright Exercise 8.

(i) Prove that, for SRW on any transient transitive graph,

$$\lim_{n \to \infty} \frac{\mathbf{E}[\{X_0, X_1, \dots, X_n\}]}{n} = \mathbf{P}[X_k \neq X_0, \ k = 1, 2, \dots].$$

(ii) Show that on the lamplighter graph $\mathbb{Z}_2 \wr \mathbb{Z}^d$, with $d \ge 3$, the expected distance grows linearly.

- ▷ **Exercise 9.** For the return probabilities on the lamplighter graph $\mathbb{Z}_2 \wr \mathbb{Z}$, show that $p_{2n}(o, o) \ge c_1 \exp(-c_2 n^{1/3})$.
- ▷ Exercise 10. A simple version of the Tetris game (with no player): on the discrete cycle of length K, unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random (i = 0, 1, ..., K 1, mod K). Let R_t be the size of the roof after t squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim_{t\to\infty} \mathbf{E}R_t = K/3$.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \ge 4$, the expected limiting size of the roof is already less than 0.32893K, but this is far from trivial. What's the situation for K = 3?

- ▷ Exercise 11.* Show that any harmonic function f on \mathbb{Z}^d with sublinear growth, i.e., satisfying $\lim_{\|x\|_2\to\infty} f(x)/\|x\|_2 = 0$, must be constant.
- \triangleright Exercise 12.** Prove that any positive harmonic function f on \mathbb{Z}^d must be constant.
- \triangleright Exercise 13. Show that a Markov chain (V, P) has a reversible measure if and only if for all oriented cycles $x_0, x_1, \ldots, x_n = x_0$, we have $\prod_{i=0}^{n-1} p(x_i, x_{i+1}) = \prod_{i=0}^{n-1} p(x_{i+1}, x_i)$.
- \triangleright Exercise 14. Show by examples that, in directed weighted graphs, the measure $(C_x)_{x \in V}$ might be non-stationary, and might be stationary but non-reversible. Can the walk associated to a finite directed weighted graph have a reversible measure?
- ▷ Exercise 15. Show that effective resistances (as defined in class, (6.3) of PGG) add up when combining networks in series, while effective conductances add up when combining networks in parallel.
- \triangleright Exercise 16.
 - (a) Show that for the voltage function $f(x) = G^Z(o, x)/C_x$ considered in class, the associated current flow has unit strength, hence $\mathcal{R}(o \leftrightarrow Z) = G^Z(o, o)/C_o$.
 - (b) Using part (a), show that $C(a \leftrightarrow Z) = C_a \mathbf{P}_a[\tau_Z < \tau_a^+]$, where τ_a^+ is the first positive hitting time on a.
- ▷ Exercise 17. Let G(V, E, c) be a transitive network (i.e., the group of graph automorphisms preserving the edge weights have a single orbit on V). Show that, for any $u, v \in V$,

$$\mathbf{P}_u[\tau_v < \infty] = \mathbf{P}_v[\tau_u < \infty].$$

- \triangleright Exercise 18. Show that the regular trees \mathbb{T}_k and \mathbb{T}_ℓ for $k, \ell \geq 3$ are quasi-isometric to each other, by giving explicit quasi-isometries.
- ▷ Exercise 19.* Consider the standard hexagonal lattice. Show that if you are given a bound $B < \infty$, and can group the hexagons into countries, each being a connected set of at most *B* hexagons, then it is not possible to have at least 7 neighbours for each country.

Trying to create at least 7 neighbours for each country.

\triangleright Exercise 20.

- (a) Find the edge Cheeger constant $\iota_{\infty,E}$ of the infinite binary tree.
- (b) Show that a bounded degree tree is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2. (Consequently, for trees, $IP_{1+\epsilon}$ implies IP_{∞} .)
- (c) Give an example of a bounded degree tree of exponential volume growth that satisfies no $IP_{1+\epsilon}$ and is recurrent for the simple random walk on it.
- ▷ Exercise 21.* Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling paradoxical decomposition: two injective maps $\alpha, \beta : V \longrightarrow V$ such that $\alpha(V) \sqcup \beta(V) = V$ is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling: $\sup_{x \in V} d(x, \alpha(x)) < \infty$. (Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)
- ▷ **Exercise 22.** Let (V, P) be a reversible, finite Markov chain, with the stationary distribution $\pi(x)$. Note that P is self-adjoint with respect to $(f, g) = \sum_{x \in V} f(x)g(x)\pi(x)$. Show:
 - (a) All eigenvalues λ_i satisfy $-1 \leq \lambda_i \leq 1$;
 - (b) If we write $-1 \leq \lambda_n \leq \cdots \leq \lambda_1 = 1$, then $\lambda_2 < 1$ if and only if (V, P) is connected (the chain is irreducible);
 - (c) $\lambda_n > -1$ if and only if (V, P) is not bipartite. (Recall here the easy lemma that a graph is bipartite if and only if all cycles are even.)
- \triangleright Exercise 23.
 - (a) For $f: V \longrightarrow \mathbb{R}$, let $\operatorname{Var}_{\pi}[f] := \mathbf{E}_{\pi}[f^2] (\mathbf{E}_{\pi}f)^2 = \sum_x f(x)^2 \pi(x) \left(\sum_x f(x)\pi(x)\right)^2$. Show that $g_{\operatorname{abs}} > 0$ implies that $\lim_{t \to \infty} P^t f(x) = \mathbf{E}_{\pi}f$ for all $x \in V$. Moreover,

$$\operatorname{Var}_{\pi}[P^{t}f] \leq (1 - g_{\operatorname{abs}})^{2t} \operatorname{Var}_{\pi}[f],$$

with equality at the eigenfunction corresponding to the λ_i giving $g_{abs} = 1 - |\lambda_i|$. Hence t_{relax} is the time needed to reduce the standard deviation of any function to 1/e of its original standard deviation. (b) Show that if the chain (V, P) is transitive, then

$$4 d_{\mathrm{TV}} \left(p_t(x, \cdot), \pi(\cdot) \right)^2 \le \left\| \frac{p_t(x, \cdot)}{\pi(\cdot)} - \mathbf{1}(\cdot) \right\|_2^2 = \sum_{i=2}^n \lambda_i^{2t}.$$

For instance, recall the spectrum of the lazy walk on the hypercube $\{0, 1\}^k$, and prove the bound $d(1/2k \ln k + ck) \leq e^{-2c}/2$ for c > 1 on the TV distance. (This is sharp even regarding the constant 1/2 in front of $k \ln k$.) Also, recall the spectrum of the cycle C_n , and show that $t_{\text{mix}}^{\text{TV}}(C_n) = O(n^2)$.

- ▷ Exercise 24. Why it is hard to construct large expanders:
 - (a) If $G' \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho(G') \le \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \ge \rho(\mathbb{T}_k) = \frac{2\sqrt{k-1}}{k}$.
 - (b) If $G' \longrightarrow G$ is a covering map of finite graphs, then $\lambda_2(G') \ge \lambda_2(G)$, i.e., the larger graph is a worse expander.
- \triangleright Exercise 25. Show that a uniform random *d*-regular bipartite graph on 2*n* vertices with $d \ge 3$ has 4-cycles with a positive probability that is independent of *n*.
- Exercise 26. In the random graph G(n,p) with $p = \lambda/n$, for $\mathcal{A}_n = \{$ containing a triangle $\}$, show directly that the expected number of pivotal edges is $\approx n$ (with factors depending on λ). (Hence, by Russo's formula, the threshold window is of size $p_{\mathcal{A}}^{1-\epsilon}(n) p_{\mathcal{A}}^{\epsilon}(n) \approx 1/n$, as we already saw on class.)