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Exercise 1. Prove that for Green’s function of simple random walk on a connected graph, for real
z >0,
G(z,ylz) <0 & G(r,w|z) < 0.

Therefore, by Pringsheim’s theorem, we have that rad(z,y) is independent of x, y.

Exercise 2. Compute p(Ty ), where Ty 4 is a tree such that if v, € Ty ¢ is a vertex at distance n from

the root,
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Exercise 3 (“Green’s function is the inverse of the Laplacian”). Let (V, P) be a transient Markov
chain with a stationary measure m and associated Laplacian A = I — P. Assume that the function
y+— G(z,y)/m, isin L*(V,w). Let f: V — R be an arbitrary function in L?(V, 7). Solve the equation
Au=f.

Exercise 4. Give an example of a random sequence (M,,)22, such that E[M,11 | M), ] = M,, for all
n > 0, but which is not a martingale w.r.t. the filtration %, = o(Mo, ..., M,).

Exercise 5. Consider asymmetric simple random walk (X;) on Z, with probability p > 1/2 for a
right step and 1 — p for a left step. Find a martingale of the form r¥¢ for some r > 0, and calculate
Pi[70 > 7, ]- Then find a martingale of the form X; — pi for some p > 0, and calculate Ex[ 79 A 7, ]
(Hint: to prove that the second martingale is uniformly integrable, first show that 79 A 7,, has an

exponential tail.)

Exercise 6. Using the de Moivre-Laplace Central Limit Theorem, show that

(i) for SRW on Z, the expected distance from the starting point after n steps is E dist(Xy, X,,) < v/n.
(ii) Same for SRW Yy, Y1, ... on the lamplighter graph ZsZ. For this, first show the following lemma,
using the reflection principle: for SRW on Z, let M,, := max{0 = X, X1,..., X, }, then

P[M, >t] < 2P[ X, > t].

Exercise 7.
(i) For SRW on Z2, show that the expected number of vertices visited by time n is

E|{Xo, X1,...,Xn}| =xn/logn.

(ii) Show that on the lamplighter graph Zs 1 Z?, the distance is E dist(Yp, Y,,) < n/logn.
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Exercise 8.

(i) Prove that, for SRW on any transient transitive graph,
lim |{ 0, A1, ) }| _ P[

n— o0 n

X, # Xo, k=1,2,...].

(ii) Show that on the lamplighter graph Z, ! Z¢, with d > 3, the expected distance grows linearly.

Exercise 9. For the return probabilities on the lamplighter graph Zs ! Z, show that pay(0,0) >
c1 exp(—cant/3).

Exercise 10. A simple version of the Tetris game (with no player): on the discrete cycle of length K,
unit squares with sticky corners are falling from the sky, at places [i, 7+ 1] chosen uniformly at random
(i=0,1,...,K — 1, mod K). Let R; be the size of the roof after ¢ squares have fallen: those squares
of the current configuration that could have been the last to fall. Show that lim;,.. ER; = K/3.
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Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has
to do with the speed of the SRW. Here, for K > 4, the expected limiting size of the roof is already less
than 0.32893 K, but this is far from trivial. What’s the situation for K = 37

Exercise 11.* Show that any harmonic function f on Z? with sublinear growth, i.e., satisfying
lim| 5, —oc f(x)/[|2]|2 = 0, must be constant.

Exercise 12.** Prove that any positive harmonic function f on Z¢ must be constant.

Exercise 13. Show that a Markov chain (V, P) has a reversible measure if and only if for all oriented
n—1 n—1

cycles xg,1,..., T, = xo, we have [ [ p(xi, xit1) = [ [y P(@it1, ).

Exercise 14. Show by examples that, in directed weighted graphs, the measure (C;)zey might be

non-stationary, and might be stationary but non-reversible. Can the walk associated to a finite directed

weighted graph have a reversible measure?
Exercise 15. Show that effective resistances (as defined in class, (6.3) of PGG) add up when combining
networks in series, while effective conductances add up when combining networks in parallel.

Exercise 16.
(a) Show that for the voltage function f(z) = G#(0,x)/C, considered in class, the associated current
flow has unit strength, hence R(o < Z) = G%(0,0)/C,.
(b) Using part (a), show that C(a < Z) = C, P, 7z < 7,/ ], where 7,7 is the first positive hitting time

on a.

Exercise 17. Let G(V, E, ¢) be a transitive network (i.e., the group of graph automorphisms preserving
the edge weights have a single orbit on V). Show that, for any u,v € V|

Py <o0] =Py[7y < 00].



Exercise 18. Show that the regular trees Ty and T, for k,¢ > 3 are quasi-isometric to each other, by
giving explicit quasi-isometries.

Exercise 19.* Consider the standard hexagonal lattice. Show that if you are given a bound B < oo,
and can group the hexagons into countries, each being a connected set of at most B hexagons, then it

is not possible to have at least 7 neighbours for each country.

Trying to create at least 7 neighbours for each country.

Exercise 20.
(a) Find the edge Cheeger constant ¢, g of the infinite binary tree.
(b) Show that a bounded degree tree is amenable iff there is no bound on the length of “hanging
chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, I P, implies I Px,.)
(c) Give an example of a bounded degree tree of exponential volume growth that satisfies no I Py,

and is recurrent for the simple random walk on it.

Exercise 21.* Show that a bounded degree graph G(V, E) is nonamenable if and ounly if it has a
wobbling paradoxical decomposition: two injective maps a, 3 : V. — V such that «(V) U (V) =
V is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling:
sup,cy d(z,a(z)) < oco. (Hint: State and use the locally finite infinite bipartite graph version of
the Hall marriage theorem, called the Hall-Rado theorem.)
Exercise 22. Let (V, P) be a reversible, finite Markov chain, with the stationary distribution 7(z).
Note that P is self-adjoint with respect to (f,g) = >,y f(z)g(z)m(x). Show:

(a) All eigenvalues \; satisfy —1 < \; < 1;

(b) If we write —1 < A, <--- < Ay =1, then Ay < 1 if and only if (V, P) is connected (the chain is

irreducible);
(c) An > —1ifand only if (V, P) is not bipartite. (Recall here the easy lemma that a graph is bipartite

if and only if all cycles are even.)

Exercise 23.

(a) For f:V — R, let Varg[f] := Ex[f?] — (B f)? =X, f(2)*m(2) — (X, f(ac)7r(:1c))2 Show that
gabs > 0 implies that lim;_,., P!f(x) = E.f for all z € V. Moreover,

Var, [P f] < (1 — gabs)* Varg[f],

with equality at the eigenfunction corresponding to the \; giving gaps = 1 — |A;|. Hence tyelax is
the time needed to reduce the standard deviation of any function to 1/e of its original standard

deviation.



(b) Show that if the chain (V, P) is transitive, then
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For instance, recall the spectrum of the lazy walk on the hypercube {0, 1}*, and prove the bound
d(1/2kInk + ck) < e2¢/2 for ¢ > 1 on the TV distance. (This is sharp even regarding the
constant 1/2 in front of kIn k.) Also, recall the spectrum of the cycle C,,, and show that t1Y (C,,) =
O(n?).

Exercise 24. Why it is hard to construct large expanders:
(a) If @ — G is a covering map of infinite graphs, then the spectral radii satisfy p(G’) < p(G), i.e.,
the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then
p(G) > p(Ty) = 2=
(b) If G’ — G is a covering map of finite graphs, then A\2(G’) > A2(G), i.e., the larger graph is a

worse expander.

Exercise 25. Show that a uniform random d-regular bipartite graph on 2n vertices with d > 3 has

4-cycles with a positive probability that is independent of n.

Exercise 26. In the random graph G(n,p) with p = A/n, for A,, = {containing a triangle}, show
directly that the expected number of pivotal edges is < n (with factors depending on \). (Hence, by

Russo’s formula, the threshold window is of size p'y “(n) — p(n) < 1/n, as we already saw on class.)



