Stochastic models - homework problems

Gábor Pete
http://www.math.bme.hu/~gabor

November 17, 2013
\triangleright Exercise 1. Prove that for Green's function of simple random walk on a connected graph, for real $z>0$,

$$
G(x, y \mid z)<\infty \Leftrightarrow G(r, w \mid z)<\infty
$$

Therefore, by Pringsheim's theorem, we have that $\operatorname{rad}(x, y)$ is independent of x, y.
\triangleright Exercise 2. Compute $\rho\left(\mathbb{T}_{k, \ell}\right)$, where $\mathbb{T}_{k, \ell}$ is a tree such that if $v_{n} \in \mathbb{T}_{k, \ell}$ is a vertex at distance n from the root,

$$
\operatorname{deg} v_{n}= \begin{cases}k & n \text { even } \\ \ell & n \text { odd }\end{cases}
$$

\triangleright Exercise 3 ("Green's function is the inverse of the Laplacian"). Let (V, P) be a transient Markov chain with a stationary measure π and associated Laplacian $\Delta=I-P$. Assume that the function $y \mapsto G(x, y) / \pi_{y}$ is in $L^{2}(V, \pi)$. Let $f: V \longrightarrow \mathbb{R}$ be an arbitrary function in $L^{2}(V, \pi)$. Solve the equation $\Delta u=f$.
\triangleright Exercise 4. Give an example of a random sequence $\left(M_{n}\right)_{n=0}^{\infty}$ such that $\mathbf{E}\left[M_{n+1} \mid M_{n}\right]=M_{n}$ for all $n \geq 0$, but which is not a martingale w.r.t. the filtration $\mathscr{F}_{n}=\sigma\left(M_{0}, \ldots, M_{n}\right)$.
\triangleright Exercise 5. Consider asymmetric simple random walk $\left(X_{i}\right)$ on \mathbb{Z}, with probability $p>1 / 2$ for a right step and $1-p$ for a left step. Find a martingale of the form $r^{X_{i}}$ for some $r>0$, and calculate $\mathbf{P}_{k}\left[\tau_{0}>\tau_{n}\right]$. Then find a martingale of the form $X_{i}-\mu i$ for some $\mu>0$, and calculate $\mathbf{E}_{k}\left[\tau_{0} \wedge \tau_{n}\right]$. (Hint: to prove that the second martingale is uniformly integrable, first show that $\tau_{0} \wedge \tau_{n}$ has an exponential tail.)
\triangleright Exercise 6. Using the de Moivre-Laplace Central Limit Theorem, show that
(i) for SRW on \mathbb{Z}, the expected distance from the starting point after n steps is $\mathbf{E} \operatorname{dist}\left(X_{0}, X_{n}\right) \asymp \sqrt{n}$.
(ii) Same for SRW Y_{0}, Y_{1}, \ldots on the lamplighter graph $\mathbb{Z}_{2} \backslash \mathbb{Z}$. For this, first show the following lemma, using the reflection principle: for SRW on \mathbb{Z}, let $M_{n}:=\max \left\{0=X_{0}, X_{1}, \ldots, X_{n}\right\}$, then

$$
\mathbf{P}\left[M_{n} \geq t\right] \leq 2 \mathbf{P}\left[X_{n} \geq t\right]
$$

$\triangleright \quad$ Exercise 7.

(i) For SRW on \mathbb{Z}^{2}, show that the expected number of vertices visited by time n is

$$
\mathbf{E}\left|\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}\right| \asymp n / \log n
$$

(ii) Show that on the lamplighter graph $\mathbb{Z}_{2} \imath \mathbb{Z}^{2}$, the distance is $\mathbf{E} \operatorname{dist}\left(Y_{0}, Y_{n}\right) \asymp n / \log n$.
$\triangleright \quad$ Exercise 8.
(i) Prove that, for SRW on any transient transitive graph,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E}\left|\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}\right|}{n}=\mathbf{P}\left[X_{k} \neq X_{0}, k=1,2, \ldots\right] .
$$

(ii) Show that on the lamplighter graph $\mathbb{Z}_{2} \backslash \mathbb{Z}^{d}$, with $d \geq 3$, the expected distance grows linearly.
\triangleright Exercise 9. For the return probabilities on the lamplighter graph $\mathbb{Z}_{2} \backslash \mathbb{Z}$, show that $p_{2 n}(o, o) \geq$ $c_{1} \exp \left(-c_{2} n^{1 / 3}\right)$.
\triangleright Exercise 10. A simple version of the Tetris game (with no player): on the discrete cycle of length K, unit squares with sticky corners are falling from the sky, at places $[i, i+1]$ chosen uniformly at random $(i=0,1, \ldots, K-1, \bmod K)$. Let R_{t} be the size of the roof after t squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim _{t \rightarrow \infty} \mathbf{E} R_{t}=K / 3$.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \geq 4$, the expected limiting size of the roof is already less than $0.32893 K$, but this is far from trivial. What's the situation for $K=3$?
\triangleright Exercise 11.* Show that any harmonic function f on \mathbb{Z}^{d} with sublinear growth, i.e., satisfying $\lim _{\|x\|_{2} \rightarrow \infty} f(x) /\|x\|_{2}=0$, must be constant.
\triangleright Exercise 12. ${ }^{* *}$ Prove that any positive harmonic function f on \mathbb{Z}^{d} must be constant.
\triangleright Exercise 13. Show that a Markov chain (V, P) has a reversible measure if and only if for all oriented cycles $x_{0}, x_{1}, \ldots, x_{n}=x_{0}$, we have $\prod_{i=0}^{n-1} p\left(x_{i}, x_{i+1}\right)=\prod_{i=0}^{n-1} p\left(x_{i+1}, x_{i}\right)$.
\triangleright Exercise 14. Show by examples that, in directed weighted graphs, the measure $\left(C_{x}\right)_{x \in V}$ might be non-stationary, and might be stationary but non-reversible. Can the walk associated to a finite directed weighted graph have a reversible measure?
\triangleright Exercise 15. Show that effective resistances (as defined in class, (6.3) of PGG) add up when combining networks in series, while effective conductances add up when combining networks in parallel.
$\triangleright \quad$ Exercise 16.
(a) Show that for the voltage function $f(x)=G^{Z}(o, x) / C_{x}$ considered in class, the associated current flow has unit strength, hence $\mathcal{R}(o \leftrightarrow Z)=G^{Z}(o, o) / C_{o}$.
(b) Using part (a), show that $\mathcal{C}(a \leftrightarrow Z)=C_{a} \mathbf{P}_{a}\left[\tau_{Z}<\tau_{a}^{+}\right]$, where τ_{a}^{+}is the first positive hitting time on a.
$\triangleright \quad$ Exercise 17. Let $G(V, E, c)$ be a transitive network (i.e., the group of graph automorphisms preserving the edge weights have a single orbit on V). Show that, for any $u, v \in V$,

$$
\mathbf{P}_{u}\left[\tau_{v}<\infty\right]=\mathbf{P}_{v}\left[\tau_{u}<\infty\right]
$$

\triangleright Exercise 18. Show that the regular trees \mathbb{T}_{k} and \mathbb{T}_{ℓ} for $k, \ell \geq 3$ are quasi-isometric to each other, by giving explicit quasi-isometries.
\triangleright Exercise 19.* Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible to have at least 7 neighbours for each country.

Trying to create at least 7 neighbours for each country.
$\triangleright \quad$ Exercise 20.
(a) Find the edge Cheeger constant $\iota_{\infty, E}$ of the infinite binary tree.
(b) Show that a bounded degree tree is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2. (Consequently, for trees, $I P_{1+\epsilon}$ implies $I P_{\infty}$.)
(c) Give an example of a bounded degree tree of exponential volume growth that satisfies no $I P_{1+\epsilon}$ and is recurrent for the simple random walk on it.
\triangleright Exercise 21.* Show that a bounded degree graph $G(V, E)$ is nonamenable if and only if it has a wobbling paradoxical decomposition: two injective maps $\alpha, \beta: V \longrightarrow V$ such that $\alpha(V) \sqcup \beta(V)=$ V is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling: $\sup _{x \in V} d(x, \alpha(x))<\infty$. (Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)
$\triangleright \quad$ Exercise 22. Let (V, P) be a reversible, finite Markov chain, with the stationary distribution $\pi(x)$. Note that P is self-adjoint with respect to $(f, g)=\sum_{x \in V} f(x) g(x) \pi(x)$. Show:
(a) All eigenvalues λ_{i} satisfy $-1 \leq \lambda_{i} \leq 1$;
(b) If we write $-1 \leq \lambda_{n} \leq \cdots \leq \lambda_{1}=1$, then $\lambda_{2}<1$ if and only if (V, P) is connected (the chain is irreducible);
(c) $\lambda_{n}>-1$ if and only if (V, P) is not bipartite. (Recall here the easy lemma that a graph is bipartite if and only if all cycles are even.)
$\triangleright \quad$ Exercise 23.
(a) For $f: V \longrightarrow \mathbb{R}$, let $\operatorname{Var}_{\pi}[f]:=\mathbf{E}_{\pi}\left[f^{2}\right]-\left(\mathbf{E}_{\pi} f\right)^{2}=\sum_{x} f(x)^{2} \pi(x)-\left(\sum_{x} f(x) \pi(x)\right)^{2}$. Show that $g_{\text {abs }}>0$ implies that $\lim _{t \rightarrow \infty} P^{t} f(x)=\mathbf{E}_{\pi} f$ for all $x \in V$. Moreover,

$$
\operatorname{Var}_{\pi}\left[P^{t} f\right] \leq\left(1-g_{\mathrm{abs}}\right)^{2 t} \operatorname{Var}_{\pi}[f]
$$

with equality at the eigenfunction corresponding to the λ_{i} giving $g_{\mathrm{abs}}=1-\left|\lambda_{i}\right|$. Hence $t_{\text {relax }}$ is the time needed to reduce the standard deviation of any function to $1 / e$ of its original standard deviation.
(b) Show that if the chain (V, P) is transitive, then

$$
4 d_{\mathrm{TV}}\left(p_{t}(x, \cdot), \pi(\cdot)\right)^{2} \leq\left\|\frac{p_{t}(x, \cdot)}{\pi(\cdot)}-\mathbf{1}(\cdot)\right\|_{2}^{2}=\sum_{i=2}^{n} \lambda_{i}^{2 t}
$$

For instance, recall the spectrum of the lazy walk on the hypercube $\{0,1\}^{k}$, and prove the bound $d(1 / 2 k \ln k+c k) \leq e^{-2 c} / 2$ for $c>1$ on the TV distance. (This is sharp even regarding the constant $1 / 2$ in front of $k \ln k$.) Also, recall the spectrum of the cycle C_{n}, and show that $t_{\text {mix }}^{\mathrm{TV}}\left(C_{n}\right)=$ $O\left(n^{2}\right)$.
\triangleright Exercise 24. Why it is hard to construct large expanders:
(a) If $G^{\prime} \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho\left(G^{\prime}\right) \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq \rho\left(\mathbb{T}_{k}\right)=\frac{2 \sqrt{k-1}}{k}$.
(b) If $G^{\prime} \longrightarrow G$ is a covering map of finite graphs, then $\lambda_{2}\left(G^{\prime}\right) \geq \lambda_{2}(G)$, i.e., the larger graph is a worse expander.
\triangleright Exercise 25. Show that a uniform random d-regular bipartite graph on $2 n$ vertices with $d \geq 3$ has 4 -cycles with a positive probability that is independent of n.
$\triangleright \quad$ Exercise 26. In the random graph $G(n, p)$ with $p=\lambda / n$, for $\mathcal{A}_{n}=\{$ containing a triangle $\}$, show directly that the expected number of pivotal edges is $\asymp n$ (with factors depending on λ). (Hence, by Russo's formula, the threshold window is of $\operatorname{size} p_{\mathcal{A}}^{1-\epsilon}(n)-p_{\mathcal{A}}^{\epsilon}(n) \asymp 1 / n$, as we already saw on class.)

