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Exercise⊲ 1. Let Dn := dist(Xn, X0) be the distance of SRW from the starting point.

(a) Using the Central Limit Theorem, prove that E[Dn ] ≍
√
n on any Z

d.

(b) Comparing the number of visits to X0 = o on Tk and on Z, prove that E[Dn ] ∼ k−2
k n, as n→∞.

Exercise⊲ 2. Prove that for Green’s function of simple random walk on a connected graph, for real z > 0,

G(x, y|z) <∞ ⇔ G(r, w|z) <∞ .

Therefore, by Pringsheim’s theorem, we have that rad(x, y) is independent of x, y.

Exercise⊲ 3. Compute ρ(Tk,ℓ), where Tk,ℓ is a tree such that if vn ∈ Tk,ℓ is a vertex at distance n from

the root,

deg vn =

{

k n even

ℓ n odd

Exercise⊲ 4 (“Green’s function is the inverse of the Laplacian”). Let (V, P ) be a transient Markov

chain with a stationary measure π and associated Laplacian ∆ = I − P . Assume that the function

y 7→ G(x, y)/πy is in L2(V, π). Let f : V −→ R be an arbitrary function in L2(V, π). Solve the equation

∆u = f .

Exercise⊲ 5. Give an example of a random sequence (Mn)
∞
n=0 such that E[Mn+1 |Mn ] = Mn for all

n ≥ 0, but which is not a martingale w.r.t. the filtration Fn = σ(M0, . . . ,Mn).

Exercise⊲ 6. Consider asymmetric simple random walk (Xi) on Z, with probability p > 1/2 for a right

step and 1−p for a left step. Find a martingale of the form rXi for some r > 0, and calculate Pk[ τ0 > τn ].

Then find a martingale of the form Xi − µ i for some µ > 0, and calculate Ek[ τ0 ∧ τn ]. (Hint: to prove

that the second martingale is uniformly integrable, first show that τ0 ∧ τn has an exponential tail.)

Exercise⊲ 7.

(a) For SRW on Z
2, show that the expected number of vertices visited by time n is

E|{X0, X1, . . . , Xn}| ≍ n/ logn .

(b) Conclude that on the lamplighter graph Z2 ≀ Z2, the distance is E dist(Y0, Yn) ≍ n/ logn.

Exercise⊲ 8.

(a) Prove that, for SRW on any transient transitive graph,

lim
n→∞

E|{X0, X1, . . . , Xn}|
n

= P[Xk 6= X0, k = 1, 2, . . . ] .

(b) Conclude that on the lamplighter graph Z2 ≀ Zd, with d ≥ 3, the expected distance grows linearly.
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Exercise⊲ 9. For SRW on the lamplighter graph Z2 ≀ Z, show that p2n(o, o) ≥ c1 exp(−c2n1/3). (We will

later state the theorem that groups of exponential growth have p2n(o, o) ≤ c2 exp(−c3n1/3), as well.)

Exercise⊲ 10. A simple version of the Tetris game (with no player): on the discrete cycle of length K,

unit squares with sticky corners are falling from the sky, at places [i, i+ 1] chosen uniformly at random

(i = 0, 1, . . . ,K − 1, mod K). Let Rt be the size of the roof after t squares have fallen: those squares of

the current configuration that could have been the last to fall. Show that limt→∞ ERt = K/3.

Figure 1: Sorry, this picture is on the segment, not on the cycle.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to

do with the speed of the SRW. Here, for K ≥ 4, the expected limiting size of the roof is already less than

0.32893K, but this is far from trivial. What’s the situation for K = 3?

Exercise⊲ 11.* Show that any harmonic function f on Z
d with sublinear growth, i.e., one that satisfies

lim‖x‖2→∞ f(x)/‖x‖2 = 0, must be constant.

Exercise⊲ 12. ** Prove via couplings that Zd has the strong Liouville property: any positive harmonic

function on Z
d must be constant.

Exercise⊲ 13. Consider an irreducible Markov chain (V, P ).

(a) Assume for the total variation distance that dTV

(
pn(x, ·)), pn(y, ·)

)
→ 0 as n→∞, for any x, y ∈ V .

Show that (V, P ) has the Liouville property.

(b) Show that biased nearest-neighbor random walk on Z has the property of part (a), but nevertheless

it does not have the strong Liouville property: it has non-constant positive harmonic functions.

Exercise⊲ 14. * Show that E
[
‖Ψ(Xn)−Ψ(X0)‖4

]
≤ Cn2, using the orthogonality of martingale incre-

mements. Then deduce that E
[
d(X0, Xn)

]
≥ c
√
n. (This improvement over Anna Erschler’s argument

is due to Bálint Virág. Hint: do not be afraid to consider the time-reversal of the random walk when

you need to condition on the future.)

Exercise⊲ 15. Show that the regular trees Tk and Tℓ for k, ℓ ≥ 3 are quasi-isometric to each other, by

giving explicit quasi-isometries.

Exercise⊲ 16. Make either definition from class for the space of ends of a graph precise as a topological

space. Prove that any quasi-isometry of graphs induces naturally a homeomorphism of their spaces of

ends.

Exercise⊲ 17 (Hopf 1944).

(a) Show that a group has two ends iff it has Z as a finite index subgroup.

(b) Show that if a f.g. group has at least 3 ends, then it has continuum many.
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Exercise⊲ 18. * Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞,

and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is

not possible to have at least 7 neighbours for each country.

Figure 2: Trying to create at least 7 neighbours for each country.

Exercise⊲ 19.

(a) Find the edge Cheeger constant ι∞,E of the infinite binary tree.

(b) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length

of “hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ǫ implies

IP∞.)

(c) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP1+ǫ

and is recurrent for the simple random walk on it.

Exercise⊲ 20.* Show that a bounded degree graphG(V,E) is nonamenable if and only if it has a wobbling

paradoxical decomposition: two injective maps α, β : V −→ V such that α(V ) ⊔ β(V ) = V is a disjoint

union, and both maps are at a bounded distance from the identity, or wobbling: supx∈V d(x, α(x)) <∞.

(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called

the Hall-Rado theorem.)

Exercise⊲ 21. Show by examples that, in directed weighted graphs, the measure (Cx)x∈V might be non-

stationary, and might be stationary but non-reversible. Can the walk associated to a finite directed

weighted graph (with at least one non-symmetric weight) have a reversible measure?

Exercise⊲ 22. Show that effective resistances (as defined in class, (6.3) of PGG) add up when combining

networks in series, while effective conductances add up when combining networks in parallel.

Exercise⊲ 23. Let G(V,E, c) be a transitive network (i.e., the group of graph automorphisms preserving

the edge weights have a single orbit on V ). Show that, for any u, v ∈ V ,

Pu[ τv <∞ ] = Pv[ τu <∞ ] .

Exercise⊲ 24. ** http://xkcd.com/356/

Exercise⊲ 25. Prove the following claims made and vaguely explained in class about total variation

distance:

(a) dTV(µ, ν) = min
{
P[X 6= Y ] : (X,Y ) is a coupling of µ and ν

}
.

(b) d(t) ≤ d̄(t) ≤ 2d(t).

(c) Using part (a), show that d̄(t+ s) ≤ d̄(t) d̄(s).
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Exercise⊲ 26. Let (V, P ) be a reversible, finite Markov chain, with stationary distribution π(x). Recall

that P is self-adjoint with respect to (f, g) =
∑

x∈V f(x)g(x)π(x). Show:

(a) If f : V −→ R is a right eigenfunction of P , then x 7→ g(x) = f(x)π(x) is a left eigenfunction, with

the same eigenvalue.

(b) All eigenvalues λi satisfy −1 ≤ λi ≤ 1.

(c) If we write −1 ≤ λn ≤ · · · ≤ λ1 = 1, then λ2 < 1 if and only if (V, P ) is connected (the chain is

irreducible).

(d) λn > −1 if and only if (V, P ) is not bipartite. (Recall here the easy lemma that a graph is bipartite

if and only if all cycles are even.)

Exercise⊲ 27.

(a) For f : V −→ R, let Varπ[f ] := Eπ[f
2] − (Eπf)

2 =
∑

x f(x)
2π(x) −

(∑

x f(x)π(x)
)2
. Show that

gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P
tf ] ≤ (1− gabs)

2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence trelax is

the time needed to reduce the standard deviation of any function to 1/e of its original standard

deviation.

(b) Show that if the chain (V, P ) is transitive, then

4 dTV

(
pt(x, ·), π(·)

)2 ≤
∥
∥
∥
∥

pt(x, ·)
π(·) − 1(·)

∥
∥
∥
∥

2

2

=

n∑

i=2

λ2t
i .

For instance, recall the spectrum of the lazy walk on the hypercube {0, 1}k, and prove the bound

d
(
1/2 k ln k+c k

)
≤ e−2c/2 for c > 1 on the TV distance. (This is sharp even regarding the constant

1/2 in front of k ln k.) Also, recall the spectrum of the cycle Cn, and show that tTV
mix(Cn) = O(n2).

Exercise⊲ 28. You may accept here that transitive expanders exist.

(a) Give a sequence of d-regular transitive graphs Gn = (Vn, En) with |Vn| → ∞ that mix rapidly,

tTV
mix(1/4) = O(log |Vn|), but do not form an expander sequence.

(b) In a similar manner, give a sequence Gn = (Vn, En) satisfying trelax ≍ tTV
mix(1/4)

α ≍ logα |Vn|, with
some 0 < α < 1.

The next few exercises have no probability content, only geometric group theory.

z

y

x

Figure 3: The Cayley graph of the Heisenberg group with generators X,Y, Z.
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The 3-dimensional discrete Heisenberg group is the matrix group

H3(Z) =












1 x z

0 1 y

0 0 1




 : x, y, z ∈ Z







.

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1, 0, 0 for x, y, z, then

H3(Z) is given by the presentation

〈
X,Y, Z

∣
∣ [X,Z] = 1, [Y, Z] = 1, [X,Y ] = Z

〉
.

Exercise⊲ 29. Show that the discrete Heisenberg group has 4-dimensional volume growth.

A group homomorphism ϕ : Γ1 −→ Γ2 is an expanding virtual isomorphism if it is expanding

(hence injective), and [Γ2 : ϕ(Γ1)] <∞. For instance, for the Heisenberg group H3(Z), the map





1 x z

0 1 y

0 0 1






ϕm,n7−→






1 mx mnz

0 1 ny

0 0 1






is an expanding virtual automorphism, with index [H3(Z) : ϕm,n(H3(Z))] = m2n2.

Exercise⊲ 30. Prove that if a finitely generated group has an expanding virtual automorphism, then it

has polynomial growth.

Exercise⊲ 31. *** Assume Γ is a finitely generated group and has a virtual isomorphism ϕ such that

⋂

n≥1

ϕn(Γ) = {1}.

(This is the case, e.g., when ϕ is expanding.) Does this imply that Γ has polynomial growth?

A condition weaker than in the last exercise is the following: a group Γ is called scale-invariant

if it has a chain of subgroups Γ = Γ0 ≥ Γ1 ≥ Γ2 ≥ · · · such that [Γ : Γn] < ∞ and
⋂
Γn = {1}.

This notion was introduced by Itai Benjamini, and he had conjectured that it implies polynomial growth

of Γ. However, this was disproved by Nekrashevych and myself: the lamplighter group Z2 ≀ Z is a

counterexample.

The following exercise is why we know that Grigorchuk’s group has intermediate volume growth.

Exercise⊲ 32. If Γ is a group with growth function vΓ(n) and there exists an expanding virtual isomor-

phism

Γ× Γ× · · · × Γ
︸ ︷︷ ︸

m≥2

−→ Γ,

then exp(nα1) � vΓ(n) � exp(nα2) for some 0 < α1 ≤ α2 < 1. (Hint: Γm →֒ Γ implies the existence

of α1, since v(n)m ≤ C v(kn) for all n implies that v(n) has superpolynomial growth. The expanding

virtual isomorphism gives the existence of α2.)

Now back to probability.

Exercise⊲ 33. Show that the uniform random d-regular bipartite multigraph on 2n vertices with d ≥ 3

has 4-cycles with a positive probability, and no 4-cycles with a positive probability, uniformly in n.

Exercise⊲ 34. Let G(V,E) be any bounded degree infinite graph, and Sn ր V an exhaustion by finite

connected subsets. Is it true that, for p > pc(G), we have

lim
n→∞

Pp[ largest cluster for percolation inside Sn is the subset of an infinite cluster ] = 1 ?
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Exercise⊲ 35.

(a) Show that for percolation on any infinite graph, the event {there are exactly three infinite clusters}
is Borel measurable.

(b) Give an Aut(Z2)-invariant and Z
2-ergodic percolation on Z

2 with infinitely many ∞ clusters.

Exercise⊲ 36. Give an Aut(Z2)-invariant and Z
2-ergodic percolation on Z

2 with exactly two ∞ clusters.

Exercise⊲ 37. ***

(a) Is there an ergodic deletion-tolerant Z2-invariant percolation on Z
2 with exactly two infinite clus-

ters?

(b) And what about infinitely many infinite clusters?

Exercise⊲ 38. Assume that π : G′
։ G is a topological covering between infinite graphs, or in other

words, G is a factor graph of G′. Show that pc(G
′) ≤ pc(G).

Exercise⊲ 39.

(a) Show that if in a graph G the number of minimal edge-cutsets (a subset of edges whose removal

disconnects a given vertex from infinity, minimal w.r.t. containment) of size n is at most exp(Cn)

for some C <∞, then pc(G) ≤ 1− ǫ(C) < 1.

(b) Fix o ∈ V (G) in a graph with maximal degree ∆. Prove that the number of connected sets

o ∈ S ⊂ V (G) of size n is at most ∆(∆ − 1)2n−3. (Hint: any S has a spanning tree, and one can

go around a tree visiting each edge twice.) Conclude that Z
d, d ≥ 2, has an exponential bound

on the number of minimal cutsets. In particular, pc(Z
d) < 1, although we already knew that from

Z
2 ⊆ Z

d.

Exercise⊲ 40. ** Let λ(G) := lim supn→∞ |{S ⊂ V (G) : o ∈ S connected, |S| = n}|1/n denote the

exponential growth rate of the number of “lattice animals”. We saw in part (b) of the previous exercise

that λ(G) ≤ (∆−1)2 for any graph of maximal degree ∆. What is the smallest possible upper bound here?

Kesten’s book has a beautiful argument proving λ(G) ≤ (∆− 1)e: for site percolation at p = 1/(∆− 1),

write the probability that the cluster of o is finite using lattice animals and their outer vertex boundaries.

Exercise⊲ 41 (Galton-Watson duality).* Either by computing generating functions directly, or by using

a Doob transform argument, show the following duality of super- and sub-critical GW trees. Consider a

supercritical GWξ tree, with generating function f(z) = E[ zξ ] and extinction probability q = f(q).

(a) Condition GWξ on non-extinction, and take the subtree of those vertices that have an infinite line

of descent. Show that this is a GW tree with offspring distribution ξ∗, where

P[ ξ∗ = k ] =
∞∑

j=k

(
j

k

)

(1− q)k−1qj−kP[ ξ = j ] .

Deduce that the generating function f∗(z) = E[ zξ
∗

] is obtained by taking the part of f(z) in the

[q, 1]2 square and rescaling it to the square [0, 1]2. Note that P[ ξ∗ = 0 ] = 0 and Eξ∗ = Eξ.

(b) Condition GWξ on extinction. Show that we get a subcritical GW tree, with offspring distribution

ξ̃, whose generating function f̃(z) is obtained by taking the part of f(z) in the [0, q]2 square and

rescaling it to the square [0, 1]2. Note that Eξ̃ = f ′(q) < 1.

Exercise⊲ 42. Consider a spherically symmetric tree T where each vertex on the nth level Tn has dn ∈
{k, k + 1} children, such that limn→∞ |Tn|1/n = k, but

∑∞
n=0 k

n/|Tn| < ∞. Using the second moment

method, show that pc = 1/k and θ(pc) > 0.
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To study percolation on general locally finite rooted trees T , Russ Lyons (1990) defined an “average

branching number”

br(T ) := sup

{

λ ≥ 1 : inf
Π

∑

e∈Π

λ−|e| > 0

}

, (0.1)

where the infimum is taken over all cutsets Π ⊂ E(T ) separating the root o ∈ V (T ) from infinity, and |e|
denotes the distance of the edge e from o. The following exercises help digest what this notion measures:

Exercise⊲ 43. Let T be a locally finite infinite tree with root o.

(a) Show that br(T ) does not depend on the choice of the root o.

(b) Show that the d+ 1-regular tree has br(Td+1) = d.

(c) Define the lower growth rate of T by gr(T ) := lim infn |Tn|1/n, where Tn is the set of vertices at

distance exactly n from o. Show that br(T ) ≤ gr(T ).

(d) Let us denote the set of non-backtracking infinite rays starting from o by ∂T , the boundary of the

tree, equipped with the metric d(ξ, η) := e−|ξ∧η|, where ξ ∧ η is the last common vertex of the two

rays, and |ξ ∧ η| is its distance from o. Show that

edimH(∂T,d) = br(T ) and edimM
(∂T,d) = gr(T ) ,

where dimH is Hausdorff dimension and dimM is lower Minkowski dimension.

Exercise⊲ 44. Find the branching number of the following two trees (see Figure 4):

(a) The quasi-transitive tree with degree 3 and degree 2 vertices alternating.

(b) The so-called 3-1-tree, which has 2n vertices on each level n, with the left 2n−1 vertices each having

one child, the right 2n−1 vertices each having three children; the root has two children.

Figure 4: A quasi-transitive tree and the 3-1 tree.

The key theorem Lyons proved (using a version of the 2nd Moment Method) is that pc(T ) = 1/br(T ).

This easily implies that br(GWξ) = Eξ a.s. on nonextinction, which is a nice “proof” that this is a good

definition of average branching. Moreover, the branching number turns out to govern the behavior of

most stochastic processes on trees. For instance, if we take λ-biased homesick random walk, where the

edge going towards the starting point o has weight λ compared to the outgoing edges that have weight 1,

the walk is recurrent for λ > br(T ) and transient for λ < br(T ).

Exercise⊲ 45. Prove the last statement on transience and recurrence using flows and cutsets in electric

networks.

Exercise⊲ 46. Prove that for any sequence monotone events A = An and any ǫ there is Cǫ < ∞ such

that
∣
∣pA1−ǫ(n)− pAǫ (n)

∣
∣ < Cǫ p

A
ǫ (n)∧ (1− pA1−ǫ(n)). (Hint: take many independent copies of a low density

percolation to get success with good probability at a larger density.)
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Exercise⊲ 47. In the random graphG(n, p) with p = λ/n, forAn = {containing a triangle}, show directly

that the expected number of pivotal edges is ≍ n (with factors depending on λ). (Hence, by Russo’s

formula, the threshold window is of size p1−ǫ
A (n)− pǫA(n) ≍ 1/n, as we already saw on class.)

Exercise⊲ 48. Find the order of magnitude of the threshold function pc(n) for the random graph G(n, p)

containing a copy of (a) the complete graph K4, and (b) the cycle C4.

Exercise⊲ 49. Consider the d-ary canopy tree of Figure 5: infinitely many leaves on level 0, grouped into

d-tuples, each tuple having a parent on level −1, which are grouped again in d-tuples, and so on, along

infinitely many levels. Let pT := inf{p : Ep|C (̺)| =∞}, where the expectation is both over the random

root ̺ and p-percolation. It is clear that pT ≤ pc, and there is a theorem that, for transitive graphs,

there is equality. However, show that here pT = 1/
√
d while pc = 1.

p0 = d−2
d−1 L0

p−1 = d−2
(d−1)2 L−1 ̺

p−2 = d−2
(d−1)3 L−2

p−3 = d−2
(d−1)4 L−3

Figure 5: The “canopy tree” T ∗
d with a random root ̺ (now on level L−1), which is the local weak limit

(as defined below) of the balls in the d-regular tree Td, for d = 3.

Exercise⊲ 50. Prove using subadditivity that σ(p) := limn→∞
−1
n logPp[ o←→ ∂Bn(o) ] exists in any

transitive graph.

Exercise⊲ 51.

(a) Show that the “conditional FKG-inequality” does not hold: find three increasing events A,B,C in

some Ber(p) product measure space such that Pp[AB | C ] < Pp[A | C ]Pp[B | C ].

(b) Show that the conditional FKG-inequality would imply that Pp[ · | 0←→ ∂Bn+1(o) ] stochastically

dominates Pp[ · | 0←→ ∂Bn(o) ] restricted to any box Bm(0) with m < n. (However, this mono-

tonicity is not known and might be false, and hence it was proved without relying on it that, for

p = pc(Z
2), these measures have a weak limit as n→∞, the IIC.)

As we defined on one of the classes, a sequence of finite graphs Gn is said to converge to a random

rooted graph (G, ̺) in the Benjamini-Schramm sense (also called local weak convergence if for

every r ∈ N+ the distribution of the r-neighbourhood around a uniformly chosen random root ̺n of Gn

converges weakly to the distribution of the r-ball around ̺ in G.

Exercise⊲ 52. Show that a transitive graph G has a sequence Gn of subgraphs converging to it in the

local weak sense iff it is amenable.

Exercise⊲ 53. Show that for all λ ∈ R+, the local weak limit of the Erdős-Rényi random graphsG(n, λ/n)

is the Galton-Watson tree with offspring distribution Poisson(λ), usually denoted by PGW(λ).
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