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The number of dots ® is the value of an exercise. Recall that 15 points are due on April 3, another 15 by
April 30 Thu 2 pm (in my Department Office pigeonhole). If you have seriously tried to solve some problem,
but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has

some potential to work, then I will give it back and you can try and correct the mistake.

Exercise 1. Let D,, := dist(X,,, Xo) be the distance of SRW from the starting point on a graph.
(a) ** Using the Central Limit Theorem, prove that E[D,,] < /n on any Z<.
(b) ** Use the notion of stochastic domination to compare D,, on the d-regular tree Ty with a biased
random walk on Z, then prove carefully from Azuma-Hoeffding that the return probability p, (o, 0) on
T4 decays exponentially in n.

(c) *® Using the exponential decay in the previous part, prove that E[D,, ] ~ d%fn, as n — o0o.

Exercise 2.
(a) ** Recall (and give a reference), or prove using the reflection principle, that if {X}}x>0 is SRW on Z,
and M, = maxy<, X, then
2P[X, >t] > P[M, >1t].

Using this and Exercise 1 (a), show that the expected number of vertices visited by { X} by time n is
El{Xo,Xl, - 7Xn}| = \/ﬁ
(b) ***** For SRW on Z?, show that the expected number of vertices visited by time n is
E|{Xo, X1,...,Xn}| xn/logn.
(c) **** Prove that, for SRW on any transient transitive graph,

lim |{ 0y <21, 3 }|:P

n—00 n

[Xp# Xo, k=1,2,...] >0.

Exercise 3. ** Prove that for Green’s function of simple random walk on a connected graph, for any vertices
z,y,a,b and any real z > 0,
G(z,y|z) < 00 & G(a,blz) < 0.

Therefore, by Pringsheim’s theorem, we have that the radius of convergence is independent of z, y.

Exercise 4. *** Compute the spectral radius p(Ty ), where Ty, is a tree such that if v, € Ty ¢ is a vertex
at distance n from the root,

k n even
degv,, =
¢ nodd.
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Exercise 5. Two basic exercises about martingales:
(a) ** Show that if {M;}3°, is a martingale, then the differences X; = M; — M,;_; satisfy the uncorrelat-
edness condition E[Xi1 e Xik] =0, for any k € Z; and i1 < ig < -+ < .
(b) **** Give an example of a random sequence (M,)32, such that E[M,,1+1 | M, ] = M, for all n > 0,
but which is not a martingale w.r.t. the filtration .%,, = o(My, ..., My).

Exercise 6. *****® Counsider the standard hexagonal lattice. Show that if you are given a bound B < oo,
and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

Exercise 7. Recall that being non-amenable means satisfying the strong isoperimetric inequality I P .
(a) ** Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of
“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, I P, implies I P,..)
(b) **** Give an example of a bounded degree tree of exponential volume growth that satisfies no TPy

and is recurrent for the simple random walk on it.

Exercise 8. ****** Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling
paradoxical decomposition: two injective maps «, 8 : V. — V such that o(V)USB(V) = V is a disjoint union,
and both maps are at a bounded distance from the identity, or wobbling: sup,cy d(z,a(z)) < co. (Hint:
State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the
Hall-Rado theorem.)

Exercise 9. Recall that the universal covering tree T of a graph G is the unique tree for which there exists
a surjective graph-homomorphism 7 : T' — G that locally, restricted to the radius 1 neighborhood of any
vertex of G, is an isomorphism.
(a) ** Show that the universal covering tree of any finite graph is quasi-transitive (that is, its automorphism
group has finitely many orbits).
(b) *** Give an example of a quasi-transitive infinite tree that is not the universal covering tree of any
finite graph.

Exercise 10. *** Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital
display. Consider the uniform measure on the 15 spanning trees of GG, denoted by UST, and the uniform
measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1.

Find an explicit monotone coupling between the two measures (i.e., with UST C UST + 1).

Remark. I do not know if such a monotone coupling exists for any finite graph. A proof or a counterexample

would earn you at least 15 points and would be the basis of a great MSc thesis.



Exercise 11. *** Find the order of magnitude of the threshold function p;/;(n) for the random graph
G(n,p) containing a copy of the cycle Cy.

Exercise 12.
(a) ** Using the 2nd Moment Method, show that for p = %, with A < 1 fixed, there exist isolated
vertices in G(n,p) with probability tending to 1.
(b) ** Let Ix(n) be the expected number of isolated vertices in the previous part. Show that if 0 < A <
A < 1, and k(n) = Iy/(n) > Ix(n), then the probability that there exists a component (or a union of
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components) of size k(n) in G(n, ) is going to 0. This is an indication that isolated vertices are

indeed the main obstacles to connectivity.

Exercise 13. Consider a GW process with offspring distribution &, E{ = p. Let Z,, be the size of the nth
level, with Zy = 1, the root. Recall that Z,,/u™ is a martingale.

(a) *** Assuming that p > 1 and E[£?] < oo, first show that E[Z2] < C(EZ,)?. (Hint: use the
conditional variance formula D?[Z,] = E[D?(Z, | Z,—1]]| + D?*[E[Z, | Z,—-1]].) Then, using the
Second Moment Method, deduce that the GW process survives with positive probability.

(b) ** Extend the above to the case E§ = 0o or D = oo by a truncation £1sck for K large enough.

Exercise 14. If X is a non-negative random variable with finite expectation, then its size-biased version X
is defined by P[X € A] = E[ X 1{xc 4 ]/EX.
(a) ® Show that the size-biased version of Poi(\) is just Poi(A) + 1.
(b) * Show that the size-biased version of Expon(A) is the sum of two independent Expon(A)’s.
(c) *** Take Poisson point process of intensity A on R. Condition on the interval (—e¢, €) to contain at least
one arrival. As € — 0, what is the point process we obtain in the limit? What does this have to do
with parts (a) and (b)?

Exercise 15. ***** Show that Binom(n — 1, A/n) is stochastically dominated by Poi(}).

Exercise 16.

(a) ** Take a Mdobius map from the unit disk D to the upper half plane H that takes the center 0 € D
to i € H. Compute the pushforward of the uniform measure on 9D to R = JH, and get the Cauchy
distribution.

(b) ** Now understand what the conformal map z — 3 (z + 1) does to the unit disk D and its complement
C\D. Compute again the pushforward of the uniform measure on D. Interpret the result as the hitting
distribution of a free electron performing 2-dimensional Brownian motion, coming from infinitely far,

and observe that this distribution is a key to how lightning rods work.

Exercise 17. **® Consider some random walk on R, denoted by S, = X1 +---+X,,, forn=0,1,.... Show
that if P[S,, € (—2¢, 2¢) infinitely often] < 1 for some € > 0, then the expected number of returns of S, to
(—¢,€) is finite. Therefore, our computation in class that the latter expectation for Cauchy jumps is infinite

for any € > 0 shows that this walk is recurrent.

Exercise 18. Counsider asymmetric simple random walk (X;) on Z, with probability p > 1/2 for a right
step and 1 — p for a left step.
(a) ** Find a martingale of the form r*i for some r > 0, and calculate Py[7 > 7, ].
(b) *** Find a martingale of the form X, — u i for some p > 0, and calculate Ex[ 79 A 7, ]. (Hint: to prove
that this second martingale is uniformly integrable, first show that 79 A 7, has an exponential tail.)

Exercise 19. ***** Using the exploration Markov chain for GW trees and a Doob transform, show that if
we condition the GW tree with offspring distribution Poisson(\) on extinction, where A > 1, then we get a

GW tree with offspring distribution Poisson(u) with u < 1, where e ™ = pe™*.



Exercise 20. ***** For the GW tree with offspring distribution Poisson(1l + €), show that the survival
probability is asymptotically 2e, as ¢ — 0.

Exercise 21. **** Prove the Bollobas-Thomason threshold theorem: for any sequence monotone events
A = A, and any e there is C. < oo such that |pf .(n) — p2(n)| < Cec (pA(n) A (1 —pf* .(n))). (Hint: take
many independent copies of low density to get success with good probability at a larger density.)

Exercise 22. **** In the random graph G(n,p) with p = A\/n, for A,, = {containing a triangle}, show
directly that the expected number of pivotal edges is < n (with factors depending on A), and hence, by

Russo’s formula, the threshold window is of size p{* .(n) — pA(n) < 1/n, as we also saw earlier.

Exercise 23. For functions f : {—1,1}" — R of n bits, consider the inner product (f,g) := E,[ fg], where
each bit is 1 with probability p and —1 with probability 1 — p, independently.
(a) ** For p = 1/2 show that {xs(w) := [[;cgw(i) : S C [n]} is an orthonormal basis for this inner product
space.

(b) ** Find a similar orthonormal basis for general p.

~

Exercise 24. With the notation of the previous exercise, define the Fourier-Walsh coefficients f(5) :=
Ei /2] f(w) xs(w)]. We will consider monotone Boolean functions with values in {—1,1} (instead of the
usual {0, 1}, because our formulas will be simpler this way).

(a) ** Show that the probability that the kth bit is pivotal for f is exactly f({k}).

(b) *** Using Cauchy-Schwarz and Parseval, deduce that the expected number of pivotals at p = 1/2 is at

most /7.

(c) ** Show by the example of majority, Maj(z1,...,Zak+1) = sign (21 + - - - + Tax+1), that this is sharp.

Exercise 25. **® For a subset A of the hypercube {0,1}", let B(A,t) := {x € {0,1}" : dist(z, A) < t}. Let
€, A > 0 be constants satisfying exp(—\?/2) = €. Prove using Azuma-Hoeffding that

Al > €2" = |B(4,2Av/n)| > (1—¢)2".

That is, even small sets become huge if we enlarge them a little.

Exercise 26. *** Is there a graph property (a subset of {0, 1}(3) that is closed under graph isomorphisms)

for which the edge exposure martingale is a random walk on R, or even SRW on Z, started somewhere?

Exercise 27. ** Show that for percolation on any infinite graph, the event {there are exactly three infinite

clusters} is Borel measurable.

Exercise 28. **** Let G(V, E) be any bounded degree infinite graph, and S,, ,* V an exhaustion by finite
connected subsets. Is it true that, for p > p.(G), we have

lim P,[largest cluster for percolation inside S, is the subset of an infinite cluster] =17
n—oo

Exercise 29. ** As in class, a trifurcation point of an infinite cluster is a vertex whose removal breaks the
cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem:
if ¥ denotes the union of all the infinite clusters in some percolation on G, and U C V(G) is finite, then
the size of €o NOYMU is at least the number of trifurcation points of € in U, plus 2.

Exercise 30.
(a) **** Give an Aut(Z?)-invariant and Z?-ergodic percolation on Z? with infinitely many oo clusters.
(b) ****** Give an Aut(Z?)-invariant and Z?-ergodic percolation on Z? with exactly two oo clusters.
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Figure 2: Sorry, this picture is on the segment, not on the cycle.
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> Exercise 31. **** A simple version of the Tetris game (with no player): on the discrete cycle of length
K, unit squares with sticky corners are falling from the sky, at places [i,4 4+ 1] chosen uniformly at random
(i=0,1,...,K — 1, mod K). Let R; be the size of the roof after ¢ squares have fallen: those squares of the
current configuration that could have been the last to fall. Show that lim;—,.c ER; = K/3.
Remark. If there are two types of squares, particles and antiparticles that annihilate each other when
falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to
do with the speed of the SRW. Here, for K > 4, the expected limiting size of the roof is already less than
0.32893 K, but this is far from trivial. What’s the situation for K = 37



