Stochastic models — homework problems

GÁBOR PETE http://www.math.bme.hu/~gabor

April 10, 2015

The number of dots • is the value of an exercise. Recall that 15 points are due on April 3, another 15 by April 30 Thu 2 pm (in my Department Office pigeonhole). If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has some potential to work, then I will give it back and you can try and correct the mistake.

- \triangleright Exercise 1. Let $D_n := \operatorname{dist}(X_n, X_0)$ be the distance of SRW from the starting point on a graph.
 - (a) •• Using the Central Limit Theorem, prove that $\mathbf{E}[D_n] \simeq \sqrt{n}$ on any \mathbb{Z}^d .
 - (b) •• Use the notion of stochastic domination to compare D_n on the *d*-regular tree \mathbb{T}_d with a biased random walk on \mathbb{Z} , then prove carefully from Azuma-Hoeffding that the return probability $p_n(o, o)$ on \mathbb{T}_d decays exponentially in n.
 - (c) Using the exponential decay in the previous part, prove that $\mathbf{E}[D_n] \sim \frac{d-2}{d}n$, as $n \to \infty$.
- \triangleright Exercise 2.
 - (a) •• Recall (and give a reference), or prove using the reflection principle, that if $\{X_k\}_{k\geq 0}$ is SRW on \mathbb{Z} , and $M_n = \max_{k\leq n} X_k$, then

$$2\mathbf{P}[X_n \ge t] \ge \mathbf{P}[M_n \ge t].$$

Using this and Exercise 1 (a), show that the expected number of vertices visited by $\{X_k\}$ by time n is

$$\mathbf{E}|\{X_0, X_1, \ldots, X_n\}| \asymp \sqrt{n}.$$

(b) ••••• For SRW on \mathbb{Z}^2 , show that the expected number of vertices visited by time n is

$$\mathbf{E}|\{X_0, X_1, \dots, X_n\}| \asymp n/\log n.$$

(c) •••• Prove that, for SRW on any transient transitive graph,

$$\lim_{n \to \infty} \frac{\mathbf{E}[\{X_0, X_1, \dots, X_n\}]}{n} = \mathbf{P}[X_k \neq X_0, \ k = 1, 2, \dots] > 0.$$

▷ **Exercise 3.** • Prove that for Green's function of simple random walk on a connected graph, for any vertices x, y, a, b and any real z > 0,

$$G(x,y|z) < \infty \iff G(a,b|z) < \infty$$
.

Therefore, by Pringsheim's theorem, we have that the radius of convergence is independent of x, y.

▷ **Exercise 4.** ••• Compute the spectral radius $\rho(\mathbb{T}_{k,\ell})$, where $\mathbb{T}_{k,\ell}$ is a tree such that if $v_n \in \mathbb{T}_{k,\ell}$ is a vertex at distance *n* from the root,

$$\deg v_n = \begin{cases} k & n \text{ even} \\ \ell & n \text{ odd} \end{cases}$$

- ▷ **Exercise 5.** Two basic exercises about martingales:
 - (a) •• Show that if $\{M_i\}_{i=0}^{\infty}$ is a martingale, then the differences $X_i = M_i M_{i-1}$ satisfy the uncorrelatedness condition $\mathbf{E}[X_{i_1} \cdots X_{i_k}] = 0$, for any $k \in \mathbb{Z}_+$ and $i_1 < i_2 < \cdots < i_k$.
 - (b) ••••• Give an example of a random sequence $(M_n)_{n=0}^{\infty}$ such that $\mathbf{E}[M_{n+1} | M_n] = M_n$ for all $n \ge 0$, but which is not a martingale w.r.t. the filtration $\mathscr{F}_n = \sigma(M_0, \ldots, M_n)$.
- \triangleright Exercise 6. •••••• Consider the standard hexagonal lattice. Show that if you are given a bound $B < \infty$, and can group the hexagons into countries, each being a connected set of at most *B* hexagons, then it is not possible to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

- \triangleright Exercise 7. Recall that being non-amenable means satisfying the strong isoperimetric inequality IP_{∞} .
 - (a) •• Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2. (Consequently, for trees, $IP_{1+\epsilon}$ implies IP_{∞} .)
 - (b) ••••• Give an example of a bounded degree tree of exponential volume growth that satisfies no $IP_{1+\epsilon}$ and is recurrent for the simple random walk on it.
- Exercise 8. •••••• Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling paradoxical decomposition: two injective maps $\alpha, \beta : V \longrightarrow V$ such that $\alpha(V) \sqcup \beta(V) = V$ is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling: $\sup_{x \in V} d(x, \alpha(x)) < \infty$. (Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)
- \triangleright Exercise 9. Recall that the universal covering tree T of a graph G is the unique tree for which there exists a surjective graph-homomorphism $\pi : T \longrightarrow G$ that locally, restricted to the radius 1 neighborhood of any vertex of G, is an isomorphism.
 - (a) •• Show that the universal covering tree of any finite graph is quasi-transitive (that is, its automorphism group has finitely many orbits).
 - (b) ••• Give an example of a quasi-transitive infinite tree that is not the universal covering tree of any finite graph.
- ▷ Exercise 10. ••• Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display. Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an explicit monotone coupling between the two measures (i.e., with UST \subset UST + 1).

Remark. I do not know if such a monotone coupling exists for any finite graph. A proof or a counterexample would earn you at least 15 points and would be the basis of a great MSc thesis.

- ▷ **Exercise 11.** ••• Find the order of magnitude of the threshold function $p_{1/2}(n)$ for the random graph G(n,p) containing a copy of the cycle C_4 .
- \triangleright Exercise 12.
 - (a) •• Using the 2nd Moment Method, show that for $p = \frac{\lambda \ln n}{n}$, with $\lambda < 1$ fixed, there exist isolated vertices in G(n, p) with probability tending to 1.
 - (b) •• Let I_λ(n) be the expected number of isolated vertices in the previous part. Show that if 0 < λ' < λ < 1, and k(n) = I_{λ'}(n) ≫ I_λ(n), then the probability that there exists a component (or a union of components) of size k(n) in G(n, λlnn/n) is going to 0. This is an indication that isolated vertices are indeed the main obstacles to connectivity.
- \triangleright Exercise 13. Consider a GW process with offspring distribution ξ , $\mathbf{E}\xi = \mu$. Let Z_n be the size of the *n*th level, with $Z_0 = 1$, the root. Recall that Z_n/μ^n is a martingale.
 - (a) ••• Assuming that $\mu > 1$ and $\mathbf{E}[\xi^2] < \infty$, first show that $\mathbf{E}[Z_n^2] \leq C(\mathbf{E}Z_n)^2$. (Hint: use the conditional variance formula $\mathbf{D}^2[Z_n] = \mathbf{E}[\mathbf{D}^2[Z_n | Z_{n-1}]] + \mathbf{D}^2[\mathbf{E}[Z_n | Z_{n-1}]]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
 - (b) •• Extend the above to the case $\mathbf{E}\xi = \infty$ or $\mathbf{D}\xi = \infty$ by a truncation $\xi \mathbf{1}_{\xi < K}$ for K large enough.
- ▷ **Exercise 14.** If X is a non-negative random variable with finite expectation, then its size-biased version \hat{X} is defined by $\mathbf{P}[\hat{X} \in A] = \mathbf{E}[X \mathbf{1}_{\{X \in A\}}]/\mathbf{E}X$.
 - (a) Show that the size-biased version of $\mathsf{Poi}(\lambda)$ is just $\mathsf{Poi}(\lambda) + 1$.
 - (b) Show that the size-biased version of $\mathsf{Expon}(\lambda)$ is the sum of two independent $\mathsf{Expon}(\lambda)$'s.
 - (c) •••• Take Poisson point process of intensity λ on \mathbb{R} . Condition on the interval $(-\epsilon, \epsilon)$ to contain at least one arrival. As $\epsilon \to 0$, what is the point process we obtain in the limit? What does this have to do with parts (a) and (b)?
- \triangleright Exercise 15. ••••• Show that $\mathsf{Binom}(n-1,\lambda/n)$ is stochastically dominated by $\mathsf{Poi}(\lambda)$.
- \triangleright Exercise 16.
 - (a) •• Take a Möbius map from the unit disk \mathbb{D} to the upper half plane \mathbb{H} that takes the center $0 \in \mathbb{D}$ to $i \in \mathbb{H}$. Compute the pushforward of the uniform measure on $\partial \mathbb{D}$ to $\mathbb{R} = \partial \mathbb{H}$, and get the Cauchy distribution.
 - (b) •• Now understand what the conformal map $z \mapsto \frac{1}{2} \left(z + \frac{1}{z}\right)$ does to the unit disk \mathbb{D} and its complement $\mathbb{C}\setminus\mathbb{D}$. Compute again the pushforward of the uniform measure on $\partial\mathbb{D}$. Interpret the result as the hitting distribution of a free electron performing 2-dimensional Brownian motion, coming from infinitely far, and observe that this distribution is a key to how lightning rods work.
- Exercise 17. ••• Consider some random walk on \mathbb{R} , denoted by $S_n = X_1 + \cdots + X_n$, for $n = 0, 1, \ldots$. Show that if $\mathbf{P}[S_n \in (-2\epsilon, 2\epsilon)$ infinitely often] < 1 for some $\epsilon > 0$, then the expected number of returns of S_n to $(-\epsilon, \epsilon)$ is finite. Therefore, our computation in class that the latter expectation for Cauchy jumps is infinite for any $\epsilon > 0$ shows that this walk is recurrent.
- ▷ Exercise 18. Consider asymmetric simple random walk (X_i) on \mathbb{Z} , with probability p > 1/2 for a right step and 1 p for a left step.
 - (a) •• Find a martingale of the form r^{X_i} for some r > 0, and calculate $\mathbf{P}_k[\tau_0 > \tau_n]$.
 - (b) ••• Find a martingale of the form $X_i \mu i$ for some $\mu > 0$, and calculate $\mathbf{E}_k[\tau_0 \wedge \tau_n]$. (Hint: to prove that this second martingale is uniformly integrable, first show that $\tau_0 \wedge \tau_n$ has an exponential tail.)
- ▷ **Exercise 19.** ••••• Using the exploration Markov chain for GW trees and a Doob transform, show that if we condition the GW tree with offspring distribution Poisson(λ) on extinction, where $\lambda > 1$, then we get a GW tree with offspring distribution Poisson(μ) with $\mu < 1$, where $\lambda e^{-\lambda} = \mu e^{-\mu}$.

- ▷ **Exercise 20.** ••••• For the GW tree with offspring distribution $Poisson(1 + \epsilon)$, show that the survival probability is asymptotically 2ϵ , as $\epsilon \to 0$.
- $\triangleright \quad \text{Exercise 21. } \bullet \bullet \bullet \bullet \quad \text{Prove the Bollobás-Thomason threshold theorem: for any sequence monotone events} \\ \mathcal{A} = \mathcal{A}_n \text{ and any } \epsilon \text{ there is } C_{\epsilon} < \infty \text{ such that } \left| p_{1-\epsilon}^{\mathcal{A}}(n) p_{\epsilon}^{\mathcal{A}}(n) \right| < C_{\epsilon} \left(p_{\epsilon}^{\mathcal{A}}(n) \wedge (1 p_{1-\epsilon}^{\mathcal{A}}(n)) \right). \text{ (Hint: take many independent copies of low density to get success with good probability at a larger density.)}$
- \triangleright **Exercise 22.** •••• In the random graph G(n, p) with $p = \lambda/n$, for $\mathcal{A}_n = \{$ containing a triangle $\}$, show directly that the expected number of pivotal edges is $\asymp n$ (with factors depending on λ), and hence, by Russo's formula, the threshold window is of size $p_{1-\epsilon}^{\mathcal{A}}(n) = p_{\epsilon}^{\mathcal{A}}(n) \approx 1/n$, as we also saw earlier.
- ▷ **Exercise 23.** For functions $f : \{-1, 1\}^n \longrightarrow \mathbb{R}$ of *n* bits, consider the inner product $(f, g) := \mathbf{E}_p[fg]$, where each bit is 1 with probability *p* and -1 with probability 1 p, independently.
 - (a) •• For p = 1/2 show that $\{\chi_S(\omega) := \prod_{i \in S} \omega(i) : S \subseteq [n]\}$ is an orthonormal basis for this inner product space.
 - (b) •• Find a similar orthonormal basis for general p.
- ▷ Exercise 24. With the notation of the previous exercise, define the Fourier-Walsh coefficients $\hat{f}(S) := \mathbf{E}_{1/2} [f(\omega) \chi_S(\omega)]$. We will consider monotone Boolean functions with values in $\{-1, 1\}$ (instead of the usual $\{0, 1\}$, because our formulas will be simpler this way).
 - (a) •• Show that the probability that the kth bit is pivotal for f is exactly $\widehat{f}(\{k\})$.
 - (b) •••• Using Cauchy-Schwarz and Parseval, deduce that the expected number of pivotals at p = 1/2 is at most \sqrt{n} .
 - (c) •• Show by the example of majority, $Maj(x_1, \ldots, x_{2k+1}) = sign(x_1 + \cdots + x_{2k+1})$, that this is sharp.
- ▷ **Exercise 25.** ••• For a subset A of the hypercube $\{0,1\}^n$, let $B(A,t) := \{x \in \{0,1\}^n : \operatorname{dist}(x,A) \le t\}$. Let $\epsilon, \lambda > 0$ be constants satisfying $\exp(-\lambda^2/2) = \epsilon$. Prove using Azuma-Hoeffding that

$$|A| \ge \epsilon \, 2^n \implies |B(A, 2\lambda\sqrt{n})| \ge (1-\epsilon) \, 2^n \, .$$

That is, even small sets become huge if we enlarge them a little.

- ▷ **Exercise 26.** ••• Is there a graph property (a subset of $\{0,1\}^{\binom{n}{2}}$ that is closed under graph isomorphisms) for which the edge exposure martingale is a random walk on \mathbb{R} , or even SRW on \mathbb{Z} , started somewhere?
- ▷ Exercise 27. •• Show that for percolation on any infinite graph, the event {there are exactly three infinite clusters} is Borel measurable.
- \triangleright Exercise 28. •••• Let G(V, E) be any bounded degree infinite graph, and $S_n \nearrow V$ an exhaustion by finite connected subsets. Is it true that, for $p > p_c(G)$, we have

 $\lim_{n\to\infty} \mathbf{P}_p[\text{largest cluster for percolation inside } S_n \text{ is the subset of an infinite cluster}] = 1?$

- ▷ Exercise 29. •• As in class, a trifurcation point of an infinite cluster is a vertex whose removal breaks the cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem: if \mathscr{C}_{∞} denotes the union of all the infinite clusters in some percolation on G, and $U \subset V(G)$ is finite, then the size of $\mathscr{C}_{\infty} \cap \partial_{V}^{\text{out}}U$ is at least the number of trifurcation points of \mathscr{C}_{∞} in U, plus 2.
- \triangleright Exercise 30.
 - (a) •••• Give an Aut(\mathbb{Z}^2)-invariant and \mathbb{Z}^2 -ergodic percolation on \mathbb{Z}^2 with infinitely many ∞ clusters.
 - (b) •••••• Give an Aut(\mathbb{Z}^2)-invariant and \mathbb{Z}^2 -ergodic percolation on \mathbb{Z}^2 with exactly two ∞ clusters.

Figure 2: Sorry, this picture is on the segment, not on the cycle.

▷ **Exercise 31.** •••• A simple version of the Tetris game (with no player): on the discrete cycle of length K, unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random (i = 0, 1, ..., K - 1, mod K). Let R_t be the size of the roof after t squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim_{t\to\infty} \mathbf{E}R_t = K/3$.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \ge 4$, the expected limiting size of the roof is already less than 0.32893K, but this is far from trivial. What's the situation for K = 3?