# Stochastic models - homework problems 

Gábor Pete<br>http://www.math.bme.hu/~gabor

April 10, 2015

The number of dots ${ }^{\bullet}$ is the value of an exercise. Recall that 15 points are due on April 3, another 15 by April 30 Thu 2 pm (in my Department Office pigeonhole). If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has some potential to work, then I will give it back and you can try and correct the mistake.
$\triangleright$ Exercise 1. Let $D_{n}:=\operatorname{dist}\left(X_{n}, X_{0}\right)$ be the distance of SRW from the starting point on a graph.
(a) ${ }^{\bullet}$ Using the Central Limit Theorem, prove that $\mathbf{E}\left[D_{n}\right] \asymp \sqrt{n}$ on any $\mathbb{Z}^{d}$.
(b) •• Use the notion of stochastic domination to compare $D_{n}$ on the $d$-regular tree $\mathbb{T}_{d}$ with a biased random walk on $\mathbb{Z}$, then prove carefully from Azuma-Hoeffding that the return probability $p_{n}(o, o)$ on $\mathbb{T}_{d}$ decays exponentially in $n$.
(c) • Using the exponential decay in the previous part, prove that $\mathbf{E}\left[D_{n}\right] \sim \frac{d-2}{d} n$, as $n \rightarrow \infty$.
$\triangleright \quad$ Exercise 2.
(a) ••Recall (and give a reference), or prove using the reflection principle, that if $\left\{X_{k}\right\}_{k \geq 0}$ is SRW on $\mathbb{Z}$, and $M_{n}=\max _{k \leq n} X_{k}$, then

$$
2 \mathbf{P}\left[X_{n} \geq t\right] \geq \mathbf{P}\left[M_{n} \geq t\right]
$$

Using this and Exercise 1 (a), show that the expected number of vertices visited by $\left\{X_{k}\right\}$ by time $n$ is

$$
\mathbf{E}\left|\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}\right| \asymp \sqrt{n}
$$

(b) •••• For SRW on $\mathbb{Z}^{2}$, show that the expected number of vertices visited by time $n$ is

$$
\mathbf{E}\left|\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}\right| \asymp n / \log n
$$

(c) ••• Prove that, for SRW on any transient transitive graph,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E}\left|\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}\right|}{n}=\mathbf{P}\left[X_{k} \neq X_{0}, k=1,2, \ldots\right]>0
$$

$\triangleright$ Exercise 3. ${ }^{\bullet}$ Prove that for Green's function of simple random walk on a connected graph, for any vertices $x, y, a, b$ and any real $z>0$,

$$
G(x, y \mid z)<\infty \Leftrightarrow G(a, b \mid z)<\infty
$$

Therefore, by Pringsheim's theorem, we have that the radius of convergence is independent of $x, y$.
$\triangleright$ Exercise 4. ${ }^{\bullet \bullet}$ Compute the spectral radius $\rho\left(\mathbb{T}_{k, \ell}\right)$, where $\mathbb{T}_{k, \ell}$ is a tree such that if $v_{n} \in \mathbb{T}_{k, \ell}$ is a vertex at distance $n$ from the root,

$$
\operatorname{deg} v_{n}=\left\{\begin{array}{cl}
k & n \text { even } \\
\ell & n \text { odd }
\end{array}\right.
$$

$\triangleright$ Exercise 5. Two basic exercises about martingales:
(a) ••Show that if $\left\{M_{i}\right\}_{i=0}^{\infty}$ is a martingale, then the differences $X_{i}=M_{i}-M_{i-1}$ satisfy the uncorrelatedness condition $\mathbf{E}\left[X_{i_{1}} \cdots X_{i_{k}}\right]=0$, for any $k \in \mathbb{Z}_{+}$and $i_{1}<i_{2}<\cdots<i_{k}$.
(b) $\cdot \bullet \cdot$ Give an example of a random sequence $\left(M_{n}\right)_{n=0}^{\infty}$ such that $\mathbf{E}\left[M_{n+1} \mid M_{n}\right]=M_{n}$ for all $n \geq 0$, but which is not a martingale w.r.t. the filtration $\mathscr{F}_{n}=\sigma\left(M_{0}, \ldots, M_{n}\right)$.
$\triangleright$ Exercise 6. ${ }^{\bullet \bullet \bullet}$ Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most $B$ hexagons, then it is not possible to have at least 7 neighbours for each country.


Figure 1: Trying to create at least 7 neighbours for each country.
$\triangleright$ Exercise 7. Recall that being non-amenable means satisfying the strong isoperimetric inequality $I P_{\infty}$.
(a) ••Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2. (Consequently, for trees, $I P_{1+\epsilon}$ implies $I P_{\infty}$.)
(b) $\bullet \bullet$ Give an example of a bounded degree tree of exponential volume growth that satisfies no $I P_{1+\epsilon}$ and is recurrent for the simple random walk on it.
$\triangleright$ Exercise 8. $\cdots \cdots$ Show that a bounded degree graph $G(V, E)$ is nonamenable if and only if it has a wobbling paradoxical decomposition: two injective maps $\alpha, \beta: V \longrightarrow V$ such that $\alpha(V) \sqcup \beta(V)=V$ is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling: $\sup _{x \in V} d(x, \alpha(x))<\infty$. (Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)
$\triangleright \quad$ Exercise 9. Recall that the universal covering tree $T$ of a graph $G$ is the unique tree for which there exists a surjective graph-homomorphism $\pi: T \longrightarrow G$ that locally, restricted to the radius 1 neighborhood of any vertex of $G$, is an isomorphism.
(a) •• Show that the universal covering tree of any finite graph is quasi-transitive (that is, its automorphism group has finitely many orbits).
(b) ••• Give an example of a quasi-transitive infinite tree that is not the universal covering tree of any finite graph.
$\triangleright \quad$ Exercise 10. ${ }^{\bullet \bullet}$ Consider the graph $G$ with 6 vertices and 7 edges that looks like a figure 8 on a digital display. Consider the uniform measure on the 15 spanning trees of $G$, denoted by UST, and the uniform measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST +1 . Find an explicit monotone coupling between the two measures (i.e., with UST $\subset$ UST +1 ).

Remark. I do not know if such a monotone coupling exists for any finite graph. A proof or a counterexample would earn you at least 15 points and would be the basis of a great MSc thesis.
$\triangleright$ Exercise 11. ${ }^{\bullet \bullet}$ Find the order of magnitude of the threshold function $p_{1 / 2}(n)$ for the random graph $G(n, p)$ containing a copy of the cycle $C_{4}$.
$\triangleright \quad$ Exercise 12.
(a) ••Using the 2nd Moment Method, show that for $p=\frac{\lambda \ln n}{n}$, with $\lambda<1$ fixed, there exist isolated vertices in $G(n, p)$ with probability tending to 1 .
(b) ${ }^{\bullet}$ Let $I_{\lambda}(n)$ be the expected number of isolated vertices in the previous part. Show that if $0<\lambda^{\prime}<$ $\lambda<1$, and $k(n)=I_{\lambda^{\prime}}(n) \gg I_{\lambda}(n)$, then the probability that there exists a component (or a union of components) of size $k(n)$ in $G\left(n, \frac{\lambda \ln n}{n}\right)$ is going to 0 . This is an indication that isolated vertices are indeed the main obstacles to connectivity.
$\triangleright$ Exercise 13. Consider a GW process with offspring distribution $\xi, \mathbf{E} \xi=\mu$. Let $Z_{n}$ be the size of the $n$th level, with $Z_{0}=1$, the root. Recall that $Z_{n} / \mu^{n}$ is a martingale.
(a) $\bullet^{\bullet}$ Assuming that $\mu>1$ and $\mathbf{E}\left[\xi^{2}\right]<\infty$, first show that $\mathbf{E}\left[Z_{n}^{2}\right] \leq C\left(\mathbf{E} Z_{n}\right)^{2}$. (Hint: use the conditional variance formula $\mathbf{D}^{2}\left[Z_{n}\right]=\mathbf{E}\left[\mathbf{D}^{2}\left[Z_{n} \mid Z_{n-1}\right]\right]+\mathbf{D}^{2}\left[\mathbf{E}\left[Z_{n} \mid Z_{n-1}\right]\right]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
(b) •• Extend the above to the case $\mathbf{E} \xi=\infty$ or $\mathbf{D} \xi=\infty$ by a truncation $\xi \mathbf{1}_{\xi<K}$ for $K$ large enough.
$\triangleright \quad$ Exercise 14. If $X$ is a non-negative random variable with finite expectation, then its size-biased version $\widehat{X}$ is defined by $\mathbf{P}[\widehat{X} \in A]=\mathbf{E}\left[X \mathbf{1}_{\{X \in A\}}\right] / \mathbf{E} X$.
(a) • Show that the size-biased version of $\operatorname{Poi}(\lambda)$ is just $\operatorname{Poi}(\lambda)+1$.
(b) • Show that the size-biased version of $\operatorname{Expon}(\lambda)$ is the sum of two independent Expon $(\lambda)$ 's.
(c) ••• Take Poisson point process of intensity $\lambda$ on $\mathbb{R}$. Condition on the interval $(-\epsilon, \epsilon)$ to contain at least one arrival. As $\epsilon \rightarrow 0$, what is the point process we obtain in the limit? What does this have to do with parts (a) and (b)?
$\triangleright$ Exercise 15. $\bullet \cdots$ Show that $\operatorname{Binom}(n-1, \lambda / n)$ is stochastically dominated by $\operatorname{Poi}(\lambda)$.
$\triangleright \quad$ Exercise 16.
(a) •• Take a Möbius map from the unit disk $\mathbb{D}$ to the upper half plane $\mathbb{H}$ that takes the center $0 \in \mathbb{D}$ to $i \in \mathbb{H}$. Compute the pushforward of the uniform measure on $\partial \mathbb{D}$ to $\mathbb{R}=\partial \mathbb{H}$, and get the Cauchy distribution.
(b) •• Now understand what the conformal map $z \mapsto \frac{1}{2}\left(z+\frac{1}{z}\right)$ does to the unit disk $\mathbb{D}$ and its complement $\mathbb{C} \backslash \mathbb{D}$. Compute again the pushforward of the uniform measure on $\partial \mathbb{D}$. Interpret the result as the hitting distribution of a free electron performing 2-dimensional Brownian motion, coming from infinitely far, and observe that this distribution is a key to how lightning rods work.
$\triangleright$ Exercise 17. ${ }^{\bullet \bullet}$ Consider some random walk on $\mathbb{R}$, denoted by $S_{n}=X_{1}+\cdots+X_{n}$, for $n=0,1, \ldots$ Show that if $\mathbf{P}\left[S_{n} \in(-2 \epsilon, 2 \epsilon)\right.$ infinitely often $]<1$ for some $\epsilon>0$, then the expected number of returns of $S_{n}$ to $(-\epsilon, \epsilon)$ is finite. Therefore, our computation in class that the latter expectation for Cauchy jumps is infinite for any $\epsilon>0$ shows that this walk is recurrent.
$\triangleright \quad$ Exercise 18. Consider asymmetric simple random walk $\left(X_{i}\right)$ on $\mathbb{Z}$, with probability $p>1 / 2$ for a right step and $1-p$ for a left step.
(a) ${ }^{\bullet}$ Find a martingale of the form $r^{X_{i}}$ for some $r>0$, and calculate $\mathbf{P}_{k}\left[\tau_{0}>\tau_{n}\right]$.
(b) ${ }^{\bullet \bullet}$ Find a martingale of the form $X_{i}-\mu i$ for some $\mu>0$, and calculate $\mathbf{E}_{k}\left[\tau_{0} \wedge \tau_{n}\right]$. (Hint: to prove that this second martingale is uniformly integrable, first show that $\tau_{0} \wedge \tau_{n}$ has an exponential tail.)
$\triangleright$ Exercise 19. $\bullet \bullet$ Using the exploration Markov chain for GW trees and a Doob transform, show that if we condition the GW tree with offspring distribution Poisson $(\lambda)$ on extinction, where $\lambda>1$, then we get a GW tree with offspring distribution Poisson $(\mu)$ with $\mu<1$, where $\lambda e^{-\lambda}=\mu e^{-\mu}$.
$\triangleright$ Exercise 20. $\bullet \bullet$ For the GW tree with offspring distribution Poisson $(1+\epsilon)$, show that the survival probability is asymptotically $2 \epsilon$, as $\epsilon \rightarrow 0$.
$\triangleright$ Exercise 21. •••• Prove the Bollobás-Thomason threshold theorem: for any sequence monotone events $\mathcal{A}=\mathcal{A}_{n}$ and any $\epsilon$ there is $C_{\epsilon}<\infty$ such that $\left|p_{1-\epsilon}^{\mathcal{A}}(n)-p_{\epsilon}^{\mathcal{A}}(n)\right|<C_{\epsilon}\left(p_{\epsilon}^{\mathcal{A}}(n) \wedge\left(1-p_{1-\epsilon}^{\mathcal{A}}(n)\right)\right)$. (Hint: take many independent copies of low density to get success with good probability at a larger density.)
$\triangleright$ Exercise 22. $\bullet \bullet$ In the random graph $G(n, p)$ with $p=\lambda / n$, for $\mathcal{A}_{n}=\{$ containing a triangle $\}$, show directly that the expected number of pivotal edges is $\asymp n$ (with factors depending on $\lambda$ ), and hence, by Russo's formula, the threshold window is of size $p_{1-\epsilon}^{\mathcal{A}}(n)-p_{\epsilon}^{\mathcal{A}}(n) \asymp 1 / n$, as we also saw earlier.
$\triangleright$ Exercise 23. For functions $f:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ of $n$ bits, consider the inner product $(f, g):=\mathbf{E}_{p}[f g]$, where each bit is 1 with probability $p$ and -1 with probability $1-p$, independently.
(a) •• For $p=1 / 2$ show that $\left\{\chi_{S}(\omega):=\prod_{i \in S} \omega(i): S \subseteq[n]\right\}$ is an orthonormal basis for this inner product space.
(b) ${ }^{\bullet \bullet}$ Find a similar orthonormal basis for general $p$.
$\triangleright$ Exercise 24. With the notation of the previous exercise, define the Fourier-Walsh coefficients $\widehat{f}(S):=$ $\mathbf{E}_{1 / 2}\left[f(\omega) \chi_{S}(\omega)\right]$. We will consider monotone Boolean functions with values in $\{-1,1\}$ (instead of the usual $\{0,1\}$, because our formulas will be simpler this way).
(a) • Show that the probability that the $k$ th bit is pivotal for $f$ is exactly $\widehat{f}(\{k\})$.
(b) ••• Using Cauchy-Schwarz and Parseval, deduce that the expected number of pivotals at $p=1 / 2$ is at most $\sqrt{n}$.
(c) ${ }^{\bullet}$ Show by the example of majority, $\operatorname{Maj}\left(x_{1}, \ldots, x_{2 k+1}\right)=\operatorname{sign}\left(x_{1}+\cdots+x_{2 k+1}\right)$, that this is sharp.
$\triangleright$ Exercise 25. ${ }^{\bullet \bullet}$ For a subset $A$ of the hypercube $\{0,1\}^{n}$, let $B(A, t):=\left\{x \in\{0,1\}^{n}: \operatorname{dist}(x, A) \leq t\right\}$. Let $\epsilon, \lambda>0$ be constants satisfying $\exp \left(-\lambda^{2} / 2\right)=\epsilon$. Prove using Azuma-Hoeffding that

$$
|A| \geq \epsilon 2^{n} \Longrightarrow|B(A, 2 \lambda \sqrt{n})| \geq(1-\epsilon) 2^{n}
$$

That is, even small sets become huge if we enlarge them a little.
$\triangleright$ Exercise 26. ${ }^{\bullet \bullet}$ Is there a graph property (a subset of $\{0,1\}^{\binom{n}{2}}$ that is closed under graph isomorphisms) for which the edge exposure martingale is a random walk on $\mathbb{R}$, or even SRW on $\mathbb{Z}$, started somewhere?
$\triangleright$ Exercise 27. •• Show that for percolation on any infinite graph, the event \{there are exactly three infinite clusters\} is Borel measurable.
$\triangleright \quad$ Exercise 28. ${ }^{\bullet \bullet}$ Let $G(V, E)$ be any bounded degree infinite graph, and $S_{n} \nearrow V$ an exhaustion by finite connected subsets. Is it true that, for $p>p_{c}(G)$, we have

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{p}\left[\text { largest cluster for percolation inside } S_{n} \text { is the subset of an infinite cluster }\right]=1 ?
$$

$\triangleright$ Exercise 29. ${ }^{\bullet}$ As in class, a trifurcation point of an infinite cluster is a vertex whose removal breaks the cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem: if $\mathscr{C}_{\infty}$ denotes the union of all the infinite clusters in some percolation on $G$, and $U \subset V(G)$ is finite, then the size of $\mathscr{C}_{\infty} \cap \partial_{V}^{\text {out }} U$ is at least the number of trifurcation points of $\mathscr{C}_{\infty}$ in $U$, plus 2 .

## $\triangleright$ Exercise 30.

(a) $\bullet \bullet$ Give an $\operatorname{Aut}\left(\mathbb{Z}^{2}\right)$-invariant and $\mathbb{Z}^{2}$-ergodic percolation on $\mathbb{Z}^{2}$ with infinitely many $\infty$ clusters.
(b) $\bullet \cdots \bullet$ Give an $\operatorname{Aut}\left(\mathbb{Z}^{2}\right)$-invariant and $\mathbb{Z}^{2}$-ergodic percolation on $\mathbb{Z}^{2}$ with exactly two $\infty$ clusters.


Figure 2: Sorry, this picture is on the segment, not on the cycle.
$\triangleright$ Exercise 31. ••• A simple version of the Tetris game (with no player): on the discrete cycle of length $K$, unit squares with sticky corners are falling from the sky, at places $[i, i+1]$ chosen uniformly at random $(i=0,1, \ldots, K-1, \bmod K)$. Let $R_{t}$ be the size of the roof after $t$ squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim _{t \rightarrow \infty} \mathbf{E} R_{t}=K / 3$.
Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \geq 4$, the expected limiting size of the roof is already less than $0.32893 K$, but this is far from trivial. What's the situation for $K=3$ ?

