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The number of dots • is the value of an exercise. Recall that 15 points are due on April 3, another 15 by

April 30 Thu 2 pm (in my Department Office pigeonhole). If you have seriously tried to solve some problem,

but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has

some potential to work, then I will give it back and you can try and correct the mistake.

Exercise⊲ 1. Let Dn := dist(Xn, X0) be the distance of SRW from the starting point on a graph.

(a) •• Using the Central Limit Theorem, prove that E[Dn ] ≍
√
n on any Z

d.

(b) •• Use the notion of stochastic domination to compare Dn on the d-regular tree Td with a biased

random walk on Z, then prove carefully from Azuma-Hoeffding that the return probability pn(o, o) on

Td decays exponentially in n.

(c) • Using the exponential decay in the previous part, prove that E[Dn ] ∼ d−2

d n, as n → ∞.

Exercise⊲ 2.

(a) •• Recall (and give a reference), or prove using the reflection principle, that if {Xk}k≥0 is SRW on Z,

and Mn = maxk≤n Xk, then

2P[Xn ≥ t ] ≥ P[Mn ≥ t ] .

Using this and Exercise 1 (a), show that the expected number of vertices visited by {Xk} by time n is

E|{X0, X1, . . . , Xn}| ≍
√
n .

(b) ••••• For SRW on Z2, show that the expected number of vertices visited by time n is

E|{X0, X1, . . . , Xn}| ≍ n/ logn .

(c) •••• Prove that, for SRW on any transient transitive graph,

lim
n→∞

E|{X0, X1, . . . , Xn}|
n

= P[Xk 6= X0, k = 1, 2, . . . ] > 0 .

Exercise⊲ 3. •• Prove that for Green’s function of simple random walk on a connected graph, for any vertices

x, y, a, b and any real z > 0,

G(x, y|z) < ∞ ⇔ G(a, b|z) < ∞ .

Therefore, by Pringsheim’s theorem, we have that the radius of convergence is independent of x, y.

Exercise⊲ 4. ••• Compute the spectral radius ρ(Tk,ℓ), where Tk,ℓ is a tree such that if vn ∈ Tk,ℓ is a vertex

at distance n from the root,

deg vn =

{
k n even

ℓ n odd .

1

http://www.math.bme.hu/~gabor


Exercise⊲ 5. Two basic exercises about martingales:

(a) •• Show that if {Mi}∞i=0 is a martingale, then the differences Xi = Mi −Mi−1 satisfy the uncorrelat-

edness condition E
[
Xi1 · · ·Xik

]
= 0, for any k ∈ Z+ and i1 < i2 < · · · < ik.

(b) •••• Give an example of a random sequence (Mn)
∞
n=0 such that E[Mn+1 | Mn ] = Mn for all n ≥ 0,

but which is not a martingale w.r.t. the filtration Fn = σ(M0, . . . ,Mn).

Exercise⊲ 6. •••••• Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞,

and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

Exercise⊲ 7. Recall that being non-amenable means satisfying the strong isoperimetric inequality IP∞.

(a) •• Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ǫ implies IP∞.)

(b) •••• Give an example of a bounded degree tree of exponential volume growth that satisfies no IP1+ǫ

and is recurrent for the simple random walk on it.

Exercise⊲ 8. •••••• Show that a bounded degree graphG(V,E) is nonamenable if and only if it has a wobbling

paradoxical decomposition: two injective maps α, β : V −→ V such that α(V )⊔β(V ) = V is a disjoint union,

and both maps are at a bounded distance from the identity, or wobbling: supx∈V d(x, α(x)) < ∞. (Hint:

State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the

Hall-Rado theorem.)

Exercise⊲ 9. Recall that the universal covering tree T of a graph G is the unique tree for which there exists

a surjective graph-homomorphism π : T −→ G that locally, restricted to the radius 1 neighborhood of any

vertex of G, is an isomorphism.

(a) •• Show that the universal covering tree of any finite graph is quasi-transitive (that is, its automorphism

group has finitely many orbits).

(b) ••• Give an example of a quasi-transitive infinite tree that is not the universal covering tree of any

finite graph.

Exercise⊲ 10. ••• Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital

display. Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform

measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST+ 1.

Find an explicit monotone coupling between the two measures (i.e., with UST ⊂ UST+ 1).

Remark. I do not know if such a monotone coupling exists for any finite graph. A proof or a counterexample

would earn you at least 15 points and would be the basis of a great MSc thesis.
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Exercise⊲ 11. ••• Find the order of magnitude of the threshold function p1/2(n) for the random graph

G(n, p) containing a copy of the cycle C4.

Exercise⊲ 12.

(a) •• Using the 2nd Moment Method, show that for p = λ lnn
n , with λ < 1 fixed, there exist isolated

vertices in G(n, p) with probability tending to 1.

(b) •• Let Iλ(n) be the expected number of isolated vertices in the previous part. Show that if 0 < λ′ <

λ < 1, and k(n) = Iλ′(n) ≫ Iλ(n), then the probability that there exists a component (or a union of

components) of size k(n) in G(n, λ lnn
n ) is going to 0. This is an indication that isolated vertices are

indeed the main obstacles to connectivity.

Exercise⊲ 13. Consider a GW process with offspring distribution ξ, Eξ = µ. Let Zn be the size of the nth

level, with Z0 = 1, the root. Recall that Zn/µ
n is a martingale.

(a) ••• Assuming that µ > 1 and E[ ξ2 ] < ∞, first show that E
[
Z2
n

]
≤ C(EZn)

2. (Hint: use the

conditional variance formula D2[Zn] = E
[
D2[Zn

∣∣ Zn−1]
]
+ D2

[
E[Zn | Zn−1 ]

]
.) Then, using the

Second Moment Method, deduce that the GW process survives with positive probability.

(b) •• Extend the above to the case Eξ = ∞ or Dξ = ∞ by a truncation ξ1ξ<K for K large enough.

Exercise⊲ 14. If X is a non-negative random variable with finite expectation, then its size-biased version X̂

is defined by P[X̂ ∈ A] = E[X 1{X∈A} ]/EX.

(a) • Show that the size-biased version of Poi(λ) is just Poi(λ) + 1.

(b) • Show that the size-biased version of Expon(λ) is the sum of two independent Expon(λ)’s.

(c) ••• Take Poisson point process of intensity λ on R. Condition on the interval (−ǫ, ǫ) to contain at least

one arrival. As ǫ → 0, what is the point process we obtain in the limit? What does this have to do

with parts (a) and (b)?

Exercise⊲ 15. ••••• Show that Binom(n− 1, λ/n) is stochastically dominated by Poi(λ).

Exercise⊲ 16.

(a) •• Take a Möbius map from the unit disk D to the upper half plane H that takes the center 0 ∈ D

to i ∈ H. Compute the pushforward of the uniform measure on ∂D to R = ∂H, and get the Cauchy

distribution.

(b) •• Now understand what the conformal map z 7→ 1

2

(
z + 1

z

)
does to the unit disk D and its complement

C\D. Compute again the pushforward of the uniform measure on ∂D. Interpret the result as the hitting

distribution of a free electron performing 2-dimensional Brownian motion, coming from infinitely far,

and observe that this distribution is a key to how lightning rods work.

Exercise⊲ 17. ••• Consider some random walk on R, denoted by Sn = X1+ · · ·+Xn, for n = 0, 1, . . . . Show

that if P[Sn ∈ (−2ǫ, 2ǫ) infinitely often ] < 1 for some ǫ > 0, then the expected number of returns of Sn to

(−ǫ, ǫ) is finite. Therefore, our computation in class that the latter expectation for Cauchy jumps is infinite

for any ǫ > 0 shows that this walk is recurrent.

Exercise⊲ 18. Consider asymmetric simple random walk (Xi) on Z, with probability p > 1/2 for a right

step and 1− p for a left step.

(a) •• Find a martingale of the form rXi for some r > 0, and calculate Pk[ τ0 > τn ].

(b) ••• Find a martingale of the form Xi − µ i for some µ > 0, and calculate Ek[ τ0 ∧ τn ]. (Hint: to prove

that this second martingale is uniformly integrable, first show that τ0 ∧ τn has an exponential tail.)

Exercise⊲ 19. ••••• Using the exploration Markov chain for GW trees and a Doob transform, show that if

we condition the GW tree with offspring distribution Poisson(λ) on extinction, where λ > 1, then we get a

GW tree with offspring distribution Poisson(µ) with µ < 1, where λe−λ = µe−µ.
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Exercise⊲ 20. ••••• For the GW tree with offspring distribution Poisson(1 + ǫ), show that the survival

probability is asymptotically 2ǫ, as ǫ → 0.

Exercise⊲ 21. •••• Prove the Bollobás-Thomason threshold theorem: for any sequence monotone events

A = An and any ǫ there is Cǫ < ∞ such that
∣∣pA1−ǫ(n)− pAǫ (n)

∣∣ < Cǫ

(
pAǫ (n) ∧ (1 − pA1−ǫ(n))

)
. (Hint: take

many independent copies of low density to get success with good probability at a larger density.)

Exercise⊲ 22. •••• In the random graph G(n, p) with p = λ/n, for An = {containing a triangle}, show
directly that the expected number of pivotal edges is ≍ n (with factors depending on λ), and hence, by

Russo’s formula, the threshold window is of size pA1−ǫ(n)− pAǫ (n) ≍ 1/n, as we also saw earlier.

Exercise⊲ 23. For functions f : {−1, 1}n −→ R of n bits, consider the inner product (f, g) := Ep[ fg ], where

each bit is 1 with probability p and −1 with probability 1− p, independently.

(a) •• For p = 1/2 show that
{
χS(ω) :=

∏
i∈S ω(i) : S ⊆ [n]

}
is an orthonormal basis for this inner product

space.

(b) •• Find a similar orthonormal basis for general p.

Exercise⊲ 24. With the notation of the previous exercise, define the Fourier-Walsh coefficients f̂(S) :=

E1/2

[
f(ω)χS(ω)

]
. We will consider monotone Boolean functions with values in {−1, 1} (instead of the

usual {0, 1}, because our formulas will be simpler this way).

(a) •• Show that the probability that the kth bit is pivotal for f is exactly f̂({k}).
(b) ••• Using Cauchy-Schwarz and Parseval, deduce that the expected number of pivotals at p = 1/2 is at

most
√
n.

(c) •• Show by the example of majority, Maj(x1, . . . , x2k+1) = sign (x1 + · · ·+ x2k+1), that this is sharp.

Exercise⊲ 25. ••• For a subset A of the hypercube {0, 1}n, let B(A, t) :=
{
x ∈ {0, 1}n : dist(x,A) ≤ t

}
. Let

ǫ, λ > 0 be constants satisfying exp(−λ2/2) = ǫ. Prove using Azuma-Hoeffding that

|A| ≥ ǫ 2n =⇒
∣∣B(A, 2λ

√
n)
∣∣ ≥ (1− ǫ) 2n .

That is, even small sets become huge if we enlarge them a little.

Exercise⊲ 26. ••• Is there a graph property (a subset of {0, 1}(
n

2) that is closed under graph isomorphisms)

for which the edge exposure martingale is a random walk on R, or even SRW on Z, started somewhere?

Exercise⊲ 27. •• Show that for percolation on any infinite graph, the event {there are exactly three infinite

clusters} is Borel measurable.

Exercise⊲ 28. •••• Let G(V,E) be any bounded degree infinite graph, and Sn ր V an exhaustion by finite

connected subsets. Is it true that, for p > pc(G), we have

lim
n→∞

Pp[ largest cluster for percolation inside Sn is the subset of an infinite cluster ] = 1 ?

Exercise⊲ 29. •• As in class, a trifurcation point of an infinite cluster is a vertex whose removal breaks the

cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem:

if C∞ denotes the union of all the infinite clusters in some percolation on G, and U ⊂ V (G) is finite, then

the size of C∞ ∩ ∂out
V U is at least the number of trifurcation points of C∞ in U , plus 2.

Exercise⊲ 30.

(a) •••• Give an Aut(Z2)-invariant and Z
2-ergodic percolation on Z

2 with infinitely many ∞ clusters.

(b) •••••• Give an Aut(Z2)-invariant and Z2-ergodic percolation on Z2 with exactly two ∞ clusters.
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Figure 2: Sorry, this picture is on the segment, not on the cycle.

Exercise⊲ 31. •••• A simple version of the Tetris game (with no player): on the discrete cycle of length

K, unit squares with sticky corners are falling from the sky, at places [i, i+ 1] chosen uniformly at random

(i = 0, 1, . . . ,K − 1, mod K). Let Rt be the size of the roof after t squares have fallen: those squares of the

current configuration that could have been the last to fall. Show that limt→∞ ERt = K/3.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to

do with the speed of the SRW. Here, for K ≥ 4, the expected limiting size of the roof is already less than

0.32893K, but this is far from trivial. What’s the situation for K = 3?
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