Stochastic models - First problem set

Gábor Pete
http://www.math.bme.hu/~gabor

March 23, 2017

Hand in 5 solutions out of the 14, by April 7. Beware: these problems are not very easy, so one or two days will not suffice. But I will be happy to give hints if you ask for help. Also note that the level of difficulty is not even: Exercise 6 is probably ten times harder than Exercise 5.
\triangleright Exercise 1. Let $X_{0}, X_{1}, X_{2}, \ldots$ be SRW (simple random walk) on a locally finite graph, and let $D_{n}:=$ $\operatorname{dist}\left(X_{n}, X_{0}\right)$ be the graph distance from the starting point.
(a) Using the Central Limit Theorem, prove that $\mathbf{E}\left[D_{n}\right] \asymp \sqrt{n}$ on any \mathbb{Z}^{d}. (Be careful: convergence in distribution does not automatically imply convergence in L^{1}.)
(b) Comparing D_{n} on the d-regular tree \mathbb{T}_{d} with a biased random walk on \mathbb{Z}, and using the exponential decay of the return probability $p_{n}(o, o)$ on \mathbb{T}_{d}, prove that $\lim _{n \rightarrow \infty} \mathbf{E}\left[D_{n}\right] / n=\frac{d-2}{d}$.
(c) For SRW on any transitive graph, show that the speed $\lim _{n \rightarrow \infty} \mathbf{E}\left[D_{n}\right] / n \in[0,1]$ exists.
\triangleright Exercise 2. Consider the two trees on Figure 1
(a) On the left, a quasi-transitive tree, with degree 3 and degree 2 vertices alternating. Find the speed of SRW on it. You may use part (b) of the previous exercise.
(b) On the right, the so-called 3-1-tree, which has 2^{n} vertices on each level n, with the left 2^{n-1} vertices each having one child, the right 2^{n-1} vertices each having three children; the root has two children. Show that SRW on it is recurrent.

Figure 1: A quasi-transitive tree and the 3-1 tree.

$\triangleright \quad$ Exercise 3.

(a) Prove that for Green's function of simple random walk on a connected graph, $G(a, b \mid z):=\sum_{n \geq 0} p_{n}(a, b) z^{n}$, for any vertices x, y, a, b and any real $z>0$,

$$
G(x, y \mid z)<\infty \Leftrightarrow G(a, b \mid z)<\infty
$$

Therefore, by Pringsheim's theorem, we have that the radius of convergence is independent of x, y.
(b) Consider a reversible Markov chain on an infinite V, with constant reversible measure. Show that, for any $u, v \in V$,

$$
\mathbf{P}_{u}\left[\tau_{v}<\infty\right]=\mathbf{P}_{v}\left[\tau_{u}<\infty\right]
$$

\triangleright Exercise 4. A simple version of the Tetris game (with no player): on the discrete cycle of length K, unit squares with sticky corners are falling from the sky, at places $[i, i+1]$ chosen uniformly at random $(i=0,1, \ldots, K-1, \bmod K)$. Let R_{t} be the size of the roof after t squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim _{t \rightarrow \infty} \mathbf{E} R_{t}=K / 3$.
Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \geq 4$, the expected limiting size of the roof is already less than $0.32893 K$, but this is far from trivial. What's the situation for $K=3$?

Figure 2: Sorry, this picture is on the segment, not on the cycle.
\triangleright Exercise 5. Recall (or look it up in Durrett's book) that the reflection principle implies the following: if $\left\{X_{k}\right\}_{k \geq 0}$ is SRW on \mathbb{Z}, and $M_{n}=\max _{k \leq n} X_{k}$, then

$$
2 \mathbf{P}\left[X_{n} \geq t\right] \geq \mathbf{P}\left[M_{n} \geq t\right] .
$$

Using this, prove that for SRW on the lamplighter group $\oplus_{\mathbb{Z}} \mathbb{Z}_{2} \rtimes \mathbb{Z}$, with the usual lazy generators (go left, go right, switch, do nothing), the return probability is at least $p_{n}(o, o) \geq \exp (-c \sqrt{n})$, for some absolute constant $c>0$. (Note that the subexponential decay corresponds to the graph being amenable.)
Remark. You may try to find a smarter version of the above strategy, giving $p_{n}(o, o) \geq \exp \left(-c n^{1 / 3}\right)$, which is actually sharp.
\triangleright Exercise 6. Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.
\triangleright Exercise 7. This exercise explains why it is hard to construct large expanders. A covering map $\varphi: G^{\prime} \longrightarrow G$ between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by $N_{G}(v)$ the
subgraph induced by $v \in G$ and all its neighbours, we require that each connected component of the subgraph of G^{\prime} induced by the full inverse image $\varphi^{-1}\left(N_{G}(v)\right)$ be isomorphic to $N_{G}(v)$.
(a) If $G^{\prime} \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho\left(G^{\prime}\right) \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq$ $\rho\left(\mathbb{T}_{k}\right)=\frac{2 \sqrt{k-1}}{k}$. (Hint: use the return probability definition of $\rho(G)$.)
(b) If $G^{\prime} \longrightarrow G$ is a covering map of finite graphs, then $\lambda_{2}\left(G^{\prime}\right) \geq \lambda_{2}(G)$, i.e., the larger graph is a worse expander. (Hint: eigenfunctions on G can be "lifted" to G^{\prime}.
$\triangleright \quad$ Exercise 8. Consider a reversible Markov chain P on a finite state space V with stationary distribution π and absolute spectral gap $g_{\text {abs }}$. This exercise explains why $\tau_{\text {relax }}=1 / g_{\text {abs }}$ is called the relaxation time.
(a) For $f: V \longrightarrow \mathbb{R}$, let $\operatorname{Var}_{\pi}[f]:=\mathbf{E}_{\pi}\left[f^{2}\right]-\left(\mathbf{E}_{\pi} f\right)^{2}=\sum_{x} f(x)^{2} \pi(x)-\left(\sum_{x} f(x) \pi(x)\right)^{2}$. Show that $g_{\text {abs }}>0$ implies that $\lim _{t \rightarrow \infty} P^{t} f(x)=\mathbf{E}_{\pi} f$ for all $x \in V$. Moreover,

$$
\operatorname{Var}_{\pi}\left[P^{t} f\right] \leq\left(1-g_{\mathrm{abs}}\right)^{2 t} \operatorname{Var}_{\pi}[f]
$$

with equality at the eigenfunction corresponding to the λ_{i} giving $g_{\mathrm{abs}}=1-\left|\lambda_{i}\right|$. Hence $\tau_{\text {relax }}$ is the time needed to reduce the standard deviation of any function to $1 / e$ of its original standard deviation.
(b) Using part (a), prove that there is a universal constant $C<\infty$ such that $\tau_{\text {relax }}<C \tau_{\text {mix }}^{\mathrm{TV}}$.
$\triangleright \quad$ Exercise 9. This exercise proves that the total variation mixing time of the $1 / 2$-lazy random walk X_{0}, X_{1}, \ldots on the hypercube $\{0,1\}^{n}$ is $(1 / 2+o(1)) n \log n$.
(a) Let Y_{t} be the number of missing coupons at time t in the coupon collector's problem. Show that $\mathbf{E} Y_{\alpha n \log n} \sim n^{1-\alpha}$ and $\mathbb{D} Y_{\alpha n \log n}=o\left(n^{1-\alpha}\right)$. Using Markov's and Chebyshev's inequalities, deduce that $Y_{\alpha n \log n} / \sqrt{n} \rightarrow 0$ or ∞ in probability, for $\alpha>1 / 2$ and $<1 / 2$, respectively.
(b) Show that $d_{\mathrm{TV}}(\mathrm{N}(0,1), \mathrm{N}(x, 1)) \rightarrow 0$ or 1 , for $x \rightarrow 0$ and $x \rightarrow \infty$, respectively, where $\mathrm{N}\left(\mu, \sigma^{2}\right)$ is the normal distribution. Using this and the local version of the de Moivre-Laplace theorem, prove that $d_{\mathrm{TV}}\left(\operatorname{Binom}(n, 1 / 2), \operatorname{Binom}\left(n-n^{\beta}, 1 / 2\right)+n^{\beta}\right) \rightarrow 0$ for any fixed $\beta<1 / 2$, while $\rightarrow 1$ for $\beta>1 / 2$.
(c) For $X_{0}=(0,0, \ldots, 0) \in\{0,1\}^{n}$, let the distribution of X_{t} be μ_{t}. What is it, conditioned on $\left\|X_{t}\right\|_{1}=k$? And what is the distribution of $\|Z\|_{1}$, where Z has distribution π, uniform on $\{0,1\}^{n}$?
(d) Deduce from the previous parts that $d_{\mathrm{TV}}\left(\mu_{\alpha n \log n}, \pi\right) \rightarrow 0$ or 1 , for $\alpha>1 / 2$ and $<1 / 2$, respectively.
$\triangleright \quad$ Exercise 10. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \operatorname{Geom}(1 / 2)$. Draw the tree into the plane with root ρ, add an extra vertex ρ^{\prime} and an edge (ρ, ρ^{\prime}), and walk around the tree, starting from ρ^{\prime}, going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ^{\prime} : let this be process be $\left\{X_{t}\right\}_{t=0}^{2 n}$, which is positive everywhere except at $t=0,2 n$, where n is the number of vertices of the original tree T.

Figure 4: The contour walk around a tree.
(a) Using the memoryless property of $\operatorname{Geom}(1 / 2)$, show that $\left\{X_{t}\right\}$ is SRW on \mathbb{Z}.
(b) Using martingale techniques, show that $\mathbf{P}[T$ has height $\geq n]=1 / n$.
(c) Show that, conditioning T to have height at least n, with high probability the height will be around n and the total volume will be around n^{2}, where "around" means "up to constant factors".

Let G_{n} be a sequence of finite graphs with degrees at most d. Pick a uniform random root ρ_{n} from $V\left(G_{n}\right)$, and take the ball $B_{G_{n}, \rho_{n}}(r)$ around it in the graph metric, with some fixed radius $r \in \mathbb{Z}_{+}$. This way we get a distribution $\mu_{n, r}$ on finite rooted graphs with degrees at most d. We say that the sequence $\left\{G_{n}\right\}$ converges in the Benjamini-Schramm sense (also called local weak convergence) to a random rooted graph (G, ρ), if, for every r, the distributions $\mu_{n, r}$ converge weakly as $n \rightarrow \infty$ to the distribution of $B_{G, \rho}(r)$. The simplest case is that the limit is a transitive infinite graph G : the measures $\mu_{n, r}$ converge to the Dirac measure on a single graph, the r-ball of G.
\triangleright Exercise 11.
(a) Prove that the cubes $\{1, \ldots, n\}^{d}$ converge to \mathbb{Z}^{d} in the local weak sense.
(b) Find a random rooted graph (G, ρ) that is a local weak limit of the balls $G_{n}=B_{\mathbb{T}_{d}, o}(n)$ in the d-regular tree \mathbb{T}_{d}. (Note that the limit will not be \mathbb{T}_{d}, or any other transitive graph, since ρ_{n} is a leaf of G_{n} with a uniformly positive probability, which will be inherited to ρ.)

More generally:
\triangleright Exercise 12. Show that a transitive graph G has a sequence G_{n} of subgraphs converging to it in the local weak sense iff it is amenable.
\triangleright Exercise 13. Show that the random d-regular bipartite graphs from class converge to the d-regular tree \mathbb{T}_{d} in the local weak sense. (Here the randomness for the measure $\mu_{n, r}$ comes from two sources: we take a random root ρ_{n} in the random graph G_{n}.)

The phenomenon is the same as in the previous exercise, but the computation is a bit simpler:
\triangleright Exercise 14. Show that for any $\lambda \in \mathbb{R}_{+}$, the local weak limit of the Erdős-Rényi random graphs $G(n, \lambda / n)$ is the $\operatorname{PGW}(\lambda)$ tree: the Galton-Watson tree with Poisson (λ) offspring distribution, rooted as normally.

