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Hand in 5 solutions out of the 14, by April 7. Beware: these problems are not very easy, so one or two

days will not suffice. But I will be happy to give hints if you ask for help. Also note that the level of difficulty

is not even: Exercise 6 is probably ten times harder than Exercise 5.

Exercise⊲ 1. Let X0, X1, X2, . . . be SRW (simple random walk) on a locally finite graph, and let Dn :=

dist(Xn, X0) be the graph distance from the starting point.

(a) Using the Central Limit Theorem, prove that E[Dn ] ≍
√
n on any Z

d. (Be careful: convergence in

distribution does not automatically imply convergence in L1.)

(b) Comparing Dn on the d-regular tree Td with a biased random walk on Z, and using the exponential

decay of the return probability pn(o, o) on Td, prove that limn→∞ E[Dn ]/n = d−2
d .

(c) For SRW on any transitive graph, show that the speed limn→∞ E[Dn ]/n ∈ [0, 1] exists.

Exercise⊲ 2. Consider the two trees on Figure 1.

(a) On the left, a quasi-transitive tree, with degree 3 and degree 2 vertices alternating. Find the speed of

SRW on it. You may use part (b) of the previous exercise.

(b) On the right, the so-called 3-1-tree, which has 2n vertices on each level n, with the left 2n−1 vertices

each having one child, the right 2n−1 vertices each having three children; the root has two children.

Show that SRW on it is recurrent.

Figure 1: A quasi-transitive tree and the 3-1 tree.

Exercise⊲ 3.

(a) Prove that for Green’s function of simple randomwalk on a connected graph,G(a, b|z) :=
∑

n≥0 pn(a, b) z
n,

for any vertices x, y, a, b and any real z > 0,

G(x, y|z) < ∞ ⇔ G(a, b|z) < ∞ .

Therefore, by Pringsheim’s theorem, we have that the radius of convergence is independent of x, y.

(b) Consider a reversible Markov chain on an infinite V , with constant reversible measure. Show that, for

any u, v ∈ V ,

Pu[ τv < ∞ ] = Pv[ τu < ∞ ] .
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Exercise⊲ 4. A simple version of the Tetris game (with no player): on the discrete cycle of length K,

unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random

(i = 0, 1, . . . ,K − 1, mod K). Let Rt be the size of the roof after t squares have fallen: those squares of the

current configuration that could have been the last to fall. Show that limt→∞ ERt = K/3.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to

do with the speed of the SRW. Here, for K ≥ 4, the expected limiting size of the roof is already less than

0.32893K, but this is far from trivial. What’s the situation for K = 3?

Figure 2: Sorry, this picture is on the segment, not on the cycle.

Exercise⊲ 5. Recall (or look it up in Durrett’s book) that the reflection principle implies the following: if

{Xk}k≥0 is SRW on Z, and Mn = maxk≤n Xk, then

2P[Xn ≥ t ] ≥ P[Mn ≥ t ] .

Using this, prove that for SRW on the lamplighter group ⊕ZZ2 ⋊Z, with the usual lazy generators (go left,

go right, switch, do nothing), the return probability is at least pn(o, o) ≥ exp(−c
√
n), for some absolute

constant c > 0. (Note that the subexponential decay corresponds to the graph being amenable.)

Remark. You may try to find a smarter version of the above strategy, giving pn(o, o) ≥ exp(−cn1/3), which

is actually sharp.

Exercise⊲ 6. Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞, and can

group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible

to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.

Exercise⊲ 7. This exercise explains why it is hard to construct large expanders. A covering map ϕ : G′ −→ G

between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by NG(v) the
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subgraph induced by v ∈ G and all its neighbours, we require that each connected component of the subgraph

of G′ induced by the full inverse image ϕ−1(NG(v)) be isomorphic to NG(v).

(a) If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G), i.e.,

the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then ρ(G) ≥
ρ(Tk) =

2
√
k−1
k . (Hint: use the return probability definition of ρ(G).)

(b) If G′ −→ G is a covering map of finite graphs, then λ2(G
′) ≥ λ2(G), i.e., the larger graph is a worse

expander. (Hint: eigenfunctions on G can be “lifted” to G′.

Exercise⊲ 8. Consider a reversible Markov chain P on a finite state space V with stationary distribution π

and absolute spectral gap gabs. This exercise explains why τrelax = 1/gabs is called the relaxation time.

(a) For f : V −→ R, let Varπ[f ] := Eπ[f
2] − (Eπf)

2 =
∑

x f(x)
2π(x) −

(
∑

x f(x)π(x)
)2
. Show that

gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P
tf ] ≤ (1− gabs)

2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence τrelax is the

time needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

(b) Using part (a), prove that there is a universal constant C < ∞ such that τrelax < C τTV
mix.

Exercise⊲ 9. This exercise proves that the total variation mixing time of the 1/2-lazy random walkX0, X1, . . .

on the hypercube {0, 1}n is (1/2 + o(1))n log n.

(a) Let Yt be the number of missing coupons at time t in the coupon collector’s problem. Show that

EYαn logn ∼ n1−α and DYαn logn = o(n1−α). Using Markov’s and Chebyshev’s inequalities, deduce

that Yαn logn/
√
n → 0 or ∞ in probability, for α > 1/2 and < 1/2, respectively.

(b) Show that dTV

(

N(0, 1), N(x, 1)
)

→ 0 or 1, for x → 0 and x → ∞, respectively, where N(µ, σ2) is the

normal distribution. Using this and the local version of the de Moivre–Laplace theorem, prove that

dTV

(

Binom(n, 1/2), Binom(n− nβ, 1/2) + nβ
)

→ 0 for any fixed β < 1/2, while → 1 for β > 1/2.

(c) For X0 = (0, 0, . . . , 0) ∈ {0, 1}n, let the distribution of Xt be µt. What is it, conditioned on ‖Xt‖1 = k?

And what is the distribution of ‖Z‖1, where Z has distribution π, uniform on {0, 1}n?
(d) Deduce from the previous parts that dTV

(

µαn logn, π
)

→ 0 or 1, for α > 1/2 and < 1/2, respectively.

Exercise⊲ 10. Let T be the Galton-Watson tree with offspring distribution ξ ∼ Geom(1/2). Draw the tree

into the plane with root ρ, add an extra vertex ρ′ and an edge (ρ, ρ′), and walk around the tree, starting

from ρ′, going through each “corner” of the tree once, through each edge twice (once on each side). At

each corner visited, consider the graph distance from ρ′: let this be process be {Xt}2nt=0, which is positive

everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T .

Figure 4: The contour walk around a tree.

(a) Using the memoryless property of Geom(1/2), show that {Xt} is SRW on Z.

(b) Using martingale techniques, show that P[T has height ≥ n] = 1/n.

(c) Show that, conditioning T to have height at least n, with high probability the height will be around n

and the total volume will be around n2, where “around” means “up to constant factors”.
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Let Gn be a sequence of finite graphs with degrees at most d. Pick a uniform random root ρn from

V (Gn), and take the ball BGn,ρn
(r) around it in the graph metric, with some fixed radius r ∈ Z+. This way

we get a distribution µn,r on finite rooted graphs with degrees at most d. We say that the sequence {Gn}
converges in the Benjamini-Schramm sense (also called local weak convergence) to a random rooted

graph (G, ρ), if, for every r, the distributions µn,r converge weakly as n → ∞ to the distribution of BG,ρ(r).

The simplest case is that the limit is a transitive infinite graph G: the measures µn,r converge to the Dirac

measure on a single graph, the r-ball of G.

Exercise⊲ 11.

(a) Prove that the cubes {1, . . . , n}d converge to Z
d in the local weak sense.

(b) Find a random rooted graph (G, ρ) that is a local weak limit of the balls Gn = BTd,o(n) in the d-regular

tree Td. (Note that the limit will not be Td, or any other transitive graph, since ρn is a leaf of Gn with

a uniformly positive probability, which will be inherited to ρ.)

More generally:

Exercise⊲ 12. Show that a transitive graph G has a sequence Gn of subgraphs converging to it in the local

weak sense iff it is amenable.

Exercise⊲ 13. Show that the random d-regular bipartite graphs from class converge to the d-regular tree

Td in the local weak sense. (Here the randomness for the measure µn,r comes from two sources: we take a

random root ρn in the random graph Gn.)

The phenomenon is the same as in the previous exercise, but the computation is a bit simpler:

Exercise⊲ 14. Show that for any λ ∈ R+, the local weak limit of the Erdős-Rényi random graphs G(n, λ/n)

is the PGW(λ) tree: the Galton-Watson tree with Poisson(λ) offspring distribution, rooted as normally.
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