Stochastic models — First problem set

GÁBOR PETE http://www.math.bme.hu/~gabor

March 23, 2017

Hand in 5 solutions out of the 14, by April 7. Beware: these problems are not very easy, so one or two days will not suffice. But I will be happy to give hints if you ask for help. Also note that the level of difficulty is not even: Exercise 6 is probably ten times harder than Exercise 5.

- \triangleright Exercise 1. Let X_0, X_1, X_2, \ldots be SRW (simple random walk) on a locally finite graph, and let $D_n := \text{dist}(X_n, X_0)$ be the graph distance from the starting point.
 - (a) Using the Central Limit Theorem, prove that $\mathbf{E}[D_n] \asymp \sqrt{n}$ on any \mathbb{Z}^d . (Be careful: convergence in distribution does not automatically imply convergence in L^1 .)
 - (b) Comparing D_n on the *d*-regular tree \mathbb{T}_d with a biased random walk on \mathbb{Z} , and using the exponential decay of the return probability $p_n(o, o)$ on \mathbb{T}_d , prove that $\lim_{n\to\infty} \mathbf{E}[D_n]/n = \frac{d-2}{d}$.
 - (c) For SRW on any transitive graph, show that the speed $\lim_{n\to\infty} \mathbf{E}[D_n]/n \in [0,1]$ exists.
- \triangleright **Exercise 2.** Consider the two trees on Figure 1.
 - (a) On the left, a quasi-transitive tree, with degree 3 and degree 2 vertices alternating. Find the speed of SRW on it. You may use part (b) of the previous exercise.
 - (b) On the right, the so-called 3-1-tree, which has 2^n vertices on each level n, with the left 2^{n-1} vertices each having one child, the right 2^{n-1} vertices each having three children; the root has two children. Show that SRW on it is recurrent.

Figure 1: A quasi-transitive tree and the 3-1 tree.

- \triangleright Exercise 3.
 - (a) Prove that for Green's function of simple random walk on a connected graph, $G(a, b|z) := \sum_{n \ge 0} p_n(a, b) z^n$, for any vertices x, y, a, b and any real z > 0,

$$G(x, y|z) < \infty \iff G(a, b|z) < \infty$$
.

Therefore, by Pringsheim's theorem, we have that the radius of convergence is independent of x, y.

(b) Consider a reversible Markov chain on an infinite V, with constant reversible measure. Show that, for any $u, v \in V$,

$$\mathbf{P}_u[\tau_v < \infty] = \mathbf{P}_v[\tau_u < \infty].$$

▷ Exercise 4. A simple version of the Tetris game (with no player): on the discrete cycle of length K, unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random (i = 0, 1, ..., K - 1, mod K). Let R_t be the size of the roof after t squares have fallen: those squares of the current configuration that could have been the last to fall. Show that $\lim_{t\to\infty} \mathbf{E}R_t = K/3$.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to do with the speed of the SRW. Here, for $K \ge 4$, the expected limiting size of the roof is already less than 0.32893K, but this is far from trivial. What's the situation for K = 3?

Figure 2: Sorry, this picture is on the segment, not on the cycle.

▷ **Exercise 5.** Recall (or look it up in Durrett's book) that the reflection principle implies the following: if $\{X_k\}_{k>0}$ is SRW on \mathbb{Z} , and $M_n = \max_{k \le n} X_k$, then

$$2\mathbf{P}[X_n \ge t] \ge \mathbf{P}[M_n \ge t].$$

Using this, prove that for SRW on the lamplighter group $\oplus_{\mathbb{Z}}\mathbb{Z}_2 \rtimes \mathbb{Z}$, with the usual lazy generators (go left, go right, switch, do nothing), the return probability is at least $p_n(o, o) \ge \exp(-c\sqrt{n})$, for some absolute constant c > 0. (Note that the subexponential decay corresponds to the graph being amenable.)

Remark. You may try to find a smarter version of the above strategy, giving $p_n(o, o) \ge \exp(-cn^{1/3})$, which is actually sharp.

Exercise 6. Consider the standard hexagonal lattice. Show that if you are given a bound $B < \infty$, and can group the hexagons into countries, each being a connected set of at most *B* hexagons, then it is not possible to have at least 7 neighbours for each country.

Figure 3: Trying to create at least 7 neighbours for each country.

 \triangleright Exercise 7. This exercise explains why it is hard to construct large expanders. A covering map $\varphi: G' \longrightarrow G$ between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting by $N_G(v)$ the

subgraph induced by $v \in G$ and all its neighbours, we require that each connected component of the subgraph of G' induced by the full inverse image $\varphi^{-1}(N_G(v))$ be isomorphic to $N_G(v)$.

- (a) If $G' \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho(G') \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq \rho(\mathbb{T}_k) = \frac{2\sqrt{k-1}}{k}$. (Hint: use the return probability definition of $\rho(G)$.)
- (b) If $G' \longrightarrow G$ is a covering map of finite graphs, then $\lambda_2(G') \ge \lambda_2(G)$, i.e., the larger graph is a worse expander. (Hint: eigenfunctions on G can be "lifted" to G'.
- Exercise 8. Consider a reversible Markov chain P on a finite state space V with stationary distribution π and absolute spectral gap g_{abs} . This exercise explains why $\tau_{relax} = 1/g_{abs}$ is called the relaxation time.
 - (a) For $f: V \longrightarrow \mathbb{R}$, let $\operatorname{Var}_{\pi}[f] := \mathbf{E}_{\pi}[f^2] (\mathbf{E}_{\pi}f)^2 = \sum_x f(x)^2 \pi(x) \left(\sum_x f(x)\pi(x)\right)^2$. Show that $g_{\operatorname{abs}} > 0$ implies that $\lim_{t \to \infty} P^t f(x) = \mathbf{E}_{\pi}f$ for all $x \in V$. Moreover,

$$\operatorname{Var}_{\pi}[P^{t}f] \leq (1 - g_{\operatorname{abs}})^{2t} \operatorname{Var}_{\pi}[f],$$

with equality at the eigenfunction corresponding to the λ_i giving $g_{abs} = 1 - |\lambda_i|$. Hence τ_{relax} is the time needed to reduce the standard deviation of any function to 1/e of its original standard deviation. (b) Using part (a), prove that there is a universal constant $C < \infty$ such that $\tau_{relax} < C \tau_{mix}^{TV}$.

- ▷ **Exercise 9.** This exercise proves that the total variation mixing time of the 1/2-lazy random walk X_0, X_1, \ldots on the hypercube $\{0, 1\}^n$ is $(1/2 + o(1)) n \log n$.
 - (a) Let Y_t be the number of missing coupons at time t in the coupon collector's problem. Show that $\mathbf{E} Y_{\alpha n \log n} \sim n^{1-\alpha}$ and $\mathbb{D} Y_{\alpha n \log n} = o(n^{1-\alpha})$. Using Markov's and Chebyshev's inequalities, deduce that $Y_{\alpha n \log n}/\sqrt{n} \to 0$ or ∞ in probability, for $\alpha > 1/2$ and < 1/2, respectively.
 - (b) Show that $d_{\text{TV}}(\mathsf{N}(0,1), \mathsf{N}(x,1)) \to 0$ or 1, for $x \to 0$ and $x \to \infty$, respectively, where $\mathsf{N}(\mu, \sigma^2)$ is the normal distribution. Using this and the local version of the de Moivre–Laplace theorem, prove that $d_{\text{TV}}(\mathsf{Binom}(n, 1/2), \mathsf{Binom}(n n^{\beta}, 1/2) + n^{\beta}) \to 0$ for any fixed $\beta < 1/2$, while $\to 1$ for $\beta > 1/2$.
 - (c) For $X_0 = (0, 0, ..., 0) \in \{0, 1\}^n$, let the distribution of X_t be μ_t . What is it, conditioned on $||X_t||_1 = k$? And what is the distribution of $||Z||_1$, where Z has distribution π , uniform on $\{0, 1\}^n$?
 - (d) Deduce from the previous parts that $d_{\text{TV}}(\mu_{\alpha n \log n}, \pi) \to 0$ or 1, for $\alpha > 1/2$ and < 1/2, respectively.
- ▷ Exercise 10. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \text{Geom}(1/2)$. Draw the tree into the plane with root ρ , add an extra vertex ρ' and an edge (ρ, ρ') , and walk around the tree, starting from ρ' , going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ' : let this be process be $\{X_t\}_{t=0}^{2n}$, which is positive everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T.

Figure 4: The contour walk around a tree.

- (a) Using the memoryless property of Geom(1/2), show that $\{X_t\}$ is SRW on \mathbb{Z} .
- (b) Using martingale techniques, show that $\mathbf{P}[T \text{ has height } \geq n] = 1/n$.
- (c) Show that, conditioning T to have height at least n, with high probability the height will be around n and the total volume will be around n^2 , where "around" means "up to constant factors".

Let G_n be a sequence of finite graphs with degrees at most d. Pick a uniform random root ρ_n from $V(G_n)$, and take the ball $B_{G_n,\rho_n}(r)$ around it in the graph metric, with some fixed radius $r \in \mathbb{Z}_+$. This way we get a distribution $\mu_{n,r}$ on finite rooted graphs with degrees at most d. We say that the sequence $\{G_n\}$ converges in the **Benjamini-Schramm sense** (also called **local weak convergence**) to a random rooted graph (G, ρ) , if, for every r, the distributions $\mu_{n,r}$ converge weakly as $n \to \infty$ to the distribution of $B_{G,\rho}(r)$. The simplest case is that the limit is a transitive infinite graph G: the measures $\mu_{n,r}$ converge to the Dirac measure on a single graph, the r-ball of G.

\triangleright Exercise 11.

- (a) Prove that the cubes $\{1, \ldots, n\}^d$ converge to \mathbb{Z}^d in the local weak sense.
- (b) Find a random rooted graph (G, ρ) that is a local weak limit of the balls $G_n = B_{\mathbb{T}_d,o}(n)$ in the *d*-regular tree \mathbb{T}_d . (Note that the limit will not be \mathbb{T}_d , or any other transitive graph, since ρ_n is a leaf of G_n with a uniformly positive probability, which will be inherited to ρ .)

More generally:

- \triangleright Exercise 12. Show that a transitive graph G has a sequence G_n of subgraphs converging to it in the local weak sense iff it is amenable.
- \triangleright Exercise 13. Show that the random *d*-regular bipartite graphs from class converge to the *d*-regular tree \mathbb{T}_d in the local weak sense. (Here the randomness for the measure $\mu_{n,r}$ comes from two sources: we take a random root ρ_n in the random graph G_n .)

The phenomenon is the same as in the previous exercise, but the computation is a bit simpler:

▷ **Exercise 14.** Show that for any $\lambda \in \mathbb{R}_+$, the local weak limit of the Erdős-Rényi random graphs $G(n, \lambda/n)$ is the PGW(λ) tree: the Galton-Watson tree with Poisson(λ) offspring distribution, rooted as normally.