Stochastic models - Second problem set

Gábor Pete
http://www.math.bme.hu/~gabor

April 27, 2017

Hand in 5 solutions out of the 13 problems below, by May 12 . In the 5 , you may include at most 1 from the first problem set (that you have not handed in earlier, of course). You may hand in partial solutions for partial credit.
$\triangleright \quad$ Exercise 1. For a subset A of the hypercube $\{0,1\}^{n}$, let $B(A, t):=\left\{x \in\{0,1\}^{n}: \operatorname{dist}(x, A) \leq t\right\}$, with the usual Hamming distance. Let $\epsilon, \lambda>0$ be constants satisfying $\exp \left(-\lambda^{2} / 2\right)=\epsilon$. Prove using Azuma-Hoeffding that

$$
|A| \geq \epsilon 2^{n} \Longrightarrow|B(A, 2 \lambda \sqrt{n})| \geq(1-\epsilon) 2^{n}
$$

That is, even small sets become huge if we enlarge them a little.
\triangleright Exercise 2. Prove the Bollobás-Thomason threshold theorem: for any sequence $\mathcal{A}=\mathcal{A}_{n} \subseteq\{0,1\}^{\binom{n}{2}}$ of upward closed events, let

$$
p_{t}^{\mathcal{A}}(n):=\inf \left\{p: \mathbf{P}\left[G(n, p) \text { satisfies } \mathcal{A}_{n}\right] \geq t\right\}
$$

Prove that for any ϵ there is $C_{\epsilon}<\infty$ such that $\left|p_{1-\epsilon}^{\mathcal{A}}(n)-p_{\epsilon}^{\mathcal{A}}(n)\right| \leq C_{\epsilon}\left(p_{\epsilon}^{\mathcal{A}}(n) \wedge\left(1-p_{1-\epsilon}^{\mathcal{A}}(n)\right)\right)$. (Hint: take many independent copies of low density to get success with good probability at a larger density.)
$\triangleright \quad$ Exercise 3. Find the order of magnitude of the threshold function $p_{1 / 2}(n)$ for the random graph $G(n, p)$ containing a copy of the cycle C_{4}.
$\triangleright \quad$ Exercise 4. Let $X_{\lambda}(n)$ be the number of isolated vertices in the random graph $G\left(n, \frac{\lambda \ln n}{n}\right)$.
(a) Show that $\mathbf{E} X_{\lambda}(n) \sim n^{1-\lambda}$ as $n \rightarrow \infty$. Deduce that, for $\lambda>1$ fixed, with probability tending to 1 there exist no isolated vertices. For $\lambda<1$ fixed, using the 2nd Moment Method, show that there exist isolated vertices with probability tending to 1 .
(b) Show that if $\alpha>1-\lambda>0$, then the probability that there exists a union of components that has total size between n^{α} and $n-n^{\alpha}$ is going to 0 . This is an indication that isolated vertices are indeed the main obstacles to connectivity.
\triangleright Exercise 5. Consider a Galton-Watson branching process with offspring distribution ξ, mean $\mathbf{E} \xi=\mu$. Let Z_{n} be the size of the nth level, with $Z_{0}=1$, the root.
(a) Show that Z_{n} / μ^{n} is a martingale.
(b) Deduce for $\mu<1$ that $\mathbf{P}\left[Z_{n}>0\right] \leq \exp (-c n)$ for some $c>0$, and hence $\mathbf{P}\left[Z_{n}=0\right.$ eventually $]=1$.
(c) Deduce from a MG convergence thm that if $\mu=1$ but $\mathbf{P}[\xi=1] \neq 1$, then $\mathbf{P}\left[Z_{n}=0\right.$ eventually $]=1$.
\triangleright Exercise 6. Continuing the previous exercise:
(a) Assuming that $\mu>1$ and $\mathbf{E}\left[\xi^{2}\right]<\infty$, first show that $\mathbf{E}\left[Z_{n}^{2}\right] \leq C\left(\mathbf{E} Z_{n}\right)^{2}$. (Hint: use the conditional variance formula $\mathbf{D}^{2}\left[Z_{n}\right]=\mathbf{E}\left[\mathbf{D}^{2}\left[Z_{n} \mid Z_{n-1}\right]\right]+\mathbf{D}^{2}\left[\mathbf{E}\left[Z_{n} \mid Z_{n-1}\right]\right]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
(b) Extend the above to the cases $\mathbf{E} \xi=\infty$ or $\mathbf{D} \xi=\infty$ by a truncation $\xi \mathbf{1}_{\xi<K}$ for K large enough.
\triangleright Exercise 7. For the GW tree with offspring distribution Poisson $(1+\epsilon)$, show that the survival probability is asymptotically 2ϵ, as $\epsilon \rightarrow 0$.
\triangleright Exercise 8. Using the exploration Markov chain for GW trees and a Doob transform, show that if we condition the GW tree with offspring distribution $\operatorname{Poisson}(\lambda)$ on extinction, where $\lambda>1$, then we get a GW tree with offspring distribution $\operatorname{Poisson}(\mu)$ with $\mu<1$, where $\lambda e^{-\lambda}=\mu e^{-\mu}$.
\triangleright Exercise 9. If X is a non-negative random variable with finite expectation, then its size-biased version \widehat{X} is defined by $\mathbf{P}[\widehat{X} \in A]=\mathbf{E}\left[X \mathbf{1}_{\{X \in A\}}\right] / \mathbf{E} X$.
(a) Show that the size-biased version of $\operatorname{Poi}(\lambda)$ is just $\operatorname{Poi}(\lambda)+1$.
(b) Show that the size-biased version of Expon (λ) is the sum of two independent Expon (λ) 's.
(c) Take Poisson point process of intensity λ on \mathbb{R}. Condition on the interval $(-\epsilon, \epsilon)$ to contain at least one arrival. As $\epsilon \rightarrow 0$, what is the point process we obtain in the limit? What does this have to do with parts (a) and (b)?
$\triangleright \quad$ Exercise 10. Let $X_{k}(n)$ be the number of degree k vertices in the Erdős-Rényi graph $G(n, \lambda / n)$, where $\lambda>0$ is fixed. Show that $X_{k}(n) / n$ converges in probability, as $n \rightarrow \infty$, to $\mathbf{P}[\operatorname{Poi}(\lambda)=k]=e^{-\lambda} \lambda^{k} / k!$. (Hint: calculate the 2nd moment or use Azuma-Hoeffding.)
\triangleright Exercise 11. Consider Pólya's urn process $\left(G_{n}, R_{n}\right)_{n \geq 0}$, started with $G_{0}=g$ green and $R_{0}=r$ red balls. Recall that $G_{n} /\left(G_{n}+R_{n}\right)$ is a bounded martingale, hence it converges almost surely to some $\gamma \in[0,1]$.
(a) Suppose that $r, g>1$. Define $W_{n}=\log \left(G_{n}+R_{n}\right)-\log \left(G_{n}-1\right)$. Show that $\left(W_{n}\right)_{n \geq 0}$ is a supermartingale, and deduce that the limit γ is in fact almost surely strictly in $(0,1)$.
(b) Extend the argument to the case when r and g can be 1.
\triangleright Exercise 12. Assume that $\pi: G^{\prime} \longrightarrow G$ is a topological covering between infinite graphs, or in other words, G is a factor graph of G^{\prime}. Show that $p_{c}\left(G^{\prime}\right) \leq p_{c}(G)$.
$\triangleright \quad$ Exercise 13. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display. Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST +1 . Find an explicit monotone coupling between the two measures (i.e., with UST \subset UST +1).
Question. Is there such a monotone coupling for every finite graph? (Finding the answer might lead to a fantastic PhD thesis.)

