Stochastic models — Second problem set

GÁBOR PETE http://www.math.bme.hu/~gabor

April 27, 2017

Hand in 5 solutions out of the 13 problems below, by May 12. In the 5, you may include at most 1 from the first problem set (that you have not handed in earlier, of course). You may hand in partial solutions for partial credit.

▷ Exercise 1. For a subset A of the hypercube $\{0,1\}^n$, let $B(A,t) := \{x \in \{0,1\}^n : \operatorname{dist}(x,A) \le t\}$, with the usual Hamming distance. Let $\epsilon, \lambda > 0$ be constants satisfying $\exp(-\lambda^2/2) = \epsilon$. Prove using Azuma-Hoeffding that

$$|A| \ge \epsilon 2^n \implies |B(A, 2\lambda\sqrt{n})| \ge (1-\epsilon) 2^n.$$

That is, even small sets become huge if we enlarge them a little.

▷ Exercise 2. Prove the Bollobás-Thomason threshold theorem: for any sequence $\mathcal{A} = \mathcal{A}_n \subseteq \{0,1\}^{\binom{n}{2}}$ of upward closed events, let

 $p_t^{\mathcal{A}}(n) := \inf \left\{ p : \mathbf{P}[G(n, p) \text{ satisfies } \mathcal{A}_n] \ge t \right\}.$

Prove that for any ϵ there is $C_{\epsilon} < \infty$ such that $\left| p_{1-\epsilon}^{\mathcal{A}}(n) - p_{\epsilon}^{\mathcal{A}}(n) \right| \le C_{\epsilon} \left(p_{\epsilon}^{\mathcal{A}}(n) \wedge (1 - p_{1-\epsilon}^{\mathcal{A}}(n)) \right)$. (Hint: take many independent copies of low density to get success with good probability at a larger density.)

- ▷ Exercise 3. Find the order of magnitude of the threshold function $p_{1/2}(n)$ for the random graph G(n,p) containing a copy of the cycle C_4 .
- \triangleright **Exercise 4.** Let $X_{\lambda}(n)$ be the number of isolated vertices in the random graph $G(n, \frac{\lambda \ln n}{n})$.
 - (a) Show that $\mathbf{E}X_{\lambda}(n) \sim n^{1-\lambda}$ as $n \to \infty$. Deduce that, for $\lambda > 1$ fixed, with probability tending to 1 there exist no isolated vertices. For $\lambda < 1$ fixed, using the 2nd Moment Method, show that there exist isolated vertices with probability tending to 1.
 - (b) Show that if $\alpha > 1 \lambda > 0$, then the probability that there exists a union of components that has total size between n^{α} and $n n^{\alpha}$ is going to 0. This is an indication that isolated vertices are indeed the main obstacles to connectivity.
- \triangleright Exercise 5. Consider a Galton-Watson branching process with offspring distribution ξ , mean $\mathbf{E}\xi = \mu$. Let Z_n be the size of the *n*th level, with $Z_0 = 1$, the root.
 - (a) Show that Z_n/μ^n is a martingale.
 - (b) Deduce for $\mu < 1$ that $\mathbf{P}[Z_n > 0] \le \exp(-cn)$ for some c > 0, and hence $\mathbf{P}[Z_n = 0$ eventually] = 1.
 - (c) Deduce from a MG convergence that if $\mu = 1$ but $\mathbf{P}[\xi = 1] \neq 1$, then $\mathbf{P}[Z_n = 0$ eventually] = 1.
- ▷ **Exercise 6.** Continuing the previous exercise:
 - (a) Assuming that $\mu > 1$ and $\mathbf{E}[\xi^2] < \infty$, first show that $\mathbf{E}[Z_n^2] \le C(\mathbf{E}Z_n)^2$. (Hint: use the conditional variance formula $\mathbf{D}^2[Z_n] = \mathbf{E}[\mathbf{D}^2[Z_n \mid Z_{n-1}]] + \mathbf{D}^2[\mathbf{E}[Z_n \mid Z_{n-1}]]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
 - (b) Extend the above to the cases $\mathbf{E}\xi = \infty$ or $\mathbf{D}\xi = \infty$ by a truncation $\xi \mathbf{1}_{\xi < K}$ for K large enough.
- \triangleright Exercise 7. For the GW tree with offspring distribution Poisson $(1 + \epsilon)$, show that the survival probability is asymptotically 2ϵ , as $\epsilon \to 0$.

- ▷ Exercise 8. Using the exploration Markov chain for GW trees and a Doob transform, show that if we condition the GW tree with offspring distribution Poisson(λ) on extinction, where $\lambda > 1$, then we get a GW tree with offspring distribution Poisson(μ) with $\mu < 1$, where $\lambda e^{-\lambda} = \mu e^{-\mu}$.
- ▷ **Exercise 9.** If X is a non-negative random variable with finite expectation, then its size-biased version \widehat{X} is defined by $\mathbf{P}[\widehat{X} \in A] = \mathbf{E}[X \mathbf{1}_{\{X \in A\}}] / \mathbf{E}X$.
 - (a) Show that the size-biased version of $\mathsf{Poi}(\lambda)$ is just $\mathsf{Poi}(\lambda) + 1$.
 - (b) Show that the size-biased version of $\mathsf{Expon}(\lambda)$ is the sum of two independent $\mathsf{Expon}(\lambda)$'s.
 - (c) Take Poisson point process of intensity λ on \mathbb{R} . Condition on the interval $(-\epsilon, \epsilon)$ to contain at least one arrival. As $\epsilon \to 0$, what is the point process we obtain in the limit? What does this have to do with parts (a) and (b)?
- ▷ Exercise 10. Let $X_k(n)$ be the number of degree k vertices in the Erdős-Rényi graph $G(n, \lambda/n)$, where $\lambda > 0$ is fixed. Show that $X_k(n)/n$ converges in probability, as $n \to \infty$, to $\mathbf{P}[\operatorname{Poi}(\lambda) = k] = e^{-\lambda} \lambda^k / k!$. (Hint: calculate the 2nd moment or use Azuma-Hoeffding.)
- ▷ Exercise 11. Consider Pólya's urn process $(G_n, R_n)_{n \ge 0}$, started with $G_0 = g$ green and $R_0 = r$ red balls. Recall that $G_n/(G_n + R_n)$ is a bounded martingale, hence it converges almost surely to some $\gamma \in [0, 1]$.
 - (a) Suppose that r, g > 1. Define $W_n = \log(G_n + R_n) \log(G_n 1)$. Show that $(W_n)_{n \ge 0}$ is a supermartingale, and deduce that the limit γ is in fact almost surely strictly in (0, 1).
 - (b) Extend the argument to the case when r and g can be 1.
- \triangleright Exercise 12. Assume that $\pi: G' \longrightarrow G$ is a topological covering between infinite graphs, or in other words, G is a factor graph of G'. Show that $p_c(G') \leq p_c(G)$.
- ▷ Exercise 13. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display. Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an explicit monotone coupling between the two measures (i.e., with $UST \subset UST + 1$).

Question. Is there such a monotone coupling for every finite graph? (Finding the answer might lead to a fantastic PhD thesis.)