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Solve 6 of the 14 problems below by March 7. Since we do not have a class that week, it is OK to

hand them in later. You can ask me for help if you get stuck with something.

Let us start with a problem on stochastic domination:

Exercise⊲ 1. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.

Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure

on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST+ 1. Find an

explicit monotone coupling between the two measures (i.e., with UST ⊂ UST+ 1).

Open problem. Is there such a monotone coupling for every finite graph?

The most basic problem on phase transitions:

Exercise⊲ 2. Prove the Bollobás-Thomason threshold theorem: for any sequence monotone events A = An

and any ǫ there is Cǫ < ∞ such that
∣

∣pA1−ǫ(n) − pAǫ (n)
∣

∣ < Cǫ

(

pAǫ (n) ∧ (1 − pA1−ǫ(n))
)

. (Hint: take many

independent copies of low density to get success with good probability at a larger density.)

Four problems on the Galton-Watson phase transition:

Exercise⊲ 3. Let Zn be the size of the nth generation in a GW tree with offspring distribution ξ.

(a) Assuming that µ > 1 and E[ ξ2 ] < ∞, first show that E
[

Z2
n

]

≤ C(EZn)
2. (Hint: use the conditional

variance formula D2[Zn] = E
[

D2[Zn

∣

∣ Zn−1]
]

+D2
[

E[Zn | Zn−1 ]
]

.) Then, using the Second Moment

Method, deduce that the GW process survives with positive probability.

(b) Extend the result on survival to the cases Eξ = ∞ or Dξ = ∞ by a truncation ξ1ξ<K for K large

enough.

Exercise⊲ 4. Let (Xi)i≥0 be a random walk on Z, with i.i.d. increments ξi that have zero mean and an

exponential tail: there exist K ∈ N and 0 < q < 1 such that P[ ξ ≥ k + 1 ] ≤ qP[ ξ ≥ k ] for all k ≥ K.

Starting from X0 = ℓ ∈ {1, 2, . . . , k− 1}, let τ0 be the first time the walk is at most 0, and let τk be the first

time the walk is at least k. For any 0 < X0 = ℓ < k, show that Pℓ[ τk < τ0 ] ≍ ℓ/k. (Hint: first prove that

Xτk − k, conditioned on τk < τ0, has an exponential tail, independently of k.)

Exercise⊲ 5. For the GW tree with offspring distribution Poisson(1+ ǫ), show that the survival probability

is asymptotically 2ǫ, as ǫ → 0.

Exercise⊲ 6. Using the exploration Markov chain for GW trees and a Doob transform, show that if we

condition the GW tree with offspring distribution Poisson(λ) on extinction, where λ > 1, then we get a GW

tree with offspring distribution Poisson(µ) with µ < 1, where λe−λ = µe−µ.

We used exponential concentration bounds for the Erdős-Rényi giant cluster phase transition at two places,

where the usual Azuma-Hoeffding for bounded MG-differences does not exactly apply. The next exercise

fills in these gaps:
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Exercise⊲ 7. Using the exponential Markov inequality as for Azuma-Hoeffding, together with the moment

generating function mX(t) = E
[

etX
]

, prove the following two exponential concentration inequalities:

(a) If Sn = X1+ · · ·+Xn is a sum of i.i.d. variables with EXi = µ and mX(t0) < ∞ for some t0 > 0, then,

for any δ > 0 there exist cδ > 0 and Cδ < ∞ (which also depend on the distribution of Xi) such that

P
[

|Sn/n− µ| > δ
]

< Cδ e
−cδn,

for any n. (Hint: use that d
dt logmX(t)

∣

∣

t=0
= 0, while d

dtδt
∣

∣

t=0
> 0.)

(b) For any δ > 0 there exist cδ > 0 and Cδ < ∞ such that

P
[

|Poi(λ)− λ| > δλ
]

< Cδ e
−cδλ,

for any λ > 0. (Hint: we know what the exponential generating function of Poi(λ) is.)

A simple example to practice influences, algorithmic revealment, and noise sensitivity:

Exercise⊲ 8. Consider the Tribesn function on n = k2k bits.

(a) Find the total influence of the input bits.

(b) Find a o(1)-revealment algorithm that computes this function.

(c) Prove that this function is noise sensitive (directly, without invoking any noise-sensitivity theorems):

for any ǫ > 0 fixed, if ωǫ denotes the configuration where every bit in ω is resampled independently

with probability ǫ, then Corr(Tribesn(ω),Tribesn(ω
ǫ)) → 0 as n → ∞.

Two exercises on random walks and isoperimetry:

Exercise⊲ 9. Why it is hard to construct large expanders:

(a) If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G), i.e.,

the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then ρ(G) ≥
ρ(Tk) =

2
√
k−1

k .

(b) If G′ −→ G is a covering map of finite graphs, then λ2(G
′) ≥ λ2(G), i.e., the larger graph is a worse

expander.

Exercise⊲ 10. Recall (or look it up in Durrett’s book) that the reflection principle implies the following: if

{Xk}k≥0 is SRW on Z, and Mn = maxk≤n Xk, then

2P[Xn ≥ t ] ≥ P[Mn ≥ t ] .

Consider now SRW on the lamplighter group⊕ZZ2⋊Z, with the lazy generators Left, Right, Switch, Nothing,

each with probability 1/4 (but the exact probabilities will not matter).

(a) Prove that the return probability is at least pn(o, o) ≥ exp(−c
√
n), for some absolute constant c > 0.

(Note that the subexponential decay corresponds to the graph being amenable.)

(b) Find a smarter version of this strategy and prove pn(o, o) ≥ exp(−cn1/3), which is actually sharp.

Now some exercises with almost no probability content, only coarse geometry and graph theory.

Exercise⊲ 11. Recall that a bounded degree infinite graph satisfies the isoperimetric inequality IPd if |∂S| >
c|S| d−1

d for every finite S ⊂ V (G). In particular, IP∞ means non-amenable.

(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ǫ implies IP∞.)

(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP1+ǫ,

recurrent for the simple random walk on it, and has pc = 1 for percolation.
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Figure 1: Trying to create at least 7 neighbours for each country.

Exercise⊲ 12. Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞, and

can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Exercise⊲ 13. Show that a bounded degree graph G(V,E) is nonamenable if and only if it has a wobbling

paradoxical decomposition: two injective maps α, β : V −→ V such that α(V ) ⊔ β(V ) = V is a disjoint

union, and both maps are at a bounded distance from the identity, or wobbling: supx∈V d(x, α(x)) < ∞.

(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called

the Hall-Rado theorem.)

Remark. The previous exercise can be used to give a simple nice proof that groups with Følner-non-

amenable Cayley graphs are also von Neumann non-amenable: they do not have group-translation-invariant

finitely-additive probability measures defined on all their subsets.
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Figure 2: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group

H3(Z) =

















1 x z

0 1 y

0 0 1






: x, y, z ∈ Z











.

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1, 0, 0 for x, y, z, then

H3(Z) is given by the presentation
〈

X,Y, Z
∣

∣ [X,Z] = 1, [Y, Z] = 1, [X,Y ] = Z
〉

.

Exercise⊲ 14. Show that the discrete Heisenberg group has 4-dimensional volume growth.

3


