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Solve 6 of the 14 problems below by March 7. Since we do not have a class that week, it is OK to

hand them in later. You can ask me for help if you get stuck with something.

Let us start with a problem on stochastic domination:

Exercise 1. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.
Consider the uniform measure on the 15 spanning trees of GG, denoted by UST, and the uniform measure
on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an

explicit monotone coupling between the two measures (i.e., with UST € UST + 1).

Open problem. Is there such a monotone coupling for every finite graph?

The most basic problem on phase transitions:

Exercise 2. Prove the Bollobds-Thomason threshold theorem: for any sequence monotone events A = A,
and any € there is C. < oo such that |pf* (n) — p2A(n)| < Cc (p2(n) A (1 — pf(n))). (Hint: take many

independent copies of low density to get success with good probability at a larger density.)
Four problems on the Galton-Watson phase transition:

Exercise 3. Let Z,, be the size of the nth generation in a GW tree with offspring distribution &.

(a) Assuming that > 1 and E[£?] < oo, first show that E[ Z2 | < C(EZ,)?. (Hint: use the conditional
variance formula D?[Z,] = E[D?[Z,, | Z,—1]] + D?[E[Z, | Z,-1]].) Then, using the Second Moment
Method, deduce that the GW process survives with positive probability.

(b) Extend the result on survival to the cases E€ = oo or D{ = oo by a truncation {1l¢<x for K large

enough.

Exercise 4. Let (X;);>0 be a random walk on Z, with i.i.d. increments & that have zero mean and an
exponential tail: there exist K € N and 0 < ¢ < 1 such that P[§ >k +1] < ¢P[¢ > k] for all k > K.
Starting from Xo = ¢ € {1,2,...,k— 1}, let 79 be the first time the walk is at most 0, and let 75 be the first
time the walk is at least k. For any 0 < Xy = ¢ < k, show that Py[7, < 79] < ¢/k. (Hint: first prove that

X;, — k, conditioned on 1, < 79, has an exponential tail, independently of k.)

Exercise 5. For the GW tree with offspring distribution Poisson(1 + €), show that the survival probability
is asymptotically 2¢, as € — 0.

Exercise 6. Using the exploration Markov chain for GW trees and a Doob transform, show that if we
condition the GW tree with offspring distribution Poisson(\) on extinction, where A > 1, then we get a GW
tree with offspring distribution Poisson(u) with 4 < 1, where Ae™ = pe™H.

We used exponential concentration bounds for the Erdés-Rényi giant cluster phase transition at two places,
where the usual Azuma-Hoeffding for bounded MG-differences does not exactly apply. The next exercise

fills in these gaps:
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> Exercise 7. Using the exponential Markov inequality as for Azuma-Hoeffding, together with the moment
generating function mx (¢) = E [ etX ], prove the following two exponential concentration inequalities:

(a) It S, = X1+ -+ X, is a sum of i.i.d. variables with EX; = p and mx (ty) < oo for some g > 0, then,

for any 6 > 0 there exist ¢ > 0 and Cs < oo (which also depend on the distribution of X;) such that

P[[Sy/n— | >8] < Ce oo,

for any n. (Hint: use that % log mX(t)‘t:o = 0, while %&L&:o >0.)
(b) For any 6 > 0 there exist ¢s > 0 and C5 < oo such that

P[|Poi(\) — A| > 6A] < Cse 0,
for any A > 0. (Hint: we know what the exponential generating function of Poi()\) is.)

A simple example to practice influences, algorithmic revealment, and noise sensitivity:

> Exercise 8. Consider the Tribes,, function on n = k2* bits.
(a) Find the total influence of the input bits.
(b) Find a o(1)-revealment algorithm that computes this function.
(c) Prove that this function is noise sensitive (directly, without invoking any noise-sensitivity theorems):
for any € > 0 fixed, if w® denotes the configuration where every bit in w is resampled independently
with probability e, then Corr(Tribes, (w), Tribes, (w®)) — 0 as n — .

Two exercises on random walks and isoperimetry:

> Exercise 9. Why it is hard to construct large expanders:
(a) If @ — G is a covering map of infinite graphs, then the spectral radii satisfy p(G’) < p(G), i.e.,
the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then p(G) >
p(Ty) = 251,
(b) If G’ — G is a covering map of finite graphs, then A2(G’) > A\2(G), i.e., the larger graph is a worse

expander.

> Exercise 10. Recall (or look it up in Durrett’s book) that the reflection principle implies the following: if
{Xk}kZO is SRW on Z, and Mn = IMaXk<n Xk, then

OP[X, >t] > P[M, >1t].

Consider now SRW on the lamplighter group ®z7Zs xZ, with the lazy generators Left, Right, Switch, Nothing,
each with probability 1/4 (but the exact probabilities will not matter).
(a) Prove that the return probability is at least p,(0,0) > exp(—cy/n), for some absolute constant ¢ > 0.
(Note that the subexponential decay corresponds to the graph being amenable.)
(b) Find a smarter version of this strategy and prove p,(0,0) > exp(—cn!/3), which is actually sharp.

Now some exercises with almost no probability content, only coarse geometry and graph theory.

> Exercise 11. Recall that a bounded degree infinite graph satisfies the isoperimetric inequality I Py if |0.S] >
c|lS |% for every finite S C V(G). In particular, I Ps, means non-amenable.

(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, I P, implies I P...)

(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP4,

recurrent for the simple random walk on it, and has p. = 1 for percolation.



Figure 1: Trying to create at least 7 neighbours for each country.

> Exercise 12. Consider the standard hexagonal lattice. Show that if you are given a bound B < oo, and
can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not
possible to have at least 7 neighbours for each country.

> Exercise 13. Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling
paradoxical decomposition: two injective maps «, 8 : V. — V such that «(V) U B(V) = V is a disjoint
union, and both maps are at a bounded distance from the identity, or wobbling: sup,cy d(z, a(x)) < oco.
(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called
the Hall-Rado theorem.)

Remark. The previous exercise can be used to give a simple nice proof that groups with Fglner-non-
amenable Cayley graphs are also von Neumann non-amenable: they do not have group-translation-invariant

finitely-additive probability measures defined on all their subsets.
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Figure 2: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group

1
Hs(Z)=<{ |0
0

o = 8

z
yl| rx,y,2€Z
1

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1,0,0 for z,y, z, then
Hs(Z) is given by the presentation (X,Y,Z|[X,Z] =1,[Y, Z] = 1,[X,Y] = Z).

> Exercise 14. Show that the discrete Heisenberg group has 4-dimensional volume growth.



