Stochastic Models at CEU - First HW problem set

Gábor Pete
http://www.math.bme.hu/~gabor

February 18, 2018

Solve 6 of the 14 problems below by March 7. Since we do not have a class that week, it is OK to hand them in later. You can ask me for help if you get stuck with something.

Let us start with a problem on stochastic domination:
$\triangleright \quad$ Exercise 1. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display. Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST +1 . Find an explicit monotone coupling between the two measures (i.e., with UST \subset UST +1).
Open problem. Is there such a monotone coupling for every finite graph?
The most basic problem on phase transitions:
$\triangleright \quad$ Exercise 2. Prove the Bollobás-Thomason threshold theorem: for any sequence monotone events $\mathcal{A}=\mathcal{A}_{n}$ and any ϵ there is $C_{\epsilon}<\infty$ such that $\left|p_{1-\epsilon}^{\mathcal{A}}(n)-p_{\epsilon}^{\mathcal{A}}(n)\right|<C_{\epsilon}\left(p_{\epsilon}^{\mathcal{A}}(n) \wedge\left(1-p_{1-\epsilon}^{\mathcal{A}}(n)\right)\right)$. (Hint: take many independent copies of low density to get success with good probability at a larger density.)

Four problems on the Galton-Watson phase transition:
$\triangleright \quad$ Exercise 3. Let Z_{n} be the size of the nth generation in a GW tree with offspring distribution ξ.
(a) Assuming that $\mu>1$ and $\mathbf{E}\left[\xi^{2}\right]<\infty$, first show that $\mathbf{E}\left[Z_{n}^{2}\right] \leq C\left(\mathbf{E} Z_{n}\right)^{2}$. (Hint: use the conditional variance formula $\mathbf{D}^{2}\left[Z_{n}\right]=\mathbf{E}\left[\mathbf{D}^{2}\left[Z_{n} \mid Z_{n-1}\right]\right]+\mathbf{D}^{2}\left[\mathbf{E}\left[Z_{n} \mid Z_{n-1}\right]\right]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
(b) Extend the result on survival to the cases $\mathbf{E} \xi=\infty$ or $\mathbf{D} \xi=\infty$ by a truncation $\xi \mathbf{1}_{\xi<K}$ for K large enough.
\triangleright Exercise 4. Let $\left(X_{i}\right)_{i \geq 0}$ be a random walk on \mathbb{Z}, with i.i.d. increments ξ_{i} that have zero mean and an exponential tail: there exist $K \in \mathbb{N}$ and $0<q<1$ such that $\mathbf{P}[\xi \geq k+1] \leq q \mathbf{P}[\xi \geq k]$ for all $k \geq K$. Starting from $X_{0}=\ell \in\{1,2, \ldots, k-1\}$, let τ_{0} be the first time the walk is at most 0 , and let τ_{k} be the first time the walk is at least k. For any $0<X_{0}=\ell<k$, show that $\mathbf{P}_{\ell}\left[\tau_{k}<\tau_{0}\right] \asymp \ell / k$. (Hint: first prove that $X_{\tau_{k}}-k$, conditioned on $\tau_{k}<\tau_{0}$, has an exponential tail, independently of k.)
\triangleright Exercise 5. For the GW tree with offspring distribution Poisson $(1+\epsilon)$, show that the survival probability is asymptotically 2ϵ, as $\epsilon \rightarrow 0$.
\triangleright Exercise 6. Using the exploration Markov chain for GW trees and a Doob transform, show that if we condition the GW tree with offspring distribution $\operatorname{Poisson}(\lambda)$ on extinction, where $\lambda>1$, then we get a GW tree with offspring distribution Poisson (μ) with $\mu<1$, where $\lambda e^{-\lambda}=\mu e^{-\mu}$.

We used exponential concentration bounds for the Erdős-Rényi giant cluster phase transition at two places, where the usual Azuma-Hoeffding for bounded MG-differences does not exactly apply. The next exercise fills in these gaps:
$\triangleright \quad$ Exercise 7. Using the exponential Markov inequality as for Azuma-Hoeffding, together with the moment generating function $m_{X}(t)=\mathbf{E}\left[e^{t X}\right]$, prove the following two exponential concentration inequalities:
(a) If $S_{n}=X_{1}+\cdots+X_{n}$ is a sum of i.i.d. variables with $\mathbf{E} X_{i}=\mu$ and $m_{X}\left(t_{0}\right)<\infty$ for some $t_{0}>0$, then, for any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ (which also depend on the distribution of X_{i}) such that

$$
\mathbf{P}\left[\left|S_{n} / n-\mu\right|>\delta\right]<C_{\delta} e^{-c_{\delta} n}
$$

for any n. (Hint: use that $\left.\frac{d}{d t} \log m_{X}(t)\right|_{t=0}=0$, while $\left.\frac{d}{d t} \delta t\right|_{t=0}>0$.)
(b) For any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ such that

$$
\mathbf{P}[|\operatorname{Poi}(\lambda)-\lambda|>\delta \lambda]<C_{\delta} e^{-c_{\delta} \lambda}
$$

for any $\lambda>0$. (Hint: we know what the exponential generating function of $\operatorname{Poi}(\lambda)$ is.)
A simple example to practice influences, algorithmic revealment, and noise sensitivity:
$\triangleright \quad$ Exercise 8. Consider the Tribes ${ }_{n}$ function on $n=k 2^{k}$ bits.
(a) Find the total influence of the input bits.
(b) Find a $o(1)$-revealment algorithm that computes this function.
(c) Prove that this function is noise sensitive (directly, without invoking any noise-sensitivity theorems): for any $\epsilon>0$ fixed, if ω^{ϵ} denotes the configuration where every bit in ω is resampled independently with probability ϵ, then $\operatorname{Corr}\left(\operatorname{Tribes}_{n}(\omega), \operatorname{Tribes}_{n}\left(\omega^{\epsilon}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Two exercises on random walks and isoperimetry:
\triangleright Exercise 9. Why it is hard to construct large expanders:
(a) If $G^{\prime} \longrightarrow G$ is a covering map of infinite graphs, then the spectral radii satisfy $\rho\left(G^{\prime}\right) \leq \rho(G)$, i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then $\rho(G) \geq$ $\rho\left(\mathbb{T}_{k}\right)=\frac{2 \sqrt{k-1}}{k}$.
(b) If $G^{\prime} \longrightarrow G$ is a covering map of finite graphs, then $\lambda_{2}\left(G^{\prime}\right) \geq \lambda_{2}(G)$, i.e., the larger graph is a worse expander.
\triangleright Exercise 10. Recall (or look it up in Durrett's book) that the reflection principle implies the following: if $\left\{X_{k}\right\}_{k \geq 0}$ is SRW on \mathbb{Z}, and $M_{n}=\max _{k \leq n} X_{k}$, then

$$
2 \mathbf{P}\left[X_{n} \geq t\right] \geq \mathbf{P}\left[M_{n} \geq t\right]
$$

Consider now SRW on the lamplighter group $\oplus_{\mathbb{Z}} \mathbb{Z}_{2} \rtimes \mathbb{Z}$, with the lazy generators Left, Right, Switch, Nothing, each with probability $1 / 4$ (but the exact probabilities will not matter).
(a) Prove that the return probability is at least $p_{n}(o, o) \geq \exp (-c \sqrt{n})$, for some absolute constant $c>0$. (Note that the subexponential decay corresponds to the graph being amenable.)
(b) Find a smarter version of this strategy and prove $p_{n}(o, o) \geq \exp \left(-c n^{1 / 3}\right)$, which is actually sharp.

Now some exercises with almost no probability content, only coarse geometry and graph theory.
\triangleright Exercise 11. Recall that a bounded degree infinite graph satisfies the isoperimetric inequality $I P_{d}$ if $|\partial S|>$ $c|S|^{\frac{d-1}{d}}$ for every finite $S \subset V(G)$. In particular, $I P_{\infty}$ means non-amenable.
(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2. (Consequently, for trees, $I P_{1+\epsilon}$ implies $I P_{\infty}$.)
(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no $I P_{1+\epsilon}$, recurrent for the simple random walk on it, and has $p_{c}=1$ for percolation.

Figure 1: Trying to create at least 7 neighbours for each country.
\triangleright Exercise 12. Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible to have at least 7 neighbours for each country.
\triangleright Exercise 13. Show that a bounded degree graph $G(V, E)$ is nonamenable if and only if it has a wobbling paradoxical decomposition: two injective maps $\alpha, \beta: V \longrightarrow V$ such that $\alpha(V) \sqcup \beta(V)=V$ is a disjoint union, and both maps are at a bounded distance from the identity, or wobbling: $\sup _{x \in V} d(x, \alpha(x))<\infty$. (Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)
Remark. The previous exercise can be used to give a simple nice proof that groups with Følner-nonamenable Cayley graphs are also von Neumann non-amenable: they do not have group-translation-invariant finitely-additive probability measures defined on all their subsets.

Figure 2: The Cayley graph of the Heisenberg group with generators X, Y, Z.
The 3-dimensional discrete Heisenberg group is the matrix group

$$
H_{3}(\mathbb{Z})=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{Z}\right\}
$$

If we denote by X, Y, Z the matrices given by the three permutations of the entries $1,0,0$ for x, y, z, then $H_{3}(\mathbb{Z})$ is given by the presentation $\langle X, Y, Z \mid[X, Z]=1,[Y, Z]=1,[X, Y]=Z\rangle$.
\triangleright Exercise 14. Show that the discrete Heisenberg group has 4-dimensional volume growth.

