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Gábor Pete

http://www.math.bme.hu/~gabor

March 30, 2018

Solve 6 of the 15 problems below by April 11. Ask me for help if you get stuck with something.

The following was used as a piece of intuition for the evolving sets method:

Exercise⊲ 1. If Var[X ] ≥ c (EX)2 then E
[√

X
]

≤ (1− c′)
√
EX, where c′ > 0 depends only on c > 0.

Exercise⊲ 2. Prove O(n log n) uniform mixing time for SRW on the hypercube {0, 1}n using evolving sets

and the standard one-dimensional Central Limit Theorem.

Exercise⊲ 3. Consider percolation on {0, 1}n. Believe the result (due to Ajtai-Komlós-Szemerédi 1982) that

for any ǫ > 0, at p = (1 + ǫ)/n there is a unique giant cluster. By exhibiting long “hanging paths” in this

giant cluster, show that the mixing time inside the giant cluster is at least cǫn
2.

Folklore conjecture. The giant cluster at p = (1+ ǫ)/n on the hypercube {0, 1}n has poly(n) mixing time,

probably Cǫ n
2.

Exercise⊲ 4. A simple version of the Tetris game (with no player): on the discrete cycle of length K,

unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random

(i = 0, 1, . . . ,K − 1, mod K). Let Rt be the size of the roof after t squares have fallen: those squares of the

current configuration that could have been the last to fall. Show that limt→∞ ERt = K/3.

Figure 1: Sorry, this picture is on the segment, not on the cycle.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to

do with the speed of the SRW. Here, for K ≥ 4, the expected limiting size of the roof is already less than

0.32893K, but this is far from trivial. What’s the situation for K = 3?

Two exercises for the range Rn = {v ∈ V (G) : ∃k ∈ {0, 1, . . . , n} with Xk = v} of SRW, which were

mentioned in the discussion of the speed of random walk on the lamplighter groups Z2 ≀ Zd:

Exercise⊲ 5. For simple random walk Z
2, show that E |Rn| ≍ n

log n
.

Exercise⊲ 6. For simple random walk on a transitive graph, limn→∞
E |Rn|

n
= q := Po[never return to o].
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Exercise⊲ 7. Using the Carne-Varopolous bound, show that a |Bn(x)| = o(n2/ logn) volume growth in a

bounded degree graph implies recurrence.

Exercise⊲ 8. Recall Blackwell’s proof for the Liouville property on Z
d. By studying how badly the coupling

may fail, show that any harmonic function f on Z
d with sublinear growth, i.e., with lim‖x‖2→∞ f(x)/‖x‖2 =

0, must be constant.

Exercise⊲ 9. Consider an irreducible Markov chain (V, P ).

(a) Assume that dTV

(

pn(x, ·)), pn(y, ·)
)

→ 0 as n → ∞, for any x, y ∈ V . Show that (V, P ) has the

Liouville property.

(b) Show that biased nearest-neighbor random walk on Z has the property of part (a), but nevertheless it

does not have the strong Liouville property: it has non-constant positive harmonic functions.

The following exercise can be regarded as a discrete analogue of the classical theorem that functions

satisfying the Mean Value Property are smooth. (Such a function cannot go up and down too much:

whenever there is an edge contributing something to ‖∇f‖, harmonicity carries this contribution far.)

Exercise⊲ 10 (Reverse Poincaré inequality). Show that there is a constant c = c(Γ, S) > 0 such that for any

harmonic function f on the Cayley graph G(Γ, S),

cR ‖∇f‖ℓ2(BR) ≤ ‖f‖ℓ2(B2R) ,

where BR is the ball of radius R.

Exercise⊲ 11. Can there exist a symmetric measure µ whose infinite support generates a finitely generated

non-amenable group Γ such that the spectral radius is ρ(µ) = 1?

Exercise⊲ 12. A group having property (T) is “well-defined”: if κ(Γ, S1) > 0 then κ(Γ, S2) > 0 for any pair

of finite generating sets for Γ, S1, S2.

Exercise⊲ 13.

(a) Give an Aut(Z2)-invariant and Z
2-ergodic percolation on Z

2 with exactly two ∞ clusters.

(b) Give a deletion-tolerant version of part (a). (Hint: try deleting edges from the previous construction

randomly with tiny probabilities.)

(c) Is there an ergodic deletion-tolerant Z2-invariant percolation on Z
2 with infinitely many infinite clus-

ters?

Similarly to generating functions in combinatorics, the partition functions of statistical physics contain

a lot of information about the model. The first signs of this are the following:

Exercise⊲ 14. Consider the Ising model with external magnetic field h on a finite graph G(V,E):

H(σ, h) := −h
∑

x∈V (G)

σ(x) +
∑

(x,y)∈E(G)

1{σ(x) 6=σ(y)} .

(a) Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H ] = − ∂

∂β
Eβ,h[H ] .

(b) The average free energy is defined by f(β, h) := −(β|V |)−1 lnZβ,h. Show that for the total average

magnetization M(σ) := |V |−1
∑

x∈V σ(x), we have Eβ,h[M ] = − ∂
∂h

f(β, h).

Exercise⊲ 15. On any transitive infinite graph, show that the Ising limit measures P+
β,h and P−

β,h are ergodic.
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