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Solve 6 of the 14 problems below by April 5. Beware: not all problems are of the same difficulty! You

can ask me for help if you get stuck with something.

Exercise⊲ 1.

(a) Prove that for Green’s function of simple randomwalk on a connected graph,G(a, b|z) :=
∑

n≥0
pn(a, b) z

n,

for any vertices x, y, a, b and any real z > 0,

G(x, y|z) < ∞ ⇔ G(a, b|z) < ∞ .

Therefore, by Pringsheim’s theorem, we have that the radius of convergence is independent of x, y.

(b) Consider a reversible Markov chain on an infinite V , with constant reversible measure. Show that, for

any u, v ∈ V ,

Pu[ τv < ∞ ] = Pv[ τu < ∞ ] .

Exercise⊲ 2. Let Tk,ℓ be the tree where, if vn ∈ Tk,ℓ is a vertex at distance n from the root, then

deg vn =

{

k if n is even

ℓ if n is odd .

Show the almost sure limiting speed limn→∞ d(X0, Xn)/n exists, and compute its value.

Exercise⊲ 3. Compute the spectral radius ρ(Tk,ℓ) for the previous tree.

Exercise⊲ 4. Give an example of an iid random walk on Z with symmetric jump distribution that is transient.

(Hint: simple random walk on Z
3 is transient.)

Exercise⊲ 5. Give symmetric weights w(i, i + 1) for i = 0, 1, 2, . . . such that the resulting continuous time

random walk on N, started from any vertex, almost surely reaches infinity in finite time. (I.e., the clock at

the edge (i, i+ 1) will ring at the arrival times of a Poisson process of intensity w(i, i + 1).)

Exercise⊲ 6. In First Passage Percolation on a graphG(V,E), we assign iid nonnegative random weights ωe to

the edges e ∈ E, then study the resulting random metric distω(·, ·) on V ×V , where the length of each edge is

not 1, but its weight. Let the graph be Z2, and let the weight distribution be P[ωe = a ] = 1−P[ωe = b ] = p,

with some fixed 0 < a < b < ∞ and p ∈ (0, 1). Let Ln := E
[

distω
(

(0, 0), (n, n)
) ]

. Show that limn Ln/n

exists and is positive and finite.

Exercise⊲ 7. Let p, α ∈ (0, 1) arbitrary, and let αn → α such that αnn ∈ Z for every n. Using Stirling’s

formula, show that

lim
n→∞

− logP
[

Binom(n, p) = αnn
]

n
= α log

α

p
+ (1 − α) log

1− α

1− p
.

When α = p, we are getting that P
[

Binom(n, p) = αnn
]

is only subexponentially small. In particular,

roughly how large is P
[

Binom(n, p) = ⌊pn⌋
]

?
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Exercise⊲ 8. The Hungarian Media Police has observed five possible TV-watching behaviours that people

may have: (1) never watches the TV; (2) watches only state channels; (3) regularly watches the TV; (4)

TV-addict; (5) brain-dead. The transitions between these states may be modelled by a Markov chain, with

the following transition matrix:
















1 0 0 0 0

0.6 0 0.4 0 0

0.3 0 0.3 0.1 0.3

0 0 0.4 0.4 0.2

0 0 0 0 1

















.

In particular, nobody becomes a state channel fan — one has to be born like that.

(a) If one starts as a state channel fan, what is the probability that they end up brain-dead?

(b) What is the expected time for a state channel fan to reach a terminal state: to quit TV completely, or

to become brain-dead?

Exercise⊲ 9. A simple version of the Tetris game (with no player): on the discrete cycle of length K,

unit squares with sticky corners are falling from the sky, at places [i, i + 1] chosen uniformly at random

(i = 0, 1, . . . ,K − 1, mod K). Let Rt be the size of the roof after t squares have fallen: those squares of the

current configuration that could have been the last to fall. Show that limt→∞ ERt = K/3.

Figure 1: Sorry, this picture is on the segment, not on the cycle.

Remark. If there are two types of squares, particles and antiparticles that annihilate each other when

falling on exactly on top of each other, this process is a SRW on a group, and the size of the roof has to

do with the speed of the SRW. Here, for K ≥ 4, the expected limiting size of the roof is already less than

0.32893K, but this is far from trivial. What’s the situation for K = 3?

Exercise⊲ 10. Recall (or look it up in Durrett’s book) that the reflection principle implies the following: if

{Xk}k≥0 is SRW on Z, and Mn = maxk≤n Xk, then

2P[Xn ≥ t ] ≥ P[Mn ≥ t ] .

Consider now SRW on the lamplighter group⊕ZZ2⋊Z, with the lazy generators Left, Right, Switch, Nothing,

each with probability 1/4 (but the exact probabilities will not matter).

(a) Prove that the return probability is at least pn(o, o) ≥ exp(−c
√
n), for some absolute constant c > 0.

(Note that the subexponential decay corresponds to the graph being amenable.)

(b) Find a smarter version of this strategy and prove pn(o, o) ≥ exp(−cn1/3), which is actually sharp.

Exercise⊲ 11. Recall that a bounded degree infinite graph satisfies the isoperimetric inequality IPd if |∂S| >
c|S| d−1

d for every finite S ⊂ V (G). In particular, IP∞ means non-amenable.

(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ǫ implies IP∞.)

(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP1+ǫ and is

recurrent for the simple random walk on it.
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Exercise⊲ 12. Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞, and

can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

Figure 2: Trying to create at least 7 neighbours for each country.

Exercise⊲ 13.

(a) Show that a bounded degree graph G(V,E) is nonamenable if and only if it has a wobbling paradoxical

decomposition: two injective maps α, β : V −→ V such that α(V ) ⊔ β(V ) = V is a disjoint union, and

both maps are at a bounded distance from the identity, or wobbling: supx∈V d(x, α(x)) < ∞. (Hint:

State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the

Hall-Rado theorem.)

(b) Deduce from part (a) that any bounded degree graph nonamenable graph has a Ponzi pyramid scheme

(bounded transactions over the edges, but uniformly positive gain per vertex).

z

y

x

Figure 3: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group

H3(Z) =

















1 x z

0 1 y

0 0 1






: x, y, z ∈ Z











.

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1, 0, 0 for x, y, z, then

H3(Z) is given by the presentation
〈

X,Y, Z
∣

∣ [X,Z] = 1, [Y, Z] = 1, [X,Y ] = Z
〉

, where [a, b] = aba−1b−1.

Exercise⊲ 14. We say that a bounded degree graph G(V,E) has d-dimensional volume growth if there exist

0 < c < C < ∞ such that crd < |Br(o)| < Crd for any o ∈ V and every large enough r > r∗(o).

(a) Show that if a group has a finitely generated Cayley graph with d-dimensional volume growth, then

all its Cayley graphs have d-dimensional volume growth.

(b) Show that the discrete Heisenberg group has 4-dimensional volume growth.
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