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This is a somewhat informal account of the main ideas, based on hand-written notes of Márton Balázs.

1 Definitions

In the Asymmetric Simple Exclusion Process on the cycle Zn or the line Z, particles have indepen-

dent Poisson clocks, and when the clock of a particle rings, it jumps to the right with probability p and

to the left with probability q = 1− p, provided that there is no other particle at the target vertex. In the

Totally Asymmetric Simple Exclusion Process, p = 1. This is what we will consider from now on,

although simple modifications of the argument would also give the more general case.

On Z, if we have infinitely many particles, then it needs a proof that this process is well-defined:

in any small time interval [t, t + ε], there are infinitely many clocks ringing, there is no first ring, so,

in order to decide if a certain jump can be made (whether the target vertex is empty), we might need

to trace back the history of jumps infinitely long, which is impossible. The proof that this cascade of

information coming from infinity does not happen relies on the fact that, almost surely, simultaneously

for all t, ε > 0, the particles whose clocks ring in the time interval [t, t+ ε] are broken into finite segments

by at least length 2 segments without any clocks ringing. This statement is not surprising, but not

completely trivial to prove (because we need it simultaneously for continuum many t and ε), and I will

now skip its verification.

Continuous time Markov processes are often described using their infinitesimal generator: if Ω is

the state space, ϕ : Ω −→ R a function, and {ω(t)}t≥0 is the Markov process, then

Lϕ(ω) := lim
ε→0

E
[
ϕ(ω(ε))

∣∣ ω(0) = ω
]
− ϕ(ω)

ε
.

Often, one can identify the action of L not on every function on X, but only on a suitably dense subspace

of functions, and hope that this contains all the information needed.

In the case of TASEP, the state space is Ω = {0, 1}Z, where ωi = 1 in a configuration ω ∈ Ω means

that there is a particle at i ∈ Z. We can restrict our attention to functions ϕ that depend only finitely

many coordinates ωi, say i ∈ {a, a + 1, . . . , b}. By the basic properties of the Poisson point process, for

very small ε, the probability that the clock of site i rings in [0, ε] is close to ε, and the probability that

there are more than one sites in {a− 1, a, . . . , b} that ring is at most Ca,b ε
2. Therefore,

Lϕ(ω) =

b∑
i=a−1

ϕ( . . . , ωi−1, i^0 , i+1
^
1 , ωi+2, . . .

)
− ϕ

(
. . . , ωi−1,

i
^
1 ,

i+1
^
0 , ωi+2, . . .

) (1− ωi+1)ωi .
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2 Stationary measures

We want to show that the Bernoulli(p) product measures, for any density p ∈ [0, 1], are stationary. There

are no other ergodic stationary distributions, but we will not prove that.

Let ω(0) be distributed according to Bernoulli(p) product measure. We want to show that the distri-

bution of ωt is the same. This is equivalent to Eϕ(ω(t)) = Eϕ(ω(0)) for all finitely supported ϕ, hence

we just need to show that EωLϕ(ω) = 0, where the notation means that the expectation is taken over ω.

Note that the first term of Lϕ(ω) can be rewritten as
∑
i ϕ(ω)(1− ωi)ωi+1, while the second term is

just −
∑
i ϕ(ω)(1− ωi+1)ωi. Therefore,

EωLϕ(ω) = Eω

b∑
i=a−1

ϕ(ω)
[
(1− ωi)ωi+1 − (1− ωi+1)ωi

]

= Eω

b∑
i=a−1

ϕ(ω)
[
ωi+1 − ωi

]
= Eω

[
ϕ(ω)(ωb+1 − ωa−1)

]
= Eωϕ(ω) ·Eω

[
ωb+1 − ωa−1

]
= Eωϕ(ω) · (p− p) = 0 ,

where we used the independence of ϕ(ω) from ωb+1 and ωa−1 to get the factorization of the expectations

in the last line.

3 Hydrodynamic limit

Our goal is to look at the movement of the collection of particles from far away, so that in the limit

it becomes the movement of a fluid, and to find some equation(s) that determine the evolution of the

density of this fluid. Since the microscopic particles move randomly, the macroscopic density evolution

could a priori be random, as well. Nevertheless, for the present case, it will turn out to be deterministic.

The density profile will be ρ : R × R≥0 −→ [0, 1]; the first coordinate X ∈ R stands for space, the

second coordinate T ∈ R≥0 stands for time. The starting density ρ(·, 0), a continuous function, will be

approximated on the lattice εZ, using randomly placed tiny ε-particles: we set ωεbX/εc(0) to be 1 with

probability ρ(X, 0), and 0 otherwise, independently from other choices. Due to the Law of Large Numbers,

if δ > 0 is so small that ρ(·, 0) is basically constant on [X,X+ δ], and we take ε > 0 much smaller than δ,

then the density of ε-particles in [X,X + δ] ∩ εZ will be close to ρ(X, 0) with large probability. That is,

this initial random microscopic configuration is a good approximation to the initial macroscopic density

profile.

Now, we need to scale not only space, but also need to speed up time, since it should not take for an

ε-particle a constant order of time to try and jump to the neighbouring ε-position, only ε. Therefore, we

will use the time scaling t = T/ε to get the microscopic time t, and hope that the random configuration

ωεbX/εc(T/ε) approximates well a nice macroscopic profile ρ(X,T ).

Using the above calculations for Lϕ, now for the function ϕ(ω) = ωi and any configuration ω(t), we

get

Lωi(t) = ωi−1(t)
(
1− ωi(t)

)
− ωi(t)

(
1− ωi+1(t)

)
.

We will use this for ωi(t) = ωεbX/εc(T/ε), and want to take expectation over the starting configuration

and the randomness in the dynamics: d
dtEωi(t) = ELωi(t). As we already used above, the continuity

of ρ(·, 0) implies that the ε-particles are locally distributed according to a Bernoulli product measure

of some almost constant density, which is almost stationary. Hence it is reasonable to assume that the
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states of neighbouring positions remain almost independent from each other as time evolves, and hence,

using d
dt = ε ddT ,

d

dT
EωεbX/εc(T/ε) =

1

ε
ELωεbX/εc(T/ε) ∼

ρ(X − ε, T )
(
1− ρ(X,T )

)
− ρ(X,T )

(
1− ρ(X + ε, T )

)
ε

.

Letting ε → 0, the left hand side should converge to d
dT ρ(X,T ), while some simple calculus (involving

adding and subtracting terms with ρ(X − ε, T ), ρ(X,T ) and ρ(X + ε, T )) shows that the right hand side

should converge to − d
dXH(ρ(X,T )), where H(ρ) = ρ(1− ρ).

That is, assuming that the microscopic densities converge to macroscopic density profiles as they

should, this limit profile satisfies the inviscid Burgers’ equation

d

dT
ρ(X,T ) +

d

dX
H(ρ(X,T )) = 0, where H(ρ) = ρ(1− ρ) .

There should be enough independence in the system that a Law of Large Numbers type argument implies

that this convergence indeed takes place, not only in expectation, but also in probability: for any smooth

test function ϕ : R −→ R of bounded support, and any δ > 0 and T ≥ 0, we have

lim
ε→0

P
[ ∣∣∣∑

i∈Z
ωεi (T/ε)ϕ(iε)−

∫
R
ρ(T,X)ϕ(X) dX

∣∣∣ > δ
]

= 0 .
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