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Abstract. We introduce some generalizations of a nice combinatorial problem, the central notion of

which is the so-called Disease Process. Let us color independently each square of an n×n chessboard black

with a probability p(n), this is a random initial configuration of our process. Then we have a deterministic

painting or expansion rule, and the question is the behaviour of the disease process determined by this

rule of spreading. In particular, how large p(n) must be for painting the whole chessboard black? The

main result of this paper is the almost exact determination of the threshold function in the fundamental

case of this Random Disease Problem. Further investigations are involved about the general randomized

and deterministic cases.

1. Introduction and main results

The following nice exercise might be well-known:

Each square of an 8 × 8 chessboard can have one of two states: “clean” or “weedy”.

We have some originally weedy squares, and each square of the board can change its state

in time according to the following expansion rule: a weedy square remains weedy forever,

and if previous day a square was clean then it stays clean if and only if at most one of its

neighbors was weedy. (Adjacency among the squares is defined by having a common edge.)

What is the minimum number of weedy squares one needs to make the whole chessboard

weedy? Unfortunately, we do not know the origin of this simple combinatorial puzzle.

Our goal is to consider some generalizations of this elementary problem.

We call an n×n chessboard with each of its squares with a specific state a configuration.

In the later parts of the paper we will refer to weedy squares as “black squares” and to

clean squares as “white squares”; so a configuration is just a colored board. We start with

an initial configuration and a painting rule that tells us which white squares become black

next day. The expansion rule in the original problem was the 2-neighbor rule: a white
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square becomes black iff it has at least 2 black neighbors.

The initial configuration and the rule define a finite or infinite sequence of configura-

tions. We call this sequence a disease process. The initial configuration is called contagious

or successful if the corresponding sequence has the all-weedy board as a member.

Now let G(n) be the minimal number of weedy (or black) squares in a contagious

configuration. The solution of the initial exercise is the following:

Fact. [Folklore] G(n) = n.

Proof. If we paint the squares of a diagonal black, it will be a contagious configuration,

so G(n) ≤ n. For a lower bound we can use the so-called invariant method: a suitable

invariant is the perimeter of the black part of the board, which can never increase if we

use our 2-neighbor painting rule. If we succeed in painting the whole chessboard black, we

will have a perimeter 4n, so we need at least n black squares at the beginning.

One can easily generalize the problem to the k-dimensional n × . . . × n chessboard

with an l-neighbor painting rule, where 1 ≤ l ≤ 2k. This case was considered in [P],

published in Hungarian. These results and the main ideas used are summarized in Section

6, Appendix.

Another way to modify the original problem is considering a random initial configu-

ration and investigate the random process we obtain. A natural problem is as follows:

Let us color each square black independently with probability p = p(n). We say that

the configuration we obtain in this way is p-random. “Being contagious” is a monotone

set property if the configurations are considered as ordered sets of black squares, and it is

clear that the probability

Q(p, n) = Pr[a p-random initial configuration is contagious]

is a strictly monotone increasing function of p. So it makes sense to define the critical

probability P (n) as Q(P (n), n) = 1/2, and the classical result of [BT] says that this P (n)

is a real threshold function: if p(n)/P (n) → 0 then Q(p(n), n) → 0, and if p(n)/P (n) → ∞

then Q(p(n), n) → 1. We call the problem of determining P (n) and other properties of

Q(p, n) the Random Disease Problem.

Of course one can easily extend this problem to the k-dimensional board with an

l-neighbor expansion rule. The corresponding threshold function is denoted by Pk,l(n), so

P (n) = P2,2(n).

The main result of this paper is giving almost exact bounds on P (n), namely we prove

that

Theorem 1. If ε > 0 is arbitrary and n is large enough then

1

200e2 ln n
< P (n) <

(log∗ n)1+ε

ln n
, (1)
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where log∗ n is a rather slowly growing function, i.e. it denotes the minimum number k

such that for the sequence a1 = 2 and ai+1 = 2ai the inequality ak ≥ n holds.

Our notions can be easily extended for the infinite board. Configurations and different

expansion rules are the same in this case. A configuration is contagious iff every square

becomes black at some point of the disease process, and strongly contagious iff the sequence

of the configurations contains the all-black plane. The p-random initial configuration is the

same as above: each square is painted black with probability p, independently from each

other. We can speak about a p(x, y)-random configuration, as well: we fix a coordinate

system with axes x and y (x, y ∈ Z), and the square with coordinates (x, y) is chosen to

be black with probability p(x, y).

The fact that P (n) → 0 as n → ∞ means that our disease depends not only on the

local properties of a configuration, on a bounded neighborhood of the squares. So an easy

corollary of our main theorem can be formulated as follows:

Theorem 2.

(a) Let P̂ (n) be arbitrary with P̂ (n)/P (n) → ∞. Then the p(x, y)-random initial

configuration is contagious with probability 1, where p(x, y) = P̂ (‖(x, y)‖) and ‖(x, y)‖ =

max{|x|, |y|}. Thus the p-random configuration is almost surely contagious for any p > 0

fixed.

(b) Starting with a p-random initial configuration (p > 0 fixed) the time t(p) needed

for the complete painting of the plane is almost surely infinite, i.e. the probability that a

p-random configuration is strongly contagious is 0.

Lots of other questions can be asked about our Disease Process, some of them, together

with a conjecture generalizing Theorem 1, we discuss in Section 5.

During the paper ‘w.h.p. (with high probability)’ will mean that ‘with a probability

tending to 1’. We also remark that we may and will assume, whenever this is needed, that

n is sufficiently large.

2. Proof of the Lower Bound on P (n)

In the disease process a black square remains black forever. Hence in the case of a

finite board our sequence of the configurations will be constant after a certain time. We call

this configuration the final configuration. What can be the final configuration? Obviously,

the black squares of the final configuration can be partitioned into groups, such that the

squares in each group form a rectangle, and the rectangles of different groups are far from

each other in the sense that no square is neighbored with two rectangles. In particular,

two rectangles will be far if they can be separated by a strip consisting of two neighboring

columns or rows of the board. We call this type of strips width 2 strips.

In some sense the reverse is also true: if the initial black squares can be covered by
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rectangles that are pairwise separated by width 2 strips then during the disease process all

the black squares stay in the covering rectangles. This can be easily proved by induction

on the time of the process.

So for the lower bound we will define a p(n) such that we will be able to show that

with high probability the black squares can be covered by rectangles, in such a way that

any two rectangles can be separated from each other with width 2 strips.

Let us divide the n × n chessboard into smaller rectangular pieces, subboards, of size

(L or L+ 1)× (L or L + 1), where L = bc1 ln nc, c1 will be determined later. We will have

bn/Lc2 many subboards.

First we show that with an appropriate choice for p = p(n) the p-random initial con-

figuration contains only L/10 many black squares in each subboard with high probability.

Lemma 1. Let p = c2(lnn)−1, L = bc1 ln nc. Then with a probability tending to 1

there will be no subboard with more than L/10 black initial squares, if c1 = 20 and

c2 = 1/(200e2).

Proof. Easy to give an upper bound on the probability of that an L × L chessboard

contains more than L/10 black squares of a p-random configuration:

(
L2

L/10

)
pL/10.

Thus the probability that there is no subboard with more than L/10 initial black squares

is at most:

( n

L

)2
(

L2

L/10

)
pL/10 < 2

n2

L2.5
(10eLp)L/10, (2)

where we used Stirling’s formula.

Our choice for c1 and c2 is nearly optimal for getting limn→∞ n2(10eLp)L/10 < ∞, so

by (2) we have obtained w.h.p. that there is no subboard of size L × L with more than

L/10 initial black squares.

A similar calculation handles the cases of subboards of size L × (L + 1), (L + 1) × L

and (L + 1) × (L + 1).

We take two subboards, B1 and B2, sharing a common vertical side. Let B be the

rectangle we obtain by gluing together the two subboards: B = B1 ∪ B2. We define the

following property of the initial configuration:

P(B) = “there are two horizontal width 2 strips in B1 ∪ B2 which contain

only white squares, one in the upper half of B and one in the lower half of B”

If B1 ∪B2 has property P we fix the two strips which proves this and call them lower

and upper channels.

4



One can easily define an analogous P∗ property for subboards, B1 and B2, sharing a

horizontal side:

P∗(B) = “there are two vertical width 2 strips in B1 ∪ B2 which contain

only white squares, one in the left half of B and one in the right half of B”

If B1 ∪ B2 has property P∗ we fix the two strips which proves this and call them left

and right channels.

We will prove that with the choice of Lemma 1 for p the initial p-random configura-

tion will have the property P(B) or P∗(B) for any pair B of two neighboring subboards

(depending whether their common side is vertical or horizontal), i.e. it has property P̂.

Lemma 2. If in a configuration C each subboard contains at most L/10 initial black

squares, then C has property P̂ .

Proof. By symmetry it is enough to prove P(B). There are at least (9/10)L white rows

in each subboard, hence in each half of a subboard there are at least (4/10)L − 1 white

rows. So if we have two neighboring subboards, then in each half of them there will exist

at least (3/10)L − 2 common white rows, thus 2 of them will be neighboring, if L is large

enough.

From now on we assume that our initial configuration has property P̂ . We are going

to prove that the configuration is not contagious by providing a cover of the initial black

squares by rectangles as promised.

Let B be an “inner subboard”. We define two partitions of B into five rectangles

with a border between them. B has four neighboring subboards: the upper, the right,

the lower and the left one. The left neighbor with B together have property P, hence

we have an upper and a lower channel. We will call these the left-upper and left-lower

channels. Similarly, we can define right-upper, right-lower, upper-left, upper-right, lower-

left and lower-right channels. Using four of these channels we can get a desired partition,

called leftist, and using the other four channels we get the other partition, called rightist.

The construction of a leftist partition of B is shown on the self-explanatory Figure 1, the

borders between the five rectangles are the four dark channels.
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Figure 1.

Now we combine the leftist and rightist partitions of the subboards alternating in

a chessboard manner. The result is a suitable cover: rectangles and all-white borders

providing a width 2 strip for any two rectangles to separate them (see Figure 2).

Figure 2.

Side and corner subboards can be covered naturally by rectangles between the channels

constructed in partitioning the inner subboards that are the neighbors of our outer ones.

Summarizing our construction:

Lemma 3. A configuration with property P̂ is not contagious.

Now the combination of Lemma 1,2,3 gives us the lower bound on P (n).

3. Proofs of the Upper Bound and the Whole Plane case

For the upper bound first of all we observe that in the initial configuration there are

quite long horizontal runs of pure black squares in each row of the chessboard. The proof

that the initial configuration is contagious with high probability then can be based on the
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existence of these initial runs. The method we use is a clever and efficient modification of

the one in a previous version of this paper; this improvement is due to N. Alon, [A].

Throughout this section we will use that

(1 − an)bn ∼ exp(−anbn)

if an < 1 and bn → ∞ such that a2
nbn → 0. We need this simple analytic fact in almost

every estimation of our probabilities, and we will not refer to it if the computations are

clear.

Split the first row into, say, n0.99 pairwise disjoint segments of equal size. (From now

on we can allow not to bother with the integer parts, this simplification causes no problem.)

In a p(n)-random initial configuration the probability that such a segment starts with a

run of f(n) black squares is p(n)f(n). If we plug in p(n) ≥ 1
ln n and f(n) = ln n

100 ln ln n we

get that this probability is at least n−1/100. Now we can easily estimate the probability

that a bunch of n0.04 consequetive segments does not contain a run of f(n) black squares:

this is less than exp(−n0.02). We can make n0.95 pairwise disjoint bunches, and so the

probability that there exists such a bunch without a long horizontal black run is less than

1 − exp
(
−e−n0.02

n0.95)
)

→ 0. Thus we have proved the following

Many Black-runs Lemma. For p(n) ≥ 1
ln n

the initial configuration contains at least

n0.95 horizontal black runs of length ln n
100 ln ln n each, where each such run starts from the

leftmost point of one of our disjoint segments of length n0.01, and the probability that this

does not hold is exponentially small.

Remark 1. More sophisticated methods give that the length of the longest black run in

a row of length n is µ(n) ∼ ln n
ln 1/p(n) w.h.p. For p(n) = 1/2 it was stated first by P. Erdős

and A. Rényi in [ErRn] from a little bit different point of view, and more precise results

can be found in [ErRv].

Remark 2. Actually, we need only “almost pure” black-runs instead of the pure ones,

namely we can allow single white squares between the black ones, as they will change into

black by the next day. But this relaxation does not help much, the expected length of the

longest run would increase only by a constant factor, and in the proof of the Upper Bound

this improvement means nothing.

If we pick a horizontal black run of length f(n), i.e. a black block of size 1 × f(n),

we can see in the neighboring row that the block “below” our black one will change into

black in at most f(n) days even if only one square is initially black in it. So a neighboring

block becomes black with probability q = q(n), where

1 − q(n) = (1 − p(n))
f(n)

. (3)

If this event with probability q does happen, then the same thing can be repeated for

the 2 × f(n) black block we have just obtained, and so on; we stop when we find a pure
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white block. So we get a run of black blocks with a random length Z, where

E[Z] = 1q(1 − q) + 2q2(1 − q) + . . . + (n − 1)qn−1(1 − q) >
1

2

q

(1 − q)
,

and for g(n) ≤ n we have

Pr[Z ≥ g(n)] ∼ q(n)g(n). (4)

As two special cases of (4) we can state the following two lemmas. For a detailed

verification one should use our analytic fact again and estimations like 1/(2k) ≤ 1 −

exp(−1/k) if k > 1.

Lemma 4. Suppose we have a black horizontal run of length l = ln n
k (with k > 1), and

suppose each square is now becoming black, randomly and independently, with probability

p(n) ≥ 1
ln n . Then the probability that the process described above creates a black vertical

run of length δ ln n
ln(2k)

is at least n−δ.

Lemma 5. Suppose we have a black horizontal run of length l = k ln n (with o(lnn) =

k > 1), and suppose each square is now becoming black, randomly and independently,

with probability p(n) ≥ 1
ln n

. Then the probability that the process creates a black vertical

run of length ekδ ln n
2 is at least n−δ.

Needless to say, the assertions of both lemmas hold if we replace vertical by horizontal

and vice versa. In this case the longer horizontal runs are created to the right of the

existing black blocks (see Figure 3). This method of enlarging the black blocks also yields

that we will be able to iterate these lemmas such that the realizations of the iteration steps

will be mutually independent of each other.

Figure 3.

Now we are ready to describe why a p(n)-random initial configuration is contagious if

p(n) = (log∗ n)1+ε

ln n and n is large enough. At the beginning by the Many Black-runs Lemma

in the first row we have n0.95 pairwise disjoint horizontal black runs of length ln n
100 ln ln n

each w.h.p., and these blocks are rather far away from each other. Note that here and

sometimes later, as well, we use only p(n) ≥ 1
ln n

. We do this only for the sake of simplicity,

and the usage of the stronger condition would not produce a better result. It also simplifies
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matters to note that in the last few iterations we will do, it will be convenient to have

each square become black again with probability 1/ lnn, so as to obtain independence.

Clearly, if every square first becomes black with probability (log∗ n)1+ε

ln n and then (if it is

white) becomes black with probability 1/ lnn then this still corresponds to having each

square becoming black with probability (1 + o(1)) (log∗ n)1+ε

ln n .

Define, now, for i ≥ 1,

δi =
ν

i1+ε/3
, k1 = 100 ln lnn,

ki+1 = ln(2ki)/δi =
1

ν
i1+ε/3 ln(2ki),

where ν > 0 is small enough to have
∑∞

i=1 δi = C(ν, ε) = C < 1
100 . If we consider one of

our long black runs then by applying Lemma 4 log∗ n+O(1) times repeatedly we conclude

that with a probability larger than
∏∞

i=1 n−δi = n−C > n−0.01 our iteration results a

horizontal black run of length greater than

ln n

(log∗ n)1+2ε/3
.

This claim can be easily verified by the following argument. If ln ki

2 > 1
ν i1+ε/3 for all

1 ≤ i ≤ log∗ n then ki+1 < ln2 ki, and by induction we have k(log∗ n) < c log∗ n. Otherwise

there exists a j ≤ log∗ n with ln
kj

2 < 1
ν j1+ε/3 and so kj+1 < (log∗ n)1+2ε/3, supposing that

n is large enough.

We have n0.95 samples of the random iteration process described above, so with very

high probability we will have in the resulting configuration at least, say, n0.9 pairwise

disjoint black horizontal runs of length at least ln n
(log∗ n)1+2ε/3 each.

Given these runs, let each square become black with probability (log∗ n)1+ε

ln n . Then we

get w.h.p. at least n0.8 black pairwise disjoint vertical runs of length, say, 100 lnn each,

these last computations are routine.

Define

k1 = 100, δi =
ν

i1+ε/3
,

ki+1 = δie
ki/2.

By repeatedly applying Lemma 5 we can now conclude that after some Θ(log∗ n) additional

iterations we get w.h.p. many (and hence at least one) horizontal black run of length at

least (ln n)3/2, and it is easy to see that this implies, after two more additional iterations,

that the whole grid becomes black with a probability tending to 1. (Note that until the

last two iterations we deal with runs of length less than n0.01, so the whole processes of

the iterations for our disjoint starting runs are mutually independent of each other.) This

completes the proof of the Upper Bound and Theorem 1.
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Proof of Theorem 2. (a) Fix P̂ (n) as in the statement, and let us first suppose that it

is a monotone decreasing function of n, just as P (n) was. Let Ω be the probability space

of the P̂ (‖(x, y)‖)-random configurations of the infinite square grid, and let Sn be the

2n × 2n square with vertices (−n,−n), (−n, n), (n,−n), (n, n). Define A to be the event

that not every square of the plane can be painted black with an initial configuration of Ω,

and let An be the event that there is a square in Sn remaining white forever. It is clear

that A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . and ∪∞
n=1An = A,

Pr[A] = lim
n→∞

Pr[An]. (5)

Now define the event Bn as follows: for all n ∈ N consider the subalgebra of Ω generated

by Sn, i.e. let Ωn be the probability space of the P̂ (‖(x, y)‖)-random configurations of Sn,

and let Bn be the event that the painting is not complete on Sn, forgetting about the

influence of the other part of the plane. Because of losing the possible positive influence

of the black squares of the plane outside the square Sn we have PrΩ[An] ≤ PrΩn
[Bn]. But

inside Sn we have ‖(x, y)‖ ≤ n, so

P̂ (‖(x, y)‖) ≥ P̂ (n) � P (n),

since P̂ (n) is monotone decreasing. Thus PrΩn
[Bn] → 0 as n → ∞, which proves our

statement because of (5), as Pr[A] = 0.

If P̂ (n) is not monotone decreasing then define P (n) = min1≤k≤n P̂ (n). Now P̂ (n) ≥

P (n), P (n) is already monotone decreasing, but still P (n)/P (n) → ∞, so we can repeat

the argument above, and we are done.

The second part of the statement (a) follows from our Upper Bound on P (n): looking

at the probability field of the p-random configurations we have p > P̂ (n) for n > np, so

PrΩn
[Bn] → 0 again.

(b) Note that if we have a pure white k×k square in the initial configuration then it takes

at least k−1 days to paint it black from the outside. Now divide the plane into subboards of

size k×k. Each of them is pure white in the initial configuration with a positive probability

(1 − p)k2

. So we can find a pure white one in the whole plane with probability 1. If the

exceptional event (namely, there is no initial pure white k×k subboard) is denoted by Ck,

then Pr[Ck] = 0 and

Pr[t(p) = ∞] ≥ Pr[∀k ∃ an initial white k × k square in the plane]

= 1 − Pr[∪∞
k=1Ck] ≥ 1 −

∞∑

k=1

Pr[Ck] = 1,

what proves our second statement.
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4. The general Pk,l(n) case

1. For a successful disease process the exact thing we need is to have at least one initial

black cube, so (1 − Pk,1(n))nk

= 1
2
, that is

Pk,1(n) ∼
ln 2

nk
. (6)

2. By the procedure of the Upper Bound we can obtain an all-black 2-dimensional n × n

face of our board, and then can continue enlarging the black blocks as long as we will, and,

moreover, the method of the Lower Bound can also be generalized, so it is not difficult to

prove that

Ω

(
1

(ln n)k−1

)
< Pk,2(n) <

(log∗)1+ε

lnn
. (7)

3. In the problem of Pk,k+1(n) the complete painting cannot be done if there exists a

2 × . . . × 2 white cube in the initial configuration. Thus dividing the board into (n/2)k

subboards containing 2k cubes each, one can easily see that

Pk,k+1(n) ≥ 1 −
O(1)

nk/2k . (8)

4. The complete painting is equivalent with the lack of two initial white cubes side-by-side

and the total lack of white cubes on the border, so an easy computation gives

Pk,2k(n) ≥ 1 −
O(1)

nk−1
. (9)

5. The simple methods above can be easily converted to the whole space case, so based

on (7) and (8):

Pk,l(∞) =

{
0, if l ≤ 2
1, if l ≥ k + 1,
?, if 3 ≤ l ≤ k,

(10)

i.e. the pk,l-random initial configuration of the infinite grid is a.s. contagious for l ≤ 2 with

any pk,l > 0 fixed, and it is a.s. contagious for l ≥ k + 1 only with Pk,l(∞) = 1. Our

conjecture on the middle cases is described after Question 2 in the next section.

5. Some open problems

As shown in the previous section, Pk,1(n) is very small and Pk,2k(n) is very large.

Thus a crucial question is the following: what is the maximal f(k) and minimal g(k) for

which Pk,f(k)(n) → 0 and Pk,g(k)(n) → 1? In the deterministic version we have

lim
n→∞

Gk,k(n)

nk
= 0 and lim inf

n→∞

Gk,k+1(n)

nk
≥

1

k + 1
,
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so we can feel that the case l = k has a special role. (See the Appendix; the exact value

of the second limit is a special case of the Conjecture 2 stated there.) Actually, we think

that the method of the lower bound in Theorem 1 can be generalized, and gives a sharp

result, which, together with the result Pk,k+1(n) → 1 (n → ∞) in Section 4, would imply

that k = f(k) < g(k) = k + 1.

Conjecture 1. For l ≤ k

Pk,l(n) =
1

(ln n)k−l+1−o(1)
. (11)

Of course, this conjecture is indeed a generalization of Theorem 1, because the bounds

of (1) can be interpreted as P2,2(n) = (ln n)−1+o(1). Moreover, it seems to be plausible to

conjecture that Θ
(
(lnn)−k+l−1

)
is the truth. In particular, we can ask the following:

Question 1. What is the exact order of Pk,l(n)? Is it true that Pk,l(n) ≤ Pk+1,l(n)?

The appearance of the threshold P (n) in the whole plane case is very natural, but is

Theorem 2 (a) really sharp?

Question 2. Is there a function P̂k,l(n) with P̂k,l(n)/Pk,l(n) → 0 for some k, l for which

the P̂k,l(‖x‖)-random initial configuration of the infinite k-dimensional square grid is al-

most surely contagious?

The similar question about the existence of an a.s. contagious Pk,l(∞)-random config-

uration with a fixed Pk,l(∞) < limn→∞ Pk,l(n) would be answered negatively if Conjecture

1 held, because it would imply Pk,k(∞) = 0, and in Section 4 we proved Pk,k+1(∞) = 1.

And finally, according to Theorem 2 (b), two questions about the time needed for a

complete painting:

Question 3. If we pick an individual square of the plane, what is the expected time of its

getting black, if the initial configuration is p(x, y)-random? Can anything be said about

the time needed in the finite chessboard problems?

6. Appendix — deterministic results from [P]

As we cited some results of the paper on the deterministic version, and it is available

only in Hungarian, perhaps it is worth saying few words about it.

Let Gk,l(n) denote the minimum number of the initial black squares needed for the

complete painting of the k-dim chessboard, if we follow the l-neighbor painting rule. Gen-

eralizing the method of our starting exercise we get a relevant result for l ≥ k:

Perimeter Lemma. Gk,l(n) ≥ l−k
l

nk + k
l
nk−1. Further, Gk,k(n) = nk−1.

With a simple geometric trick one can get a lower bound even for the cases l < k:
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Projection Lemma. Gk,l(n) ≥ Gk−1,l(n).

An upper bound comes from a recursive painting technique:

Recursive Lemma. Gk,l(n) ≤ fk(k)Gk,l(n − 2) + fk(k − 1)Gk−1,l−1(n − 2) + fk(k −

2)Gk−2,l−2(n− 2) + . . .+ fk(0)G0,l−k(n− 2), where fk(m) is the number of m-faces of the

k-dimensional cube.

Combining these results we have

Main Deterministic Theorem. For fixed k, l we have

Gk,l(n) =

{
Θ(nl−1), if 1 ≤ l ≤ k
Θ(nk), if k + 1 ≤ l ≤ 2k

(12)

For the first few special cases we have exact asymptotics, as well; some of them are

trivial, others need some tricky ideas:

Disease on the Square.

(a) G2,1(n) = 1

(b) G2,2(n) = n

(c) G2,3(n) ∼ 1
3n2

(d) G2,4(n) ∼ 1
2n2

Disease on the Cube.

(a) G3,1(n) = 1

(b) G3,2(n) = b 3
2nc

(c) G3,3(n) = n2

(d) G3,4(n) ∼ 1
4
n3

(e) 2
5
n3 ≤ G3,5(n) ≤ 3

7
n3

(f) G3,6(n) ∼ 1
2
n3

Finally, based on our results above and other ideas, we stated the following conjecture:

Conjecture 2. For k + 1 ≤ l ≤ 2k the Perimeter Lemma is sharp, i.e. Gk,l(n) = l−k
l

nk +

O(nk−1).

The case l < k seems to be hopeless at this time.
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