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Phase transition in the percolation ensemble

Given labels U(e) ∼ Unif[0, 1], the percolation p-clusters are the connected
components of the random graph ωp := {e ∈ E : U(e) 6 p}.

For small p close to 0, expect small p-clusters only. For p close to 1, there
is a unique giant p-cluster. Phase transition at some critical pc density.

Harris ‘60 and Kesten ‘80: pc(Z
2, bond) = pc(∆, site) = 1/2.
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Conformal invariance at criticality

Theorem (Smirnov ‘01). For critical site percolation on ∆1/n, if Q ⊂ C

is a piecewise smooth quad, then

lim
n→∞

P

[

ab←→ cd inside Q ∩∆1/n

]

exists, is strictly between 0 and 1, and conformally invariant. Value in 1× ρ
rectangle is Cardy’s formula.

c

d

a

b

Φ1−−→ Φ2−−→

2



Conformal invariance at criticality

Theorem (Smirnov ‘01). For critical site percolation on ∆1/n, if Q ⊂ C

is a piecewise smooth quad, then

lim
n→∞

P

[

ab←→ cd inside Q ∩∆1/n

]

exists, is strictly between 0 and 1, and conformally invariant. Value in 1× ρ
rectangle is Cardy’s formula.

These quad-crossings are good
enough to prove that exploration
interface converges to Schramm-
Loewner Evolution with κ = 6;
Camia-Newman ‘06, Smirnov ‘06.

Moreover, there is a full scaling limit: quad-crossing topology by Schramm-
Smirnov ‘10, and CLE(6) interface loop ensemble by Camia-Newman ‘06.
Other suggestions by Aizenman ‘99 and Sheffield ‘09.
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The near-critical percolation window

In a quad Q∩∆1/n, how small p1 < pc needs to be for all p1-clusters to be
small? For what p2 > pc will the system be well-connected?

Pp[LR(n)]

τ1−δ
δ (n)

p

1− δ

δ

For p > pc, correlation length: Lδ(p) := min{n : Pp

[

LR(n)
]

> 1− δ}.
For p < pc, Lδ(p) := min{n : Pp

[

LR(n)
]

< δ}.

Kesten ‘87: Near-critical window for percolation is given by number of
pivotal points at criticality: |τ(n)| ≍ 1/Epc|Pivn| = n−3/4+o(1).
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From critical to near-critical percolation

A site is pivotal in ω if flipping it changes the
existence of a left-right crossing. Equivalent to
having alternating 4 arms. For nice quads, there are
not many pivotals close to ∂Q, hence

Epc|Pivn| ≍ n2 α4(n) = n3/4+o(1) on ∆1/n.

If p − pc ≫ r(n) := 1/Epc|Pivn| = n−3/4+o(1), we have opened many
critical pivotals (clear in expectation, but also true in probability) — hence
already supercritical. But maybe many new pivotals appeared on the way,
so a pivotal switch happens earlier?
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New pivotals do appear. But will they be switched
as p is raised?

Stability by Kesten ‘87: multi-arm probabilities stay comparable inside this
regime, thus changes are not faster, r(n) is indeed the critical window.
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Digression: near-critical FK Ising

Kesten’s stability in the FK(p, q) random cluster model in the q = 2 Ising
case is completely false:

Duminil-Copin, Garban & P. (2013): expected number of pivotal edges at
pc is E|Pivn| = n13/24+o(1), but the critical window around pc is n−1 only.

Changes are faster because in any monotone coupling, pivotals are much

more likely to get opened, moreover, there are atoms: at certain p values
many edges get opened at once.
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The Near-Critical Ensemble Scaling Limit

Unif[0, 1] labels, percolation at level p on ∆1/n with p = pc + λr(n),
λ ∈ (−∞,∞), coupled together.

Theorem (GPS 2010, 13). On ∆1/n, as n → ∞, the NCESL exists in
the quad-crossing topology, is Markovian in λ, and is conformally covariant:
if the domain is changed by φ(z), then time is scaled locally by |φ′(z)|3/4.

Construction of limit process partially follows suggestion by Camia-Fontes-
Newman (2006). Built from the scaling limit of critical percolation, in two
main steps:

1) In critical percolation, can tell from quad-crossings how many ǫ-
macroscopic pivotals there are at different places. Get ǫ-pivotal measure,
measurable w.r.t. quad crossing topology.

2) Stability: can describe dynamics in λ by following how initial (λ = 0)
macroscopic pivotals change their color, using independent randomness for
these switches, with intensity measure being the ǫ-pivotal measures.
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The near-critical exploration interface
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The near-critical exploration interface
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Singularity of the massive scaling limit

Since having an average number of pivotals and switching one of them is
enough to establish a connection, we have:

Lemma. For λ > 0, exists cλ > 0 s.t. Pλ

[

LR([0, u]2)
]

> 1/2 + cλu
3/4.

Now, divide [0, 1]2 into small 1
k × 1

k squares. Let

Ak :=

{

k2

2
+

cλ
2
k5/4 6 small squares are crossed

}

.

Then Pλ[Ak] = 1 − o(1), while P0[Ak] = o(1), since drift k5/4 is larger

than the normal fluctuation
√
k2. Hence singularity of quad-crossing limit.

Similar but harder argument by Nolin-Werner ‘08 proves singularity of the
exploration interface:

The interface meets k7/4 small squares, each with drift k−3/4 “to the right”.
Resulting drift k is larger than normal fluctuation k7/8.

Note. Singularity is expected for κ > 4, absolute continuity for κ 6 4.
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Guess for the Loewner driving function

Expect “of course”
dWt =

√
6 dBt + dAt ,

where Bt is Brownian motion and At is a monotone drift, increasing for
λ > 0, decreasing for λ < 0.

√
6 dBt because zooming in spatially is

equivalent to moving λ closer to 0, while monotone At seems natural.

The left boundary to right boundary ratio, in terms of half-plane harmonic
measure from infinity, is typically larger for the near-critical interface than
for the critical. But not always!
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Wt is indeed a sub-martingale

EWt is expected difference between harmonic measure of left side and right
side. Measure it with percolation instead of random walk, with reversed
sides!

+

_
+

_

_

8

+

+
++

_
_

_

14



Wt is indeed a sub-martingale
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γ1 γ2
A + +
B − +/−
C +/− +
C’ − +
D − −

That is, W (γ1) | γ1, γ2, ω 6 W (γ2) | γ1, γ2, ω

Implies EW (γ1) 6 EW (γ2), but not E[W (γ1) | γ1] 6 E[W (γ2) | γ2].
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Guess for the Loewner drift term

So,
dWt =

√
6 dBt + dAt ,

where At is a monotone drift, increasing for λ > 0, decreasing for λ < 0.

In ρ-neighborhood of the tip γ(t), expected number of pivotals is ≍ r(nρ)−1.
So, expected change in crossing probability from pc to pc+λr(n) is ≍ λρ3/4.
So, expected exit position γ(t+ dt) deviates by ≍ λρ3/4 degrees.
Under Loewner map gt, radius ρ becomes roughly ρ′, on the order of (dt)1/2.
After a LLN:

dAt = c λ ρ3/4ρ′ = c′ λ |dγt|3/4 |dt|1/2 .
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Could this SDE make sense?

For what d1 and d2 could
∑

i |γ(ti+1)−γ(ti)|d1|ti+1− ti|d2 converge, where
step-size |ti+1 − ti| = δ → 0?

The hull created from t to t+ δ is of size ≍
√
δ. Under the inverse Loewner

map ft, size is roughly
√
δ|f ′

t(Wt + i
√
δ)|. Hence the sum of the δ−1 steps

is about
δ−1

E
[

|f ′
1(W1 + i

√
δ)|d1

]

δd1/2 δd2 .

Assuming that derivative exponents are the same as for SLE(6), the sum
will be of constant order iff

14 + 4(d1 + d2)
2 = 15d1 + 18d2 .

Also, the dimension count should be fine: 1 = −3/4 + d1 + 2d2.

These two equations have two solutions: (d1, d2) = (3/4, 1/2) and
(d1, d2) = (7/4, 0). We had the first. What is the second?
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Open problems on massive limits

1. Prove that the Loewner driving function formula holds for the scaling
limit curve. Prove uniqueness for this self-interacting SDE.

2. Is it useful for anything? E.g., near-critical Cardy’s formula? Tail is
found in second part of this talk.

3. Do locality + rotation and translation invariance + Markovian property
characterize the near critical interface up to a choice of λ?

4. Does (d1, d2) = (7/4, 0) describe anything meaningful? Maybe related
to natural parameterization of SLE(6)?

5. Relationship of our formula to the Makarov-Smirnov (ICMP 2009)
formulas obtained from massive harmonic observables?

6. We are very far from building a near-critical scaling limit for FK Random
Cluster models using the critical scaling limit.

7. How many massive versions of SLE(κ) could are there be?
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The tail of the near-critical crossing probability

By NCESL established by GPS (2013),

f(λ,Q) := lim
n→∞

Ppc+λr(n)[LRnQ]

exists, and is conformally covariant. In particular, for any scaling factor
ρ > 0,

f(ρλ,Q) = f(λ, ρ4/3Q) .

Already from Kesten (1987):

lim
λ→−∞

f(λ,Q) = 0 , and lim
λ→∞

f(λ,Q) = 1 .

Theorem. As λ→ −∞, we have f(λ, [0, 1]2) = exp
(

−Θ
(

|λ|4/3
))

.

Asked by Ahlberg & Steif (2014), who studied what kind of scaling limits
arise for threshold functions of monotone Boolean functions.
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The tail of the dynamical crossing probability?

Another motivation is Hammond, Mossel & P. (2012): resample each site
at rate r(n), keeping the configuration stationary, and look at

g(t,Q) := lim
n→∞

P
[

LRnQ does not hold at any moment in [0, t]
]

.

Again, this limit exists and is conformally covariant by GPS (2013).

Using spectral computations and a dynamical FKG-inequality: there exists
c > 0, and for every K > 0 some cK > 0, such that for all t > 0,
exp(−c t) 6 g(t, [0, 1]2) 6 cKt−K .
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Proof of the near-critical tail

Quite similar to Duminil-Copin’s proof (2013) that planar percolation Wulff
crystal is asymptotically circular as pց pc.

By the scaling covariance, need to show

f
(

− 1, [0, λ4/3]2
)

= exp
(

−Θ
(

λ4/3
)

)

,

as λ→∞. For this, the main step is to prove in the scaling limit measure
Pλ=−1 that there exist some L > 0 such that, for any x ∈ Z2,

Pλ=−1

[

BL(0)←→ BL(Lx)
]

= exp
(

−Θ(‖x‖)
)

.
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