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Abstract

In earlier papers we changed the concept of the inner product to a more
general one, to the so-called Minkowski product. This product changes
on the tangent space hence we could investigate a more general structure
than a Riemannian manifold. Particularly interesting such a model when
the negative direct component has dimension one and the model shows
certain space-time character. We will discuss this case here. We give a
deterministic and a non-deterministic (random) variant of a such a model.
As we showed, the deterministic model can be defined also with a “shape
function”.
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1 Introduction

In this paper we construct a model which based on the well-known concept
of Minkowski space. We generalize it in two manners. First, we change the
concept of inner product to a more general concept of product which we call
Minkowski product. This product changes on the tangent space hence we could
investigate a more general structure than a Riemannian manifold. Particularly
interesting such a model when the negative direct component has dimension
one and the model shows certain space-time character. We will discuss this case
here. Secondly we give a non-deterministic (random) variation of our model.
We prove that in a finite range of time the random model can be approximated
by a deterministic model. Thus, in calculations the deterministic model has an
important role. More conveniently, it can be defined by the concept of a “shape
function”. As an example it can be shown the validity of the equalities of special
relativity theory. We shall public it in a forthcoming paper since the scope of
the present one is still too high.

This paper is based on three previous papers of the author ([7], [8], [9]).
These contain some definitions and theorems which will be generalized here and
some others which we mention and use now. We now give a short summary for
better understandability.
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1.1 Generalized space-time model

The following definition was introduced in [7] to give a common root of the the-
ories of s.i.p. (semi-inner product) and i.i.p. (indefinite-inner product) spaces,
respectively.

Definition 1 The semi-indefinite inner product (s.i.i.p.) on a complex vector
space V is a complex function [x, y] : V ×V −→ C with the following properties:

1 [x+ y, z] = [x, z] + [y, z] (additivity in the first variable),

2 [λx, y] = λ[x, y] for every λ ∈ C (homogeneity in the first variable),

3 [x, λy] = λ[x, y] for every λ ∈ C (homogeneity in the second variable),

4 [x, x] ∈ R for every x ∈ V (the corresponding quadratic form is real-valued),

5 if either [x, y] = 0 for every y ∈ V or [y, x] = 0 for all y ∈ V , then x = 0
(nondegeneracy),

6 |[x, y]|2 ≤ [x, x][y, y] holds on non-positive and non-negative subspaces of V,
respectively. (the Cauchy-Schwartz inequality is valid on positive and neg-
ative subspaces, respectively).

A vector space V with a s.i.i.p. is called an s.i.i.p. space.

The interest in s.i.i.p. spaces depends largely on the example spaces given by
the s.i.i.p. space structure.
Example 1: We conclude that an s.i.i.p. space is a homogeneous s.i.p. space
if and only if the property of positivity (cf. 4 in Definition 1) also holds for
the product. An s.i.i.p. space is an i.i.p. space if and only if the s.i.i.p. is an
antisymmetric product. It is clear that both of the classical ”Minkowski spaces”
can be represented either by an s.i.p or by an i.i.p., so automatically they can
also be represented as an s.i.i.p. space. Two given s.i.p. spaces can be combined
into a third one. More precisely, the following statement can be proved:

Lemma 1 ([7]) Let (S, [·, ·]S) and (T,−[·, ·]T ) be two s.i.p. spaces. Then the
function [·, ·]− : (S + T )× (S + T ) −→ C defined by

[s1 + t1, s2 + t2]
− := [s1, s2]− [t1, t2]

is an s.i.p. on the vector space S + T .

We can define also an another product yielding a more interesting structure
on V .

Definition 2 ([7]) Let (V, [·, ·]) be an s.i.i.p. space. Let S, T ≤ V be posi-
tive and negative subspaces, where T is a direct complement of S with respect
to V . Define a product on V by the equality [u, v]+ = [s1 + t1, s2 + t2]

+ =
[s1, s2] + [t1, t2], where si ∈ S and ti ∈ T , respectively. Then we say that the
pair (V, [·, ·]+) is a generalized Minkowski space with Minkowski product [·, ·]+.
We also say that V is a real generalized Minkowski space if it is a real vector
space and the s.i.i.p. is a real valued function.

Remark:
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1. The Minkowski product defined by the above equality satisfies properties
1-5 of the s.i.i.p.. But in general, property 6 does not hold. For this, see
the corresponding example in [7].

2. By Lemma 1 the s.i.p.
√
[v, v]− is a norm function on V which can give

an embedding space for a generalized Minkowski space. This situation
is analogous to the situation when a pseudo-Euclidean space is obtained
from a Euclidean space by the action of an i.i.p.

Definition 3 ([7]) Let V be a generalized Minkowski space. Then we call a
vector space-like, light-like, or time-like if its scalar square is positive, zero, or
negative, respectively. Let S,L and T denote the sets of the space-like, light-like,
and time-like vectors, respectively.

In a finite dimensional, real generalized Minkowski space with dimT = 1
we can geometrically characterize these sets of vectors. Such a space is called
generalized space-time model. In this case T is a union of its two parts, namely

T = T + ∪ T −,

where with respect a basis with time-like vector en ∈ T

T + = {s+ t ∈ T | where t = λen for λ ≥ 0} and

T − = {s+ t ∈ T | where t = λen for λ ≤ 0}.
It can be proved that T is an open double cone with boundary L, and the
positive part T + (resp. negative part T −) of T is convex.

1.2 Convexity, fundamental forms

Let S be a continuously differentiable s.i.p. space (see in [7]), V be a general-
ized space-time model and F a hypersurface. We shall say that F is a space-like
hypersurface if the Minkowski product is positive on its all tangent hyperplanes.
The objects of this section are the convexity, the fundamental forms, the con-
cepts of curvature, the arc-length and the geodesics. We define these concepts
with respect to a generalized space-time model. With respect to a pseudo-
Euclidean or a semi-Riemann space these definitions can be found e.g. in the
notes [3] and the book [2], respectively.

Definition 4 ([3]) We say that a hypersurface is convex if it lies on one side
of its each tangent hyperplanes. It is strictly convex if it is convex and its each
tangent hyperplane contains precisely one point of the hypersurface.

In a Euclidean space the first fundamental form is a positive definite quad-
ratic form induced by the inner product of the tangent space.

In our generalized space-time model the first fundamental form is defined by
the scalar square of the tangent vectors with respect to the Minkowski product
restricted to the tangent hyperplane.

Let F be a hypersurface defined by the function f : S −→ V . Here

f(s) = s+ f(s)en

denotes a point of F . The curve c : R −→ S define a curve on F . We assume
that c is a C2-curve.
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Definition 5 ([8]) The first fundamental form at the point (f(c(t)) of the hy-
persurface F is the product

If(c(t)) := [D(f ◦ c)(t), D(f ◦ c)(t)]+.

The variable of it is a tangent vector of a variable curve c lying on F through
the point (f(c(t)). We can see that the first fundamental form is homogeneous
of the second order but (in general) it has no bilinear representation.

We introduce the unit normal vector field n0 as

n0(c(t)) :=

{
n(c(t)) if n light-like vector
n(c(t))√

|[n(c(t)),n(c(t))]+|
otherwise.

Definition 6 ([8]) The second fundamental form at the point f(c(t)) is defined
by one of the equivalent formulas:

II := [D2(f ◦ c)(t), (n0 ◦ c)(t)]+(f◦c)(t) = −[D(f ◦ c)(t), ·]+′
D(n0◦c)(t)((n

0 ◦ c)(t)).

If we consider a 2-plane in the tangent hyperplane then it has a two dimen-
sional inverse image in S by the regular linear mapping Df . The plane we get
is a normed plane in which we can consider an Auerbach basis {e1, e2}.
Definition 7 ([8]) The sectional principal curvature of a 2-section of the tan-
gent hyperplane in the direction of the 2-plane spanned by

{u = Df(e1) and v = Df(e2)}

are the extremal values of the function

ρ(D(f ◦ c)) := IIf◦c(t)
If◦c(t)

,

of the variable D(f ◦ c). We denote by ρ(u, v)max and ρ(u, v)min these quanti-
ties. The sectional (Gauss) curvature κ(u, v) (at the examined point c(t)) is the
product

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min.

In the case of a symmetric and bilinear product, both of the fundamental forms
are quadratic ones and the sectional principal curvatures are attained in orthog-
onal directions.

Ricci and scalar curvatures can be defined as well.

Definition 8 ([8]) The Ricci curvature Ric(v) in the direction of the tangent
vector v at the point f(c(t)) is

Ric(v)f(c(t)) := (n− 2) · E(κf(c(t))(u, v))

where κf(c(t))(u, v) is the random variable of the sectional curvatures of the
two planes spanned by v and a random u of the tangent hyperplane holding the
equality [u, v]+ = 0. We also say that the scalar curvature of the hypersurface
f at its point f(c(t)) is

Γf(c(t)) :=

(
n− 1

2

)
· E(κf(c(t))(u, v)).

The following special cases are important.
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1.2.1 Imaginary unit sphere

The set H := {v ∈ V |[v, v]+ = −1} is called the imaginary unit sphere of the
generalized space-time model. H+ is the connected part of H defined by the
function

h : s 7−→
√
1 + [s, s].

The geometric properties of H+, using the differential geometry of a gener-
alized space-time model, can be listed as follows:

• Let S be a continuously differentiable s.i.p. space, then (H+, ds2) is a
Minkowski-Finsler space (see this concept in [7]).

• H+ is always convex. It is strictly convex if and only if the s.i.p. space S

is a strictly convex space.([8])

• If S is a continuously differentiable s.i.p. space then H+ has constant
negative curvature.([8])

We can regard H+ as a natural generalization of the usual hyperbolic space.
Thus we can say that H is a premanifold with constant negative curvature and
H+ is a prehyperbolic space.

1.2.2 de Sitter sphere

The set G is the collection of those points of a generalized space-time model
which has scalar square equal to one. In a pseudo-Euclidean space this set was
called the de Sitter sphere. The tangent hyperplanes of the de Sitter sphere
are pseudo-Euclidean spaces. G is not a hypersurface but we can restrict our
investigation to the positive part of G defined by

G+ = {s+ t ∈ G : t = λen where λ > 0}.

We remark that the local geometries of G+ and G topologically identical. G+

is a hypersurface defined by the function

g(s) = s+ g(s)en,

where
g(s) =

√
−1 + [s, s] for [s, s] > 1.

The results on G+ are the following:

• G+ and its tangent hyperplanes are intersecting, consequently there is no
point at which G would be convex.([8])

• The de Sitter sphere G has constant positive curvature if S is a continu-
ously differentiable s.i.p space.([8])

On the basis of this theorem we can tell about G as a premanifold of constant
positive curvature and we may say that it is a presphere.
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1.2.3 The light cone

The inner geometry of the light cone L can be determined, too. Let L+ be the
positive part of the double cone determined by the function:

l(s) = s+
√
[s, s]en.

• The light cone L+ has zero curvatures if S is a continuously differentiable
s.i.p space.([8])

Hence L is a premanifold with zero sectional, Ricci and scalar curvatures,
respectively. We may also say that it is a pre-Euclidean space.

1.2.4 The unit sphere of the s.i.p. space (V, [·, ·]−)
The set K collects the points of the unit sphere of the embedding s.i.p. space. In
a pseudo-Euclidean space it is the unit sphere of the embedding Euclidean space.
Its tangent hyperplanes are pseudo-Euclidean spaces. K is not a hypersurface
but we can also restrict our investigation to its positive part defined by

K+ = {s+ t ∈ K : t = λen where λ > 0}.

Hence it can be defined by the function:

k(s) = s+ k(s)en,

where
k(s) =

√
1− [s, s] for [s, s] < 1.

The basic properties of K+ are

• K+ is convex. If S is a strictly convex space, then K+ is also strictly
convex.

• The fundamental forms are

I = [ċ, ċ]−

(
[ċ(t), c(t)] + [c(t), ·]′

ċ(t)(c(t))
)2

4(1− [c(t), c(t)])
= [ċ, ċ]− [ċ(t), c(t)]2

1− [c(t), c(t)]
,

II =
1√

| − 1 + 2[c(t), c(t)]|

(
−[ċ(t), ċ(t)] +

[ċ(t), c(t)]2

−1 + [c(t), c(t)]

)
=

= − 1√
| − 1 + 2[c(t), c(t)]|

I.

• The principal, sectional, Ricci and scalar curvatures at a point k(c(t)) are

ρmax(u, v) = ρmin(u, v) = − 1√
| − 1 + 2[c(t), c(t)]|

,

κ(u, v) := [n0(c(t)), n0(c(t))]+ρ(u, v)maxρ(u, v)min =
1

−1 + 2[c(t), c(t)]
,

Ric(v)k(c(t)) := (n− 2) ·E(κk(c(t))(u, v)) =
n− 2

−1 + 2[c(t), c(t)]
,
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and

Γk(c(t)) :=

(
n− 1

2

)
·E(κf(c(t))(u, v)) =

(
n−1
2

)

−1 + 2[c(t), c(t)]
,

respectively.

• Finally we remark that at the points of K+ having the equality

2[c(t), c(t)] = 1

all of the curvatures can be defined as in the case of the light cone and
can be regarded as zero.

2 The absolute time

We assume that there is an absolute coordinate system of dimension n in which
we are modeling the universe by a time-space model. The origin is a generalized
space-time model in which the time axis plays the role of the absolute time. Its
points are unattainable and immeasurable for me and the corresponding line is
also in the exterior of the modeled universe. We note that in the Minkowskian
space-time it was assumed only on the axes determining the space-coordinates.
This means that in our model, even though the axis of time belongs to the double
cone of time-like points, its points do not belong to the modeled universe. In a
fixed moment (with respect to this absolute time) the collection of the points
of the space can be regarded as an open ball of the embedding normed space
centered at the origin that does not contain the origin. The omitted point is
the origin of a coordinate system giving the space-like coordinates of the world-
points with respect to our time-space system. Since the points of the axis of
the absolute-time are not in our universe there is no reference system in our
modeled world which determines the absolute time.

First we need a probability measure which describes the change of the shape
of the model. We regard this change random in the absolute time and as a
perturbation of normed spaces which are “almost Euclidean space”.

2.1 The probability space of norms

The distance of two normed spaces can be measured by the Hausdorff distance
of their unit balls. This motivated the investigations of [9]. We recall it in this
section. Every norm function of a real, finite-dimensional normed space V can
be defined by its unit ball. In a Cartesian coordinate system of the Euclidean
vector space (V, 〈·, ·〉) with origin O it is convex body centrally symmetric about
O (shortly O-symmetric). Such bodies form a closed proper subset K0 of the
space of convex bodies of the Euclidean vector space. It is known that Hausdorff
distance (denoted by δH) is a metric on this space and with this metric the space
(K, δh) is a locally compact one (see [10],[11]). In [1] it was proved that there
is no positive σ-finite Borel measure on it which is invariant with respect to
all isometries of (K, δh) into itself. In paper [6] was proved that each σ-finite
rotation and translation invariant Borel measure on (K, δh) is the vague limit
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of such measures and that each σ-finite Borel measure on (K, δh) is the vague
limit of measures of the form ∞∑

i=1

αnδKn
,

where {Kn , n ∈ N} is a countable, dense subset of (K, δh), (αn) is a sequence of

positive real numbers for which
∞∑
i=1

αn < ∞ and δKn
denote the Dirac measure

concentrated at Kn.
In [9] it was proved that on the space of centrally symmetric convex bodies

there can be given such a geometric probability measure P which has addi-
tionally the following property: its pushforward measure α0(K)−1(P ) by the
thinness mapping

α0(K) =
d(K)

w(K) + d(K)

has truncated normal distribution on the interval [ 12 , 1). (Here w(K) and d(K)
are the width and the diameter of the body K, respectively.) This measure was
constructed step by step in the following manner:

Let BE be the unit ball of the embedding Euclidean space and let

K1
0 := {K ∈ K0 | δh(K,BE) = 1}

be the unit sphere around BE with respect to the Hausdorff metric. The space

K̃1
0 collects the representatives of the classes of congruent bodies of the space

K1
0.

First, we constructed a measure on the space K̃1
0 such that its pushforward

measure by the function w has uniform distribution. Than proved that the
direct product of this measure with the Haar measure of the group of orthogonal
transformations has analogous property; its pushforward measure by α0(K)
uniformly distributes on its range interval. Finally, considering an arbitrary
probability measure on [0,∞) and multiplying it with the one constructed above,
we get a probability measure on K0. From this measure by a suitable density
function we can obtain a new probability measure such that its pushforward
measure by the function α0 has truncated normal distribution (see Theorem 2,
Theorem 3 in [9]).

Definition 9 We say that the a probability measure is a geometric measure
with normal pushforward if the following properties hold

• it is invariant under orthogonal transformations of the space of norms;

• the set of polytopes, the set of smooth bodies and a neighborhood have zero
measure, positive measure and positive measure, respectively;

• there is a natural function on the space of norms to an interval of the
real line for which the pushforward of the measure has truncated normal
distribution of its range interval. (Of course here we assume that the mean
of the pushforward distribution is attained at the image of the unit ball of
the Euclidean space.)

In this paper we use always geometric measure with normal pushforward.
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2.2 Deterministic and random time-space models

In our probabilistic model (based on a generalized space-time model) the ab-
solute coordinates of points are calculated by a fixed basis of the embedding
vector space. The vector s(τ) means the collection of the space-components
with respect to the absolute time τ , the quantity τ has to be measured on a
line T which orthogonal to the linear subspace S of the vectors s(τ). (The or-
thogonality was considered as the Pythagorean orthogonality of the embedding
normed space.) Consider a fixed Euclidean vector space with unit ball BE on S

and use its usual functions e.g. volume, diameter, width, thinness and Hausdorff
distance. With respect to the moment τ of the absolute time we have a unit
ball K(τ) in the corresponding normed space {S, ‖ · ‖τ}. The modeled universe
at τ is the ball τK(τ) ⊂ {S, ‖ · ‖τ}. The shape of the model at the moment
τ depends on the shape of the centrally symmetric convex body K(τ). The
center of the model is on the axis of the absolute time, it cannot be determined.
For calculations on time-space we need further smoothness properties on K(τ).
These are

• K(τ) is a centrally symmetric, convex, compact, C2 body of volume
vol(BE).

• For each pairs of points s′, s′′ the function

K : R+ ∪ {0} → K0 , τ 7→ K(τ)

holds the property that [s′, s′′]τ : τ 7→ [s′, s′′]τ is a C1-function.

Definition 10 We say that a generalized space-time model endowed with a
function K(τ) holding the above properties is a deterministic time-space model.

The main subset of a deterministic time-space model contains the points
of negative norm-square. This is the set of time-like points and the upper
connected sheet of the time-like points is the modeled universe. The points of the
universe have positive time-components. We denote this model by (M,K(τ)) .

We remark that in the two-dimensional case for each τ , K(τ) is a segment
with length two, thus our model is the 2-dimensional space-time. On the other
hand, with n greater than or equal to 3, the two-dimensional space-time sections
of our general space-time bounded by general (non-convex) curves symmetric
about the time-axis (see on Fig.1).

Of course, we should choose the function K(τ) “randomly”. To this pur-
pose we use Kolmogorov’s extension theorem (or theorem on consistency, see in
[12]). This says that a suitably ”consistent” collection of finite-dimensional dis-
tributions will define a probability measure on the product space. The sample
space here is K0 with the Hausdorff distance. It is a locally compact, separable
(second-countable) metric space. By Blaschke’s selection theorem (see in [10])
K is a boundedly compact space so it is also complete. It is easy to check that
K0 is also a complete metric space if we assume that the non-proper bodies
(centrally symmetric convex compact sets with empty interior) also belong to
it. In the remaining part we regard such a body as the unit ball of a normed
space of smaller dimension. Finally, let P be the probability measure defined in
Subsection 3.1. In every moment we consider the same probability space (K0, P )
and also consider in each of the finite collections of moments the corresponding
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Figure 1: The shape of the universe.

product spaces ((K0)
r, P r) . The consistency assumption of Kolmogorov’s the-

orem now automatically holds. By the extension theorem we have a probability
measure P̂ on the measure space of the functions on T to K0 with the σ-algebra
generated by the cylinder sets of the space. The distribution of the projection
of P̂ to the probability space of a fix moment is the distribution of P .

Definition 11 Let (Kτ , τ ≥ 0) be a random function defined as an element of

the Kolmogorov’s extension
(
ΠK0, P̂

)
of the probability space (K0, P ). We say

that the generalized space-time model with the random function

K̂τ := n

√
vol(BE)

vol(Kτ )
Kτ

is a random time-space model. Here α0(Kτ ) is a random variable with truncated
normal distribution and thus (α0(Kτ ) , τ ≥ 0) is a stationary Gaussian process.
We call it the shape process of the random time-space model.

It is clear that a deterministic time-space model is a special trajectory of the
random time-space model. The following theorem is essential.

Theorem 1 For a trajectory L(τ) of the random time-space model, for a finite
set 0 ≤ τ1 ≤ · · · ≤ τs of moments and for a ε > 0 there is a deterministic
time-space model defined by the function K(τ) for which

sup
i

{ρH (L(τi),K(τi))} ≤ ε.

10



Proof: Since the set of centrally symmetric convex bodies with C∞-boundary
is dense in the set of centrally symmetric convex bodies (see [17]), we can choose,
for every τi, a body K(τi) ∈ K0 with C2 boundary with the required volume
for which

ρH (L(τi),K(τi)) ≤ ε

holds. We shall prove that these bodies can be connected with such a trajectory
of the random time-space model for which the function K holds the properties
of the defining function of a deterministic time-space model. The impact of
the K function on a fix vector s ∈ S can be checked on the vary of its norm.
Using the Minkowski functional, we can get the norm of a vector s as the
length of a fixed segment relative to the length of the diameter of the unit ball
intersected by the half-line containing the segment [O,P ]. (Here O and P are
the origin and the endpoint of the vector s, respectively.) This means that we
can determine of the vary of the length of a diameter of a fixed direction if we
vary the shape of the body by the time. Consider a representation of the body
by polar coordinates with respect to its center O. Since the boundary of the
body is of class C2, all of their coordinate functions have the analogous property.
This function depends also on the time τ , the change of the unit ball implies
the change of its coordinate functions. We say that the trajectory K(τ) is a
continuously differentiable function if for a fixed coordinate representation its
coordinate functions are continuously differentiable functions of the time. This
is equivalent to the property that the support function h(K(τ)) is continuously
differentiable as the function of the time τ . The differentiability property of the
trajectory implies the analogous differentiability property of the change of the
norm of a fix vector since the points of the boundary of the unit ball has an
equation of the form

rτ = (r(ϕ1, · · · , ϕn−1))
τ
.

We can conclude that if the trajectory K(τ) is a continuously differentiable
function, this holds also for the function

τ →
√
[s, s]τ .

In a space S with an inner product the polarity equation implies the required
assumption. If S is (only) a smooth normed space with a semi inner product,
we need further comments. Since for a differentiable norm function McShane’s
equality holds (see [8]), we have

[x, y]τ = ‖y‖τ((‖ · ‖τ )′x (y)) = ‖y‖τ (‖ · ‖′x(y))τ .

On the other hand, the function (‖ · ‖′x(y))τ is also continuously differentiable
function of y, thus the thread using on the norm function above is applicable for
it, too. This means that the differentiability property of the trajectory implies
the analogous differentiability property of the function

τ → (‖ · ‖′x(y))τ .

Using the rule of the product function we also have that τ → [x, y]τ is continu-
ously differentiable if the trajectory

τ → K(τ)
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holds this property.
We now define a differentiable trajectory through the points (τi,K(τi)). If

τ, τ ′i ∈ [τi, τi+1] denote by KBezier(τ) the formal Bezier spline of second order
through the points (τi,K(τi)) and (τi+1,K(τi+1)) with ”tangents” through the
point (τ ′i , L(τ

′
i)). Thus we have by definition

KBezier(τ) :=

(
1− τ − τi

τi+1 − τi

)2

K(τi)+

+2

(
1− τ − τi

τi+1 − τi

)
τ − τi

τi+1 − τi
L(τi) +

(
τ − τi

τi+1 − τi

)2

K(τi+1),

where the addition is the Minkowski addition and the product is the respective
homothetic mapping. If we assume that for all values of i (1 < i < s) the
body K(τi) is a Minkowski convex combination of the bodies L(τ ′i) and L(τ ′i+1)
the function KBezier(τ) is valid on the whole interval [τ1, τs]. Since for positive
constants α, β we have

hαK′+βK′′(x) = αhK′(x) + βhK′′(x),

we also get thatKBezier(τ) is a continuously differentiable trajectory in its whole
domain. We have to prove yet that for a fixed τ , the set KBezier(τ) is a centrally
symmetric convex compact body with C2-class boundary but these statements
follow immediately from the concept of Minkowski linear combination.

Finally we normalize this trajectory under the volume function and extract
it to the whole T . The function K(τ) determines a required deterministic time-
space model if we define it as follows:

K(τ) =





n

√
vol(BE)

vol(KBezier(τs))
KBezier(τs) if τs < τ

n

√
vol(BE)

vol(KBezier(τ))
KBezier(τ) if τ1 ≤ τ ≤ τs

n

√
vol(BE)

vol(KBezier(τ1))
KBezier(τ1) if τ < τ1 .

�

An important consequence of Theorem 1 is then that without loss of gener-
ality we can assume, that the time-space model is deterministic.

2.3 Product in a deterministic time-space model

We can give a product similar to the Minkowski product of a generalized space-
time model. In a two-dimensional plane the role of the light-cone play the curve

[αe(τ)e, αe(τ)e]
τ
+ [τ, τ ] = 0.

For a fixed direction x, we consider the curves

tβ,e : τ 7→ βαe(τ)e + τen

through the point x = βαe(τ)e+τen. Note that x is a time-like point if |β| < 1.
The role of the imaginary unit sphere is played by the set of points

∪
{{

s+ τ where
√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
.

12



In the direction of e it is a curve defined by the implicit equation

√
[s, s]τ + 1 = τ , τ ≥ 1

The intersection of this curve with tβ,e is a point satisfying the equality

[βαe(τ⋆)e, βαe(τ⋆)e]τ
⋆

+ 1 = (τ⋆)
2
,

with parameter τ⋆, and hence we get

β2 (τ⋆)
2
+ 1 = (τ⋆)

2
,

or equivalently

(τ⋆)
2
=

1

1− β2
.

Assuming that our examination is on the positive part of the set of time-like
points we have

τ⋆ =
1√

1− β2
or β =

√
(τ⋆)2 − 1

τ⋆
.

In the space-time model the tangent of the imaginary unit curve is orthogonal
to the position vector of the common point. This requires that in the case of
generalized space-time model, the product

[
e+

(√
[s, s]τ + 1

)′
e
(βαe(τ⋆)e) en, βα

e (τ⋆) e+ τ⋆en

]

will be equal to zero. Another claim that the product is equal to the correspond-
ing norm-square in the case when its arguments contains the same vectors. We
will need a lemma on the directional derivative of the function which defines
the imaginary unit sphere.

Lemma 2 The directional derivative of the real valued function

h(s) =
√
[s, s]h(s) + 1

is

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=

=
2

2h(s)− ∂[s,s]τ

∂τ
(h(s))

[e, s]h(s),

or equivalently

h′e(s) =
1

h(s)− ‖s‖h(s) ∂‖s‖τ

∂τ
(h(s))

[e, s]h(s).

Proof: The considered derivative is

h′e(s) =
1

2
√
1 + [s, s]h(s)

([s, s]h(s))′e.

13



It can be seen easily (or use the calculation of Theorem 1 with the substitutions
c(t + λ) = s + λe, (f1)S = (f2)S = id|S and (f1)T = (f2)T = h) that the
directional derivative in question (independently of the sought product) is equal
to

1

2
√
1 + [s, s]h(s)

(
[e, s]h(s) +

(
[s, ·]h(s)

)′
e
(s) +

∂[s, s]
τ

∂τ
(h(s)) · (h)′e(s)

)
=

=
1

2
√
1 + [s, s]h(s)

(
2[e, s]h(s) +

∂[s, s]
τ

∂τ
(h(s)) · (h)′e(s)

)
.

Thus we get

h′e(s)

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)
=

[e, s]h(s)√
1 + [s, s]h(s)

,

or equivalently the required formulas

h′e(s) =

(
1−

∂[s,s]τ

∂τ
(h(s))

2
√
1 + [s, s]h(s)

)−1
[e, s]h(s)√
1 + [s, s]h(s)

=

=
1

h(s)− ‖s‖h(s) ∂‖s‖τ

∂τ
(h(s))

[e, s]h(s).

�

Now s and h(s) are equals to βαe(τ⋆)e and τ⋆, respectively. We get that

(√
[s, s]τ + 1

)′
e
(βαe(τ⋆)e) =

βαe(τ⋆)[e, e]τ
⋆

τ⋆ − βαe(τ⋆)‖e‖τ⋆ ∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

=

=
βαe(τ⋆)[e, e]τ

⋆

τ⋆
(
1− β

∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

) .

Any natural concept of product should satisfy the basic property of the Min-
kowski product. Thus we assume that the unknown product the following equal-
ity holds:

[
e+

(√
[s, s]τ + 1

)′
e
(βαe(τ⋆)e) en, βα

e (τ⋆) e+ τ⋆en

]?
=

= [e, βαe(τ⋆)e]τ
⋆ − βαe(τ⋆)[e, e]τ

⋆

1− β
∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

=

=
[e, βαe(τ⋆)e]τ

⋆
(
−β

∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

)

1− β
∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

,

showing that we lost an important orthogonality property, which was between
the position and tangent vectors of the imaginary unit sphere. On the other
hand, this formula, in the case when the norm is constant, gives back this
property. We have another interesting observation, which suggests that we
should go on in this natural way. We try to substitute the position vector of
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the imaginary sphere with the tangent vector of the time axis tβ,e. This is the
vector

τ⋆
(
β
∂αe(τ)

∂τ
(τ⋆)e + en

)
=

(
βτ⋆√
[e, e]τ⋆

− 1

2

β (τ⋆)
2 ∂[e,e]τ

∂τ
(τ⋆)√

[e, e]τ⋆ [e, e]τ⋆

)
e + τ⋆en,

and the product is

[
e+

(√
[s, s]τ + 1

)′
e
(βαe(τ⋆)e) en, τ

⋆

(
β
∂αe(τ)

∂τ
(τ⋆)e+ en

)]
=

= βτ⋆
√
[e, e]τ⋆ − 1

2

β (τ⋆)
2 ∂[e,e]τ

∂τ
(τ⋆)√

[e, e]τ⋆
− β (τ⋆)

2√
[e, e]τ⋆

τ⋆ − 1
2β

2 (αe(τ⋆))
2 ∂[e,e]τ

∂τ
(τ⋆)

=

=
− 1

2
∂[e,βαe(τ⋆)]τ

∂τ
(τ⋆)

(
(τ⋆)2 − β2(τ⋆)2 − 1

2τ
⋆β2(αe(τ⋆))2 ∂[e,e]τ

∂τ
(τ⋆)

)

τ⋆ − 1
2β

2 (αe(τ⋆))
2 ∂[e,e]τ

∂τ
(τ⋆)

.

Using the connection among the values of β, τ⋆ and αe(τ⋆) we get that it is
zero if and only if

(τ⋆)2 − β2(τ⋆)2 = 1 =
1

2
τ⋆β2(αe(τ⋆))2

∂[e, e]τ

∂τ
(τ⋆) =

1

2

(τ⋆)3 − τ⋆

[e, e]τ⋆

∂[e, e]τ

∂τ
(τ⋆).

This is a separable differential equation in the function [e, e]τ with solution

[e, e]τ =

(
1− 1

τ2

)
c2e

where ce is a constant depending on the direction e. This shows that by the
following definition there is a non-trivial solution of the problem: Determine
the time-dependence of the norm in such a way that the imaginary unit sphere
intersects the time-axes tβ,e orthogonally!

Definition 12 For two vectors s1 + τ1 and s2 + τ2 of the deterministic time-
space model define their product with the equality

[s1 + τ1, s2 + τ2]
+,T := [s1, s2]

τ2 + [τ1, τ2] =

= [s1, s2]
τ2 − τ1τ2.

Here [s1, s2]
τ2 means the s.i.p defined by the norm ‖ · ‖τ2 . This product is

not a Minkowski product, as there is no homogeneity property in the second
variable. On the other hand the additivity and homogeneity properties of the
first variable, the properties on non-degeneracy of the product are again hold,
and the continuity and differentiability properties of this product also remain
the same as of a Minkowski product. The calculations in a generalized space-
time model basically depend on a rule on the differentiability of the second
variable of the Minkowski product. Introducing the notation

[f1(c(t)), ·]+′
D(f2◦c)(t)(f2(c(t))) :=

:=
(
[(f1)S(c(t)), ·]′D((f2)S◦c)(t)((f2)S(c(t))) − (f1)T (c(t))((f2)T ◦ c)′(t)

)
,
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we stated in [8] (see Lemma 4), that if f1, f2 : S −→ V = S + T are two C2

maps and c : R −→ S is an arbitrary C2 curve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+)′ =

= [D(f1 ◦ c)(t), (f2 ◦ c)(t))]+ + [(f1 ◦ c)(t)), ·]+′
D(f2◦c)(t)((f2 ◦ c)(t)).

Regarding to the importance of this rule we reproduce it in a time-space model.
Let denote by fS and fT the component functions of f with respect to the
subspaces S and T , respectively. By definition, let us denote

(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t))) :=

=
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))−(f1)T (c(t))((f2)T ◦c)′(t)+

+(f1)T (c(t))
∂2[(f2)S(c(t)), (f2)S(c(t))]

τ

(∂τ)
2 ((f2)T (c(t)))×

× [D((f2)S ◦ c)(t), (f2)S(c(t))](f2)T (c(t))
.

We now generalize the formula of Lemma 2.

Theorem 2 If f1, f2 : S −→ V = S + T are two C2 maps and c : R −→ S is
an arbitrary C2 curve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+,T )′ =

= [D(f1 ◦ c)(t), f2(c(t))]+,T +
(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t) (f2(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t)

Proof: By definition
([f1 ◦ c, f2 ◦ c)]+,T )′|t :=

= lim
λ→0

1

λ

(
[f1(c(t+ λ)), f2(c(t+ λ))]+,T − [f1(c(t)), f2(c(t))]

+,T
)
=

= lim
λ→0

1

λ

(
[(f1)S(c(t+ λ)), (f2)S(c(t+ λ))](f2)T (c(t+λ))−

−[(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t))

)
+

+ lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))] − [(f1)T (c(t)), (f2)T (c(t))]) .

The first part can be written in the form

lim
λ→0

1

λ

(
[(f1)S(c(t+ λ)) − (f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ))+

+[(f1)S(c(t)), (f2)S(c(t+ λ))](f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t))

)
.

We prove that it is equal to

[D((f1)S ◦ c)|t, (f2)S(c(t))](f2)T (c(t))+

16



+
(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

((f2)S(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

In this latter equation the first term comes from the value of the first bracket
of the earlier one. We calculate now the remaining substraction. For this, take
the fixed (absolute) coordinate system {e1, · · · , en−1} of S and consider the
coordinate-wise representation

(f2)S ◦ c =
n−1∑

i=1

((f2)S ◦ c)iei

of (f2)S ◦ c. Using Taylor’s theorem for the coordinate functions we have that
there are real parameters ti ∈ (t, t+ λ), for which

((f2)S ◦ c)(t+ λ) = ((f2)S ◦ c)(t) + λD((f2)S ◦ c)(t) + 1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei.

Thus we get that

[(f1)S(c(t)), (f2)S(c(t+ λ))]
(f2)T (c(t+λ)) − [(f1)S(c(t)), (f2)S(c(t))]

(f2)T (c(t))
=

= [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ+

+
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

− [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t)) =

=
(
[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) −

− [(f1)S(c(t)), (f2)S(c(t))]
(f2)T (c(t))

)
+ ([(f1)S(c(t)), (f2)S(c(t))+

+D((f2)S ◦ c)(t)λ +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))
)
.

Dividing by λ and applying the limit procedure when λ tends to zero we get
from the first bracket the value:

(
[(f1)S(c(t)), ·](f2)T (c(t))

)′
D((f2)S◦c)(t)

(((f2)S ◦ c)(t))).

We determine the value of the second bracket. By Definition 10 the second term
in this bracket is

[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t)) =

= [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ)) −

−∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ − o(λ′),
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where

(f2)T (c(t+ λ)) = (f2)T (c(t)) + λ′ and lim
λ′ 7→0

o(λ′)

λ′ = 0.

Since
(f2)T c(t+ λ) = (f2)T c(t) + λ ((f2)T ◦ c)′ (t) + o1(λ),

we have that
λ′ = λ ((f2)T ◦ c)′ (t) + o1(λ).

By the Lipschitz condition (which also holds in the second variable of the prod-
uct) there is a real constant K with which we have that the absolute value of
the substraction

([(f1)S(c(t)), (f2)S(c(t))+

+D((f2)S ◦ c)(t)λ +
1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

−

− [(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t+λ))

is less than or equal to

K

[
(f1)S(c(t)),

1

2
λ2

n−1∑

i=1

((f2)S ◦ c)′′i (ti)ei
](f2)T (c(t+λ))

.

Dividing by λ and applying the limit procedure as λ → 0, this quantity tends
to zero. Dividing also by λ, for the remaining parts we have

1

λ

∂[(f1)S(c(t)), (f2)S(c(t)) +D((f2)S ◦ c)(t)λ](f2)T (c(t))

∂τ
λ′ + o(λ′) =

=
∂[(f1)S(c(t)), (f2)S(c(t)) + λD((f2)S ◦ c)(t)](f2)T (c(t))

∂τ
×

×
(
((f2)T ◦ c)′ (t) + o1(λ)

λ

)
+

(
o
(
λ ((f2)T ◦ c)′ (t) + o1(λ)

)

λ ((f2)T ◦ c)′ (t) + o1(λ)

)
×

×
(
λ ((f2)T ◦ c)′ (t) + o1(λ)

λ

)
,

and if λ tends to zero then it is equal to

∂[(f1)S(c(t)), (f2)S(c(t))]
τ

∂τ
((f2)T (c(t))) · ((f2)T ◦ c)′(t).

Thus, we proved our statement on the space-like component. On the other hand
(f1)T , (f2)T , are real-real functions, respectively. This implies that

lim
λ→0

1

λ
([(f1)T (c(t+ λ)), (f2)T (c(t+ λ))]− [(f1)T (c(t)), (f2)T (c(t))]) =

= −((f1)T ◦ c)′(t)(f2)T (c(t)) − (f1)T (c(t))((f2)T ◦ c)′(t)
showing the assertion of the theorem. �

Let F be a hypersurface defined by the function f : S −→ V = S + T . Here

f(s) = s+ f(s)en

denotes points of F . The C2 curve c : R −→ S define a curve on F . We collect
the most important formulas of time-space in a list.
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• The first fundamental form at the point (f(c(t)) of the hypersurface F is
the product

If(c(t) := [D(f ◦ c)(t), D(f ◦ c)(t)]+,T =

= [ċ(t), ċ(t)]f(c(t)) − [(f ◦ c)′(t)]2.

• The second fundamental form at the point f(c(t)) is:

II := [D2(f ◦ c)(t), (n0 ◦ c)(t)]+,T

(f◦c)(t) =

= −
(
[D(f ◦ c)(t), ·]+,T

)′
D(n0◦c)(t)((n

0 ◦ c)(t))−

−∂ ([ċ(t), c(t)]τ )

∂τ
(n0(c(t))) · (n0 ◦ c)′(t),

where n0 is the unit normal vector defined from a normal vector n(s) =
s+ n(s)en by

n0(c(t)) :=

{
n(c(t)) if n light-like vector
n(c(t))√

|[n(c(t)),n(c(t))]+,T |
otherwise.

• If we consider a two-plane in the tangent hyperplane at f(c(t)) then it
has a two dimensional pre-image in (S, ‖ · ‖f(c(t))) by the regular linear
mapping Df . In this plane we can consider an Auerbach basis {e1, e2}.
The sectional principal curvatures of a 2-section of the tangent hyperplane
in the direction of the 2-plane spanned by {u = Df(e1) and v = Df(e2)}
are the extremal values of the function

ρ(D(f ◦ c)) := IIf◦c(t)
If◦c(t)

,

of the variable D(f ◦ c). We denote them by ρ(u, v)max and ρ(u, v)min,
respectively. The sectional (Gauss) curvature κ(u, v) (at the examined
point c(t)) is the product

κ(u, v) := [n0(c(t)), n0(c(t))]+,T ρ(u, v)maxρ(u, v)min.

• The Ricci curvature Ric(v) in the direction of the tangent vector v at the
point f(c(t)) is

Ric(v)f(c(t)) := (n− 2) · E(κf(c(t))(u, v))

where κf(c(t))(u, v) is the random variable of the sectional curvatures of
the two planes spanned by v and a random u of the tangent hyperplane
holding the equality [u, v]+,T = [u, v]f(c(t)) = 0. We also say that the
scalar curvature of the hypersurface f at its point f(c(t)) is

Γf(c(t)) :=

(
n− 1

2

)
·E(κf(c(t))(u, v)).
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2.4 Surfaces defined by implicite functions

In this section we investigate such sets of a deterministic time-space model
which are not hypersurfaces. The importance of this examination in that the
most nice subsets as the imaginary unit sphere or the de Sitter sphere belong
to this class. On the other hand, it can be observed that assuming certain
smoothness condition these sets handled locally as hypersurfaces and can also
determine their differential geometric properties.

2.4.1 Imaginary unit sphere

The points of H+,T can be defined by the union

∪
{{

s+ τ where
√
[s, s]τ + 1 = τ

}
, τ ≥ 1

}
.

Our assumption on K(τ) cannot guaranty that for every s ∈ S there is at least
one τ is holding the equality

√
[s, s]τ + 1 = τ . On the other hand if we assume

that ρH(K(τ), BE) ≤ 1 the ball 2K(τ) contains the Euclidean ball BE for every
τ . Hence [s, s]τ ≤ 4‖s‖2E so for all τ with τ2 > 4‖s‖2E + 1, the inequality
[s, s]τ + 1 < τ2 holds. Since for a non-zero vector s we have [s, s]1 + 1 > 1, the
statement follows by continuity variable. In the non-trivial case the sets defined
by distinct moments have distinct shape. From this immediately follows that
H+,T is not a hypersurface of the time-space hence its differential geometry can
be considered only on the base of its implicit definition. Consider the function
H : V → R defined by

H(s+ τen) :=
√
[s, s]τ + 1− τ.

If v0 = s0 + τ0en is a point on H+,T then we have H(v0) = 0. By our definition
H is continuously differentiable at the point v0. Assume that

∂H

∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√
[s, s]τ + 1

(v0)− 1 6= 0,

or equivalently
∂([s0, s0]

τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 + 1.

Then by implicit function theorem there is a neighborhoodU of v0 and a function
h : S → R such that τ = h(s) for the points v = s+ τen of H+,T . Thus we have
in U (as in Lemma 3 in [8]) that

h(s) =
√
[s, s]h(s) + 1.

If the vector s comes from a point of a curve c(t) ⊂ S by the definition
c(t+ λ) = s+ λe, we get the equalities:

(h ◦ c)(t) =
√
[(c(t), c(t)]h(c(t)) + 1

and also

(h ◦ c)′(t) = [ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

+
∂[c(t),c(t)]τ

∂τ
(h(c(t))) · (h ◦ c)′(t)

2
√
1 + [c(t), c(t)]h(c(t))
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or equivalently,

(h ◦ c)′(t) =
(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√
1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

=

=
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[ċ(t), c(t)]h(c(t))

as on page 25. in [8]. We note that the additional value

∂[c(t), c(t)]τ

∂τ
(h(c(t)))

of the formula depend on the position c(t + 0) = s and do not depend on the
direction e. Thus the first fundamental form is:

I = [ċ(t) + (h ◦ c)′(t)en, ċ(t) + (h ◦ c)′(t)en]+,T =

= [ċ(t), ċ(t)](h◦c)
′(t) − [(h ◦ c)′(t)]2 =

= [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

To calculate the second fundamental form we have to determine the unit normal
vector field. A tangent vector is

ċ(t) + (h ◦ c)′(t)en = ċ(t)+

+

(
1−

∂[c(t),c(t)]τ

∂τ
(h(c(t)))

2
√
1 + [c(t), c(t)]h(c(t))

)−1
[ċ(t), c(t)]h(c(t))√
1 + [c(t), c(t)]h(c(t))

en.

We may see that

[
ċ(t) +

2[ċ(t), c(t)]h(c(t))

2h(c(t)) − ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

en,

,
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + h(c(t))en

]+,T

= 0

showing the equality

n ◦ c = 2h(c(t))

2h(c(t)) − ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en.

The second fundamental form of H+,T is

II := [c̈(t) + (h ◦ c)′′(t)en,

,
2h(c(t))

2h(c(t)) − ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)en
]+,T

(h◦c)(t)
=
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=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)](h◦c)(t) − (h ◦ c)′′(t)h(c(t)).

We use here Theorem 1. Thus we get first that

(h ◦ c)′′(t) =
(

2 [ċ(t), c(t)]
h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)′

= A+B

where

A =
2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

(
[c̈(t), c(t)]h(c(t))+

+
(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t)) +
2[ċ(t), c(t)]h(c(t)) ∂[ċ(t),c(t)]

τ

∂τ
(h(c(t)))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)

and

B =
−2[ċ(t), c(t)]h(c(t))

(
2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2×

×2

(
(h ◦ c)′(t)

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)2
(h(c(t)))

)
− ∂[ċ(t), c(t)]τ

∂τ
(h(c(t)))

)
=

=
−2

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

×

×
(
((h ◦ c)′(t))2

(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

)
.

Since in time-space model the result of Lemma 3 of paper [8] of the generalized
space-time model can be interpreted as

(
[ċ(t), ·]h(c(t))

)′
ċ(t)

(c(t)) = [ċ(t), ċ(t)](h◦c)
′(t))

we get that the second fundamental form is:

II =
2h(c(t))

2h(c(t)) − ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[c̈(t), c(t)]h(c(t)) − (h ◦ c)′′(t)h(c(t)) =

=
2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
−[ċ(t), ċ(t)](h◦c)

′(t)+

+((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

(∂τ)
2 (h(c(t)))

)
−

−2(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

]
,

where

(h ◦ c)′(t)) = 2[ċ(t), c(t)]h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

.
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Observe, that if the norm is a constant function of the time, these formulas
simplify to the formulas of the generalized space-time model. We now give exam-
ples to illustrate that this basic tools of the corresponding differential geometry
can be calculated.
Examples:

1. For a 3-dimensional example we take the function K(τ) : τ 7→ Gτ , where
Gτ is the ellipse of area π with half-axes τe1 and 1

τ
e2. Here {e1, e2} is an

orthonormed basis of the embedding Euclidean plane. The connection be-
tween the norms of the vector s = xe1+ye2 and its Euclidean coordinates
is

[s, s]τ = τ2x2 +
y2

τ2
.

The implicite equation for the corresponding imaginary unit sphere is

τ =

√
1 + τ2x2 +

y2

τ2
,

if we assume that

2τx2 − 2y2

τ3
6= 2τ,

or equivalently

x2 − 1 6= y2

τ4
.

For a vector s = (x, y)T we exclude the time τ with equality

τ4 =
y2

x2 − 1

where x2 6= 1. (Thus if x2 = 1 there is no τ , which need to exclude from
the investigation.) Solving the implicite equation we get that

τ2 =
1±

√
1 + 4(1− x2)y2

2(1− x2)
if x2 6= 1,

and in the case when x2 = 1 τ has to be ∞ for every y. This formula
shows that we can get real values for τ if and only if

x2 ≤ 1 +
1

4y2
.

Thus the domain of the imaginary unit sphere is the union of three domains

bounded by the curves x = ±1 and x = ±
√
1 + 1

4y2 drawing on the figure

Fig.2.

Since τ2 > 0 we also have that if |x| < 1 then we have to consider the
equality with positive sign

τ2 =
1 +

√
1 + 4(1− x2)y2

2(1− x2)
,
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x=1x= -1 x
2
= 1+

1

4 y 2

x

y

Figure 2: The domain of the imaginary unit sphere in the example.

and for the other two connected components we have to choose the equality
with negative sign:

τ2 =
1−

√
1 + 4(1− x2)y2

2(1− x2)
.

The first fundamental form is

I = [ċ, ċ]

2[ċ(t),c(t)]h(c(t))

2h(c(t))−
∂[c(t),c(t)]τ

∂τ
(h(c(t))) −

(
2[ċ(t), c(t)]h(c(t))

2h(c(t)) − ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

)2

.

Since

[ċ(t), c(t)]h(c(t)) = h(c(t))2 ˙x(t)x(t) +
˙y(t)y(t)

h(c(t))2
,

∂[c(t), c(t)]
τ

∂τ
(h(c(t))) = 2h(c(t))x(t)2 − 2y(t)2

h(c(t))3
,

we have that

I = ((h ◦ c)′(t))2
(
(ẋ(t))2 − 1

)
+

(ẏ(t))2

((h ◦ c)′(t))2 ,

where

(h ◦ c)′(t) = h(c(t)
(h(c(t))4 ẋ(t)x(t) + ẏ(t)y(t)

(h(c(t))
4
(1− (x(t))2) + (y(t))2

with

(h(c(t)))2 =
1±

√
1 + 4(1− (x(t))2)(y(t))2

2(1− (x(t))2)
.

We also get that

II = − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2(ẋ(t))2+
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+
(ẏ(t))2

((h ◦ c)′(t))2 − ((h ◦ c)′(t))2
(
1− 1

2

∂2[c(t), c(t)]τ

∂τ
(h(c(t)))

)
+

+ 2(h ◦ c)′(t)∂[ċ(t), c(t)]
τ

∂τ
(h(c(t)))

]
=

= − 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

[
((h ◦ c)′(t))2

(
(ẋ(t))2 − 1+

+(x(t))2 +
3(y(t))2

(h(c(t)))
4

)
+

+4(h ◦ c)′(t)
(
h(c(t))ẋ(t)x(t) − ẏ(t)y(t)

(h(c(t)))
3

)
+

(ẏ(t))2

((h ◦ c)′(t))2

]
.

For a more concrete example assume that

c(t) = (x(t), y(t)) = (t cosα,
√
2 + t sinα), and t0 = 0.

Then we have that (h(c(t0)))
2
= 2 because in the formula

1±
√
1 + 4(1− x(t)2)y(t)2

2(1− x(t)2)

we have to calculate with positive sign. Since

(h ◦ c)′(t0) =
√
2

√
2 sinα

4 + 2
=

1

3
sinα,

we get that

I =
1

9
sin2 α(cos2 α− 1) +

sin2 α
1
9 sin

2 α
= 9− 1

9
sin4 α > 0.

Similarly the second fundamental form is

II = −2

3

(
1

9
sin2 α

(
cos2 α− 1 +

3

2

)
+ 9 +

2
√
2

3
sin2 α

)
=

= −2

3

((
1

6
+

2
√
2

3

)
sin2 α− 1

9
sin4 α+ 9

)
=

= −1 + 4
√
2

9
sin2 α+

2

27
sin4 α− 6.

The extremal values of the non-positive function

II

I
=

2
27 sin

4 α− 1+4
√
2

9 sin2 α− 6

9− 1
9 sin

4 α

attained at the directions α for which either cosα = 0 or sinα = 0 with
the respective negative values − 157+12

√
2

240 and − 2
3 . Since the normal vector

at this point is

n ◦ c = 2h(c(t))

2h(c(t))− ∂[c(t),c(t)]τ

∂τ
(h(c(t)))

c(t) + (h ◦ c)(t)e3 =
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=
2

3
(0,

√
2)T +

√
2e3 =

√
2

((
0,

2

3

)T

+ e3

)
,

we have that the norm-square of it is 2
(
2
9 − 1

)
= − 14

9 < 0 and hence the
Gaussian curvature is negative at this point.

2. For a further example choose an ellipse Gα as in the previous example
with a fixed parameter α, where 1 ≤ α ≤ 2. Let K(τ) be the rotated copy
of this ellipse about the time axis with the angle τ . Then

[s, s]τ = [xe1 + ye2, xe1 + ye2]
τ =

= α2(cos τx + sin τy)2 +
(− sin τx + cos τy)2

α2
=

=

(
α2x2 +

y2

α2

)
cos2 τ +

(
α2y2 +

x2

α2

)
sin2 τ + 2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

)
sin2 τ+2 cos τ sin τ

(
α2 − 1

α2

)
=

=

(
α2x2 +

y2

α2

)
+

(
α2 − 1

α2

)(
y2 − x2

) 1
2
−

−1

2

(
α2 − 1

α2

)(
y2 − x2

)
cos 2τ + sin 2τ

(
α2 − 1

α2

)
=

=
1

2
(α2 +

1

α2
)(x2 + y2) +

(
α2 − 1

α2

)(
sin 2τ − 1

2

(
y2 − x2

)
cos 2τ

)

The implicite equation of the imaginary unit sphere is

τ =

√
1 +

α4 + 1

2α2
(x2 + y2) +

α4 − 1

α2

(
sin 2τ − 1

2
(y2 − x2) cos 2τ

)
.

Here there is no explicite form for τ however in a concrete point the
fundamental forms and curvatures can be determined. We remark that
the Hausdorff distances of the unit ball K(τ) from BE is less or equal to 1,
thus the domain is the whole plane. Since the norm induced by an inner
product in every time the corresponding time-space is a semi-Riemann
manifold.

3. We can get premanifolds if the square of the examined norms can not be
represented as the scalar square of an inner product. A three-dimensional
example can be gotten from the function K(τ) which sends τ for τ > 1 to
the unit ball of the lτ space with Euclidean area π. In this case

[s, s]τ =
v(lτ )

π
τ
√
|x|τ + |y|τ ,

where

v(lτ ) =
Γ
(
1 + 1

τ

)2

Γ
(
1 + 2

τ

) 4
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is the volume of the unit ball of the standard lτ norm of the plane. Here
for τ we have the implicite equality

τ =

√
1 +

v(lτ )

π
τ
√
|x|τ + |y|τ .

As in the previous example the domain is also the plane S.

2.4.2 de Sitter sphere

The points of the de Sitter sphere G+,T can be defined by the union

∪
{{

s+ τen where
√
[s, s]τ − 1 = τ

}
, [s, s]τ ≥ 1

}
.

G+ is not a hypersurface. It can be handled also by an implicite function

τ =
√
−1 + [s, s]τ for [s, s]τ > 1,

using the assumption

∂G

∂τ
(v0) =

∂([s,s]τ )
∂τ

2
√
[s, s]τ − 1

(v0)− 1 6= 0,

or equivalently
∂([s0, s0]

τ )

∂τ
(τ0) 6= 2

√
[s0, s0]τ0 − 1.

Using the equality

h2(s) + g2(s) = [s, s]h(s) + [s, s]g(s),

the derivative of g in the direction of the unit vector e ∈ S can be calculated
from the equality

2h(s)h′e(s) + 2g(s)g′e(s) =
(
[s, s]h(s) + [s, s]g(s)

)′
=

=

(
2[e, s]h(s) +

∂[s, s]h(s)

∂τ
(τ) · h′e(s)

)
+

(
2[e, s]g(s) +

∂[s, s]g(s)

∂τ
(τ) · g′e(s)

)
.

Thus

g′e(s) =
2[e, s]g(s)

2g(s)− ∂[s,s]g(s)

∂τ
(g(s))

.

The first and second fundamental forms have analogous forms as in the case of
the imaginary unit sphere H+,T .

3 On the mechanics of the time-like vectors

In this section we investigate the objects of the time-like vectors of a determin-
istic time-space model. We consider the upper part of this set restricting our
investigation to the positive elements of T , denoted by this set T+. The theory
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of generalized space-time model can be used in a generalization of special rel-
ativity theory, if we change some previous formulas using also the constant c.
(It is practically can be considered as the speed of the light in vacuum.) The
formula of the product in such a deterministic (random) time-space is

[x′, x′′]+,T := [s′, s′′]τ
′′

+ c2 [τ ′, τ ′′] .

Parallel we use the assumption that the dimension n is equal to 4.

3.1 The word-line of a particle

A particle is a random function x : Ix → S holding two conditions:

• the set Ix ⊂ T+ is an interval

• [x(τ), x(τ)]τ < 0 if τ ∈ Ix.

The particle lives on the interval Ix, is born at the moment inf Ix and dies at the
moment sup Ix. Since all time-sections of a time-space model is a normed space
of dimension n the Borel sets of the time-sections are independent from the time.
This means that we can consider the physical specifies of a particle as a trajec-
tory of a stochastic process. A particle “realistic” if it holds the “known laws
of physic” and “idealistic” otherwise. This is only a terminology for own use,
the mathematical contain of the expression “known laws of physics” is indeter-
minable. Since the norm (and thus the metric) in a time-space model changes
by the time, the formulas of the density function of a fixed distribution also
changes by the time. For example, if we say that both of the functions f(x(τ1))
and f(x(τ2)) have normal distribution on its domain τ1K(τ1) and τ2K(τ2) we
have to use distinct formulas on their density functions, respectively. The uni-
form distribution is the only distribution which density function is independent
from the time. First we introduce an inner metric δK(τ) on the space at the
moment τ . We have two possibilities, either we can consider this space with its
original metric

δK(τ)(u, v) := ‖u− v‖τ ,
(arise from the norm) – at this time the space bounded and all distances are
less then 2τ – or as another possibility we can define a distance which derives
from the ball τK(τ) indirectly. For example let u, v ∈ τK(τ) be two points
and denote by (uv)∞ and (uv)−∞ the intersection points of the line (uv) and
the boundary of the ball τK(τ), respectively. (Here the point v separates the
points u and (uv)∞.) Let (u, v, (uv)∞, (uv)−∞) denote the cross ratio of the
four points and let

δK(τ)(u, v) := ln (u, v, (uv)∞, (uv)−∞)

be the inner metric of the space τK(τ). We note that if the norm is Euclidean
it is the usual distance of a modeled hyperbolic space (which is unbounded with
respect to this metric). These thread motivates the following definition:

Definition 13 Let X(τ) : T → τK(τ) be a continuously differentiable (by
the time) trajectory of the random function (x(τ) , τ ∈ Ix). We say that the
particle x(τ) is realistic in its position if for every τ ∈ Ix the random vari-
able δK(τ) (X(τ), x(τ)) has normal distribution on τK(τ). In other words the
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stochastic process
(
δK(τ) (X(τ), x(τ)) , τ ∈ Ix

)
has stationary Gaussian process

with respect to a given continuously differentiable function X(τ). We call the
function X(τ) the world-line of the particle x(τ).

We note that the two metrics defined above are essentially agree for small dis-
tances, thus the concept of ”realistic in its position” independent from the choice
of δK(τ). As a refinement of this concept we define another one, which can be
considered as a generalization of the principle on the maximality of the speed
of the light.

Definition 14 We say that a particle realistic in its speed if it is realistic in
its position and the derivatives of its world-line X(τ) are time-like vectors.

Since the shape of the sets of the time-like points in a time-space is not a cone,
it is possible that u is a time-like vector but αu is not with certain α. On the
other hand in a random time-space model the speed of those particles which
realistic in its speed with a great probability are less than to the speed of the
light. Note that our theory does not exclude the possibility of the existence of
a particle which speed is greater to the speed of the light at a moment neither
in the case of generalized space-time model or in the case of a particle which is
realistic in its speed.

For such two particles x′, x′′ which are realistic in their position we can define
a momentary distance by the equality:

δ(x′(τ), x′′(τ)) = ‖X ′(τ) −X ′′(τ)‖τ =
√
[X ′(τ) −X ′′(τ), X ′(τ) −X ′′(τ)]+,T .

We can say that two particles x′ and x′′ are agree if the expected value of
their distances is equal to zero. Let I = Ix′ ∩ Ix′′ be the common part of their
domains. The required equality is:

E(δK(τ)(x
′(τ), x′′(τ))) =

∫

I

δK(τ)(x
′(τ), x′′(τ))dτ =

=

∫

I

‖X ′(τ)−X ′′(τ)‖τdτ = 0.

3.2 Frames in time-space

The first question is: How we define the so-called “inertial frame” in our model?
If we insist on “a Descartes-system of the space which moving with a constant
velocity” then we have to interpret two things; the concepts of Descartes system
and the concept of velocity, respectively. In a deterministic time-space we have
a function K(τ), and we have more possibilities to define orthogonality in a
concrete moment τ . We shall fixe a concept of orthogonality and we will consider
it in every normed space. In the case when the norm induced by the Euclidean
inner product this method should give the same result as the usual concept of
orthogonality. The most natural choice is the concept of Birkhoff orthogonality
(see in [7]). Using it, in every normed space we can consider an Auerbach
basis (see in [7]) which can play the role of a basic coordinate frame. We can
determine the coordinates of the point with respect to this basis. We say that
a frame is at rest with respect to the absolute time if its origin (as a particle) is
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at rest with respect to the absolute time τ and the unit vectors of its axes are
at rest with respect to a fixed Euclidean orthogonal basis of S. In this case the
world line of the origin in the model is a vertical line (parallel to T ); it is the
collection of those points of the model which absolute space-coordinates do not
changes by the change of the absolute time. Unfortunately, practically we do
not know an absolute coordinate system, and we can not check the immobility
of the axes of such a frame. This motivates our definition on inertial frame and
inertial frame “at rest”, respectively. We denote by (S, ‖ · ‖τ ) the normed space
with unit ball K(τ). In S we fix an Euclidean orthonormal basis and give the
coordinates of a point (vector) of S with respect to this basis. We get curves in
S parameterized by the time τ . First we define the concept of a frame.

Definition 15 The system {f1(τ), f2(τ), f3(τ), o(τ)} ∈ (S, ‖ · ‖+τ ) × τK(τ) is
a frame, if

• o(τ) is a particle realistic in its speed, with such a world-line

O(τ) : T → τK(τ)

which does not intersect the absolute time axis T ,

• the functions
fi(τ) : T → ∪{(S, ‖ · ‖τ ) , τ ∈ T }

are continuously differentiable, for all fixed τ ,

• the system {f1(τ), f2(τ), f3(τ)} is an Auerbach basis with origin O(τ) in
the normed space (S, ‖ · ‖τ ).

Remark: The condition that the frame building up from elements of an
Auerbach basis is very strong. In the most cases the Auerbach basis is unique.
In an inner product space a set of pairwise conjugate diameters of element n

of the unit ellipsoid gives an Auerbach basis. It is easy to see that every two
Auerbach basis are isometric to each other, there is a linear isometry of the
space sending the first into the second. Thus the set of the Auerbach bases can
be gotten using the elements of the symmetry group of the space from a fixed
one. The following lemma is obviously and we leave its proof to the reader.

Lemma 3 For every ε > 0 and a pair {K ′,A′} where K ′ ∈ K0 is a unit ball
of C2-class and A′ is an Auerbach basis of the normed space (S, ‖ · ‖K′) there
is a δ > 0 such that if for K ′′ holds δH(K ′,K ′′) < δ then it can be found an
Auerbach basis A′′ ∈ (S, ‖ · ‖K′′) for which δH(A′,A′′) < ε holds.

Note, that for a good model we have to guarantee that Einstein’s convention
on the equivalence of the inertial frames can be remained for us. However at
this time we have no possibility to give the concepts of ”frame at rest” and the
concept of ”frame which moves constant velocity with respect to another one”.
The reason is that when we changed the norm of the space by the function
K(τ) we concentrated only the change of the shape of the unit ball and did not
use any correspondence between the points of the two unit balls. Obviously,
in a concrete computation we should proceed vice versa, first we should give a
correspondence between the points of the old unit ball and the new one and this
implies the change of the norm. To this purpose we may define a homotopic
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mapping K which describes the deformation of the norm. From the lemma
above it follows that we can define a homotopic mapping

K (x, τ) : (S, ‖ · ‖E)× T → (S, ‖ · ‖E)

such a way that the assumptions:

• K (x, τ) is homogeneous in its first variable and continuously differentiable
in its second one,

• K ({e1, e2, e3}, τ) is an Auerbach basis of (S, ‖ · ‖τ ) for every τ ,

• K (BE , τ) = K(τ)

holds. The mapping K (x, τ) determines the changes at all levels for exam-
ple a frame is “at rest” if its change arises only from this globally determined
change, and “moves with constant velocity” if its origin has this property and
the directions of its axes are “at rest”. Precisely, we say, that

Definition 16 The frame {f1(τ), f2(τ), f3(τ), o(τ)} moves with constant ve-
locity with respect to the time-space if for every pairs τ , τ ′ in T+ we have

fi(τ) = K (fi(τ
′), τ) for all i with 1 ≤ i ≤ 3

and there are two vectors O = o1e1+o2e2+o3e3 ∈ S and v = v1e1+v2e2+v3e3 ∈
S that for all values of τ we have

O(τ) = K(O, τ) + τK(v, τ).

A frame is at rest with respect to the time-space if the vector v is the zero
vector of S.

Consider the derivative of the above equality by τ . We get that

Ȯ(τ) =
∂K(O, τ)

∂τ
+K(v, τ) + τ

∂K(v, τ)

∂τ
,

showing that for such a homotopic mapping, which is constant in the time O(τ),
is a line with direction vector v through the origin of the time space. Similarly
in the case when v is the zero vector it is a vertical (parallel to T ) line-segment
through O.
Example: For a simple example (of dimension 3) consider the second example
of subsection 3.3. The function K can be get by the formula:

K
(
(x, y)T , τ

)
=

(
αx cos τ − 1

α
y sin τ, αx sin τ +

1

α
y cos τ

)T

.

Then we have

K (BE , τ) =

(
cos τ sin τ
− sin τ cos τ

)
Gα

furthermore we get also that

K (e1, τ) = (α cos τ, α sin τ)
T

, K (e2, τ) =

(
− 1

α
sin τ,

1

α
cos τ

)T
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gives an Auerbach basis for the corresponding norm. The unit vectors of a frame
at rest can be gotten by the affinity

(
α cos τ 1

α
sin τ

−α sin τ 1
α
cos τ

)

using for the vectors

(cosβ, sinβ)
T

, (− sinβ, cosβ)
T
,

respectively. (Here β is a given parameter.) With respect to the absolute
coordinate-system the world-line of the origin is a helical

τ 7→
(
αo1 cos τ +

1

α
o2 sin τ,−αo1 sin τ +

1

α
o2 cos τ

)T

through a given point O = (o1, o2)
T of the plane S.

3.3 Time-axes

First we recall a calculation of Subsection 2.3 can be found in present paper
before the definition of the product. Consider the unit vector e ∈ S (with
respect to the Euclidean norm) and a two plane generated by the vectors e and
e4. This plane intersects the set of light-like vectors in a curve defined by

[αe, αe]τ + c2 [τe4, τe4] = 0

or equivalently
α2[e, e]τ = c2τ2.

From this we get that

αe(τ) = ± cτ

‖e‖τ

is the union of two functions of τ corresponding to the two signs in formula,
respectively. If now the sign is positive and we consider a parameter β with
|β| ≤ 1 the functions

β
τ

‖e‖τ = βαe(τ)

defines again a set of curves τ → te,β(τ) = αβ(τ)e + τe4 which gives a one-fold
covering of the set of time-like points of the corresponding plane. Natural to
say that this system of curves is a system of (curvilinear) time axes. Each of it
is a world-line of a particle which velocity vector at the point τ is

τ

((
βc

‖e‖τ − 1

2
βcτ

∂[e,e]τ

∂τ
(τ)√

[e, e]τ ([e, e]τ )
2

)
e+ e4

)
.

As we saw in Subsection 2.3 there is no orthogonality at the intersection point
of this time-axis and the imaginary unit sphere. Again the product of a tangent
vector and the position vector of the point of the intersection is

[e, βαe(τ⋆)e]τ
⋆
(
−β

∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

)

1− β
∂‖βαe(τ⋆)e‖τ

∂τ
(τ⋆)

,
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and so the product of the velocity vector of the time axis with the corresponding
tangent vector is

=
− 1

2
∂[e,βαe(τ⋆)]τ

∂τ
(τ⋆)

(
(cτ⋆)2 − β2(cτ⋆)2 − 1

2cτ
⋆β2(αe(τ⋆))2 ∂[e,e]τ

∂τ
(τ⋆)

)

cτ⋆ − 1
2β

2 (αe(τ⋆))
2 ∂[e,e]τ

∂τ
(τ⋆)

.

Using the connection among the values of β, τ⋆ and αe(τ⋆) we get that it is
zero if and only if

(cτ⋆)2 − β2(cτ⋆)2 = 1 =
1

2
cτ⋆β2(αe(τ⋆))2

∂[e, e]τ

∂τ
(τ⋆),

or

1 =
1

2

(cτ⋆)3 − cτ⋆

[e, e]τ⋆

∂[e, e]τ

∂τ
(τ⋆).

This is a separable differential equation of the function [e, e]τ with solution

[e, e]τ
⋆

=

(
1− 1

(cτ⋆)2

)
c2e

where ce is a constant depending on the direction e. This proves the following
lemma:

Lemma 4 If the time-dependence of the norm defined by the equalities:

[e, e]τ =

(
1− 1

(cτ)2

)
c2e ce ∈ R

then the imaginary unit sphere and the time-axis tβ,e intersect to each other
orthogonally.

The function K gives a new chance to define the concept of time-axes. The
new definition gives back the concept of tβ,e if we assume that K is invariant
on those two-planes, which are defined by the directions of S and the absolute
time-axis.

Definition 17 The time-axis of the time-space model is the world-line O(τ) of
such a particle which moves with constant velocity with respect to the time-space
and starts from the origin. More precisely, for the world-line (O(τ), τ) we have
K(O, τ) = 0 and hence with a given vector v ∈ S,

O(τ) = τK(v, τ).

Example: Let the function K is defined (as in the previous example) with
the equality:

K
(
(x, y)T , τ

)
=

(
αx cos τ − 1

α
y sin τ, αx sin τ +

1

α
y cos τ

)T

,

then the time-axis defined by the vector v = (v1, v2)
T is the curve

(
τ

(
αv1 cos τ − 1

α
v2 sin τ

)
, τ

(
αv1 sin τ +

1

α
v2 cos τ

)
, τ

)T

.
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For the point of intersection of the time-axis and the imaginary sphere of
parameter c holds the equality:

(τ⋆)2
(
[K(v, τ⋆),K(v, τ⋆)]

τ⋆

− c2
)
= −1

and thus also get that

[K(v, τ⋆),K(v, τ⋆)]
τ⋆

=

(
c2 − 1

(τ⋆)2

)
.

We note that for an arbitrary vector v (its unit vector v0) and a parameter τ

we have the equality

[K(v, τ),K(v, τ)]
τ
= ‖v‖2E

[
K(v0, τ),K(v0, τ)

]τ
= ‖v‖2E

simplifying the above formula to the another one

‖v‖2E =

(
c2 − 1

(τ⋆)2

)
,

or equivalently

(τ⋆)2 =
1

c2 − ‖v‖2E
.

Now we determine the ”angle” between the imaginary unit sphere and the time-
axis defined above. The velocity vector of the time-axis at the examined point
is

τ⋆K(v, τ⋆) + (τ⋆)2
∂K(v, τ)

∂τ
(τ⋆) + τ⋆e4.

If we recalculate the tangent vector of the imaginary unit sphere at its point
s+ τe4 using the opportunity c(t+ λ) = s+ λe, we get that it is

ċ(t) +
2 [ċ(t), c(t)]τ

2c2τ − ∂[c(t),c(t)]τ

∂τ
(τ)

e4

The product is

[
ċ(t), τ⋆K(v, τ⋆) + (τ⋆)

2 ∂K(v, τ)

∂τ
(τ⋆)

]τ⋆

− c2
2τ⋆ [ċ(t), c(t)]

τ⋆

2τ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ⋆)

=

=

[
ċ(t), τ⋆K(v, τ⋆) + (τ⋆)

2 ∂K(v, τ)

∂τ
(τ⋆)

]τ⋆

−

−
[
ċ(t),

2c2τ⋆c(t)

2τ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ⋆)

]τ⋆

.

Since we have
τ⋆K(v, τ⋆) = s = c(t)

this formula can be simplified into the form

=

[
ċ(t), c(t) + (τ⋆)

2 ∂K(v, τ)

∂τ
(τ⋆)

]τ⋆

−
[
ċ(t),

2c2τ⋆

2τ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ⋆)

c(t)

]τ⋆

.
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We can see that it is zero in two important cases, the first one is when the
function K(v, τ) does not depend on the time. The another case is when the
following equation system holds with certain function α(τ⋆):

∂K(v, τ)

∂τ
(τ⋆) = α(τ⋆)c(t)

1 + (τ⋆)2α(τ⋆) =
2c2τ⋆

2τ⋆c2 − ∂[c(t),c(t)]τ

∂τ
(τ⋆)

.

This equation system leads to the equality

(τ⋆)2
(
2τ⋆c2 − ∂ [c(t), c(t)]τ

∂τ
(τ⋆)

)
∂K(v, τ)

∂τ
(τ⋆) =

∂ [c(t), c(t)]τ

∂τ
(τ⋆)c(t).

For an example define the shape function by the scalar valued function

K(v, τ) = α(v, τ)v.

Then we get that
∂K(v, τ)

∂τ
=

∂α(v, τ)

∂τ
v

and also we have
K(c(t), τ) = α(c(t), τ)c(t),

implying the equality

α2(c(t), τ) [c(t), c(t)]τ = ‖c(t)‖2E .

Since α(v, τ) 6= 0, from

[c(t), c(t)]
τ
=

‖c(t)‖2E
α2(c(t), τ)

we get that
∂ [c(t), c(t)]

τ

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
.

The orthogonality condition for a general τ means the equality

τ2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

∂α(c(t), τ)

∂τ

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)

∂α(c(t), τ)

∂τ
c(t)

and again if the function α(v, τ) is a constant we have a solution. In the other
case, we can simplify it with its derivative and get that

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
v = − 2‖c(t)‖2E

α3(c(t), τ)
c(t).

We also know the connection between c(t) and v, because at the point τ⋆ we
have

c(t) = τ⋆K(v, τ⋆) = τ⋆α(v, τ⋆)v.

This simplifies the above equality to equality among scalar functions:

(τ)2
(
2τc2 +

2‖c(t)‖2E
α3(c(t), τ)

)
∂α(c(t), τ)

∂τ
= − 2‖c(t)‖2E

α3(c(t), τ)
τ⋆α(c(t), τ⋆),
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which can be written in the form

− τ3c2

τ2 + τ⋆α(c(t), τ⋆)
=

∂α(c(t),τ)
∂τ

α3(c(t), τ)
.

Solving this separable differential equation, we get that with a constant C

α2(c(t), τ) =

=
(τ⋆)2α2(c(t), τ⋆)‖v‖2E

c2 (τ2 − τ⋆α(c(t), τ⋆) ln(τ2 + τ⋆α(c(t), τ⋆))) + (τ⋆)2α2(c(t), τ⋆)‖v‖2EC
.

To get the identity at the point τ⋆ we substitute it and so we have

C =
(τ⋆)2

(
‖v‖2E − c2

)
+ c2τ⋆α(c(t), τ⋆) ln((τ⋆)2 + τ⋆α(c(t), τ⋆))

(τ⋆)2α2(c(t), τ⋆)‖v‖2E
.

With this constant the required equality on α(c(t), τ) is

α2(c(t), τ) =
(τ⋆)2α2(c(t), τ⋆)‖v‖2E

c2τ2 − (τ⋆)2 (c2 − ‖v‖2E)− c2τ⋆α(c(t), τ⋆) ln
(

τ2+τ⋆α(c(t),τ⋆)
(τ⋆)2+τ⋆α(c(t),τ⋆)

) .

The function α(c(t), τ) is well-defined real valued function if the right hand side
is greater or equal to zero. From this assumption we get the equality

τ2 − τ⋆α(c(t), τ⋆) ln
(
τ2 + τ⋆α(c(t), τ⋆)

)
≥

≥
(
1− ‖v‖2E

c2

)
(τ⋆)2 − τ⋆α(c(t), τ⋆) ln

(
(τ⋆)2 + τ⋆α(c(t), τ⋆)

)
.

Since the left hand side is a monotone increasing function of its variable τ ≥ 0,
we have to pick up a value in which the equality holds to determine a range
interval where this equality also holds. It is easy to calculate that at the value

τ =

√(
1− ‖v‖2E

c2

)
τ⋆

the equality holds thus α2(c(t), τ) can be defined well if τ ≥
√(

1− ‖v‖2
E

c2

)
τ⋆.

Using the assumption that the point c(t) is on the imaginary sphere of pa-
rameter c we get that

α(c(t), τ⋆)2 = c2τ⋆
2 − 1,

and thus
α2(c(t), τ) =

=
(τ⋆)2(c2τ⋆2 − 1)‖v‖2E

c2τ2 − τ⋆2 (c2 − ‖v‖2E)− τ⋆
√
c2(τ⋆)2 − 1 ln

(
τ2+τ⋆

√
c2(τ⋆)2−1

(τ⋆)2+τ⋆
√

c2(τ⋆)2−1

) .
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3.4 Remark on cosmology

Our model can be considered also as a new model of the universe. The deter-
ministic variant obviously contains as a special case the model of Minkowski
space-time. On the other hand it can be extended to a generalization of the
Robertson-Walker space-time, too. (To this we have to change by the time the
volume of the unit ball of the space-like subspace S and we have to allow it one
of the metric of the three spaces of constant curvature. From the Minkowski
product these metrics can be defined without any difficulties.) The advantage
of our model that S can be considered also as a general normed space (without
inner product).

The deterministic time-space can be considered in a non-deterministic way,
too. Thus we gave a concept of random time-space and proved that (on a finite
range of time) every such space can be approximated with a deterministic model
well. (In this section we assume that the volume of the unit ball does not depend
on the time but this condition can be omitted in the rest of this paper.)

The time-space can also be defined in a more convenient way, using a shape
function. It regulates the methods of calculations in time-space and gives the
possibility to rewrite the equality of special and global relativity.
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