Póta György (DE TTK Fizikai Kémiai Tanszék)
A reakciókinetika differenciálegyenleteiről
A reakciókinetika a kémiai reakciók időbeli
lejátszódását, a vizsgált rendszert alkotó anyagfajták
mennyiségének időbeli változását
tanulmányozza elméleti és kísérleti eszközökkel.
Az előadásban áttekintő jelleggel bemutatjuk a
reakciókinetika folytonos idejű, determinisztikus
modelljének differenciálegyenleteit és
vázolunk néhány azokkal kapcsolatos matematikai elméletet,
tételt, feladatot, alkalmazást. A
megfontolások magasabb éves matematikus, fizikus, vegyész és
mérnök hallgatóknak egyaránt
érdekesek lehetnek.
A tervezett (maximális) vázlat a következő:
• A reakciókinetikai differenciálegyenletek alakja és
sajátosságai a polinomiális differenciálegyenlet-
rendszerek osztályán belül. A megoldás
létezése, egyértelműsége és pozitivitása.
• Periodikus megoldások, multistacionaritás,
multistabilitás, a differenciálegyenletek kvalitatív
elméletének alkalmazása a kísérleti
tapasztalatok leírására. A pozitív periodikus megoldás
létezésének feltétele kinetikai
rendszerekben. Hány kinetikai differenciálegyenlet-rendszernek
lehet pozitív periodikus
megoldása? Megoldatlan kérdések.
• A szélsőértékek számának becslése kinetikai differenciálegyenlet-rendszerek
megoldásaiban. Li-
neáris rendszerek, egyszerű példák a nemlineáris
rendszerek köréből. Megoldatlan kérdések.
• További érdekességek: Közelítő rendszerek és
megoldások szerkesztése adott kinetikai differen-
ciálegyenlet-rendszerhez. A kémiai erősítés
problémája.
Időpont: nov. 13. kedd 16:15 Helye: BME, K épület I. em. 50. terem