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Structuring (Securitization) 
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Bank wants to 
 
• Get rid of risk 
• Realize future cash-flow now 

Investors 

Investors want to 
 
• Invest in the long run 
• with different risk 
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The Structuring Problem 
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How to choose 
bond sizes? 
 
Bank is interested 
in great bond sizes 
and high ratings. 
 
Regulators seek to 
limit bond sizes 
before giving high 
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We want to maximize proceeds, under the constraint 
that the structure passes all stress-test scenarios. 



Nature of the Optimization Problem 

• Objective function and constraints evaluated by 
Black Box (no gradients available) 

• Objective function and constraints evaluated 
simultaneously (unknown constraints) 

• Constraints returned as pass/fail Booleans (no 
differentiable discriminant functions) 

• Black Box is very slow (we can afford only 5 
iterations) 

• We can run Black Box parallel on 20 servers 
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Reinforcement Learning 
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Reinforcement Learning 
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Initially, put down random structures 
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At each iteration, new structures are selected 

based on information on previous structures 
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Reinforcement Learning 
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Objective function: 

Linear Regression 

 

Constraints: 

Support Vector  

Machine (SVM) 



Support Vector Machine (SVM) 
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Pass Probability 
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in structure space 
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Expected Improvement 
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promising regions of structure space 
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Conclusion 

Using Machine Learning techniques 

on the Portfolio Structuring Problem, 

we could provide a useful tool 

for our structuring business 

Thank you for your attention 


