Portfolio Optimization Artificial Intelligence in Finance

Zsolt Bihary (Morgan Stanley)

2013, Budapest

Structuring (Securitization)

The Structuring Problem

How to choose bond sizes?

Bank is interested in great bond sizes and high ratings.

Regulators seek to limit bond sizes before giving high ratings.

The Black Box Simulator

The Black Box Simulator

Nature of the Optimization Problem

- Objective function and constraints evaluated by Black Box (no gradients available)
- Objective function and constraints evaluated simultaneously (unknown constraints)
- Constraints returned as pass/fail Booleans (no differentiable discriminant functions)
- Black Box is very slow (we can afford only 5 iterations)
- We can run Black Box parallel on 20 servers

Synthetic Example

Synthetic Example

Synthetic Example

Initially, put down random structures

At each iteration, new structures are selected based on information on previous structures

At each iteration, new structures are selected based on information on previous structures

At each iteration, new structures are selected based on information on previous structures

At each iteration, new structures are selected based on information on previous structures

Surrogate Model Approach

Surrogate Model Approach

Gives a surrogate model for the pass – fail boundary

With more points, SVM gives more and more accurate boundary

With more points, SVM gives more and more accurate boundary

With more points, SVM gives more and more accurate boundary

SVM maps out the pass probability in structure space

With more points, pass probability map becomes more and more accurate

With more points, pass probability map becomes more and more accurate

With more points, pass probability map becomes more and more accurate

Surrogate model maps out the most promising regions of structure space

With more and more points, surrogate model zeros in to the optimal region

With more and more points, surrogate model zeros in to the optimal region

With more and more points, surrogate model zeros in to the optimal region

Conclusion

Using Machine Learning techniques on the Portfolio Structuring Problem, we could provide a useful tool for our structuring business

Thank you for your attention