
1 © Nokia Solutions and Networks 2014

Using space-filling
curves for multi-
dimensional indexing

Public

Dr. Bisztray Dénes

Senior Research Engineer

2 © Nokia Solutions and Networks 2014

Performance

problems with

RDBMS

In medias res

Public

Switch to

NoSQL store

(HBase)

Query is based

on multiple

properties

Multi-

dimensional

indexing

Space-filling

curves

3 © Nokia Solutions and Networks 2014

• Brief introduction to indexes and databases

• The „main topic”, i.e. problem statement and

ways to solve the problem

• Solution and Results

Table of Contents

Public

4 © Nokia Solutions and Networks 2014

Databases and Indexes

Introduction

Public

5 © Nokia Solutions and Networks 2014

Example of a Relation

attributes

(or columns)

tuples

(or rows)

Slide content ©Silberschatz, Korth. Sudarshan, 2010

6 © Nokia Solutions and Networks 2014

• A1, A2, …, An are attributes

• R = (A1, A2, …, An) is a relation schema

 Example:

 instructor = (ID, name, dept_name, salary)

• Formally, given sets D1, D2, …. Dn a relation r is a subset of

 D1 x D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai  Di

• The current values (relation instance) of a relation are specified by a table

• An element t of r is a tuple, represented by a row in a table

Relation schema

Slide content ©Silberschatz, Korth. Sudarshan, 2010

7 © Nokia Solutions and Networks 2014

• Let K  R

• K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R)

- Example: {ID} and {ID,name} are both superkeys of instructor.

• Superkey K is a candidate key if K is minimal

Example: {ID} is a candidate key for Instructor

• One of the candidate keys is selected to be the primary key.

- which one?

Keys

Slide content ©Silberschatz, Korth. Sudarshan, 2010

8 © Nokia Solutions and Networks 2014

• Indexing mechanisms used to speed up access to desired data.

- E.g., author catalog in library

• Search Key - attribute to set of attributes used to look up records in a file.

• An index file consists of records (called index entries) of the form

• Index files are typically much smaller than the original file

• Two basic kinds of indices:

- Ordered indices: search keys are stored in sorted order

- Hash indices: search keys are distributed uniformly across “buckets” using a “hash
function”.

Indexing Basic Concepts

search key pointer

Slide content ©Silberschatz, Korth. Sudarshan, 2010

9 © Nokia Solutions and Networks 2014

• In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

- Also called clustering index

- The search key of a primary index is usually but not necessarily the primary
key.

• Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

Ordered Indices

Slide content ©Silberschatz, Korth. Sudarshan, 2010

10 © Nokia Solutions and Networks 2014

• Dense index — Index record appears for every search-key value in the file.

• E.g. index on ID attribute of instructor relation

Dense Index Files

Slide content ©Silberschatz, Korth. Sudarshan, 2010

11 © Nokia Solutions and Networks 2014

• Sparse Index: contains index records for only some search-key values.

- Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:

- Find index record with largest search-key value < K

- Search file sequentially starting at the record to which the index record points

Sparse Index Files

Slide content ©Silberschatz, Korth. Sudarshan, 2010

12 © Nokia Solutions and Networks 2014

• Frequently, one wants to find all the records whose values in a certain

field (which is not the search-key of the primary index) satisfy some

condition.

- Example 1: In the instructor relation stored sequentially by ID, we

may want to find all instructors in a particular department

- Example 2: as above, but where we want to find all instructors with a

specified salary or with salary in a specified range of values

• We can have a secondary index with an index record for each search-

key value

Secondary Indices

Slide content ©Silberschatz, Korth. Sudarshan, 2010

13 © Nokia Solutions and Networks 2014

• Index record points to a bucket that contains pointers to all the actual records with that
particular search-key value.

• Secondary indices have to be dense

Secondary Indices Example
Secondary index on salary field of instructor

Slide content ©Silberschatz, Korth. Sudarshan, 2010

14 © Nokia Solutions and Networks 2014

Multi dimensional indexing and

the space filling curves

Public

15 © Nokia Solutions and Networks 2014

• Statistic analysis of massive CDR data to generate
Business Reports:
- On-demand report with URL and Time Range

- On-demand report with MSISDN and Time Range

• Data-intensive and performance-critical application:
- Cut down the reporting response time from hours to

minutes

- Extremely high load to Disk I/O due to high throughput
requirement

Application Characteristics

Public

16 © Nokia Solutions and Networks 2014

Technical Requirements for Storage

Public

Items Product 1 Product 2

Record Size 450Byte/record Multimedia Message (MM): 150KB - 10MB

Short Message (SMS): 160Byte

Data Retention time 3 months 6 months

Concurrency 20,000 per second MM 200 requests/second for writing

1000 requests/second for reading

SMS 800 requests/second for writing
1000 requests/second for reading

Total data size 70 TB 30 TB

Latency Write delay < 10ms

Reporting < 5 minutes
MM reading delay < 0.2s, writing delay <0.4s

SMS reading delay < 0.1s, writing delay < 0.2s

Throughputs 72 Mbps for writing

584 Mbps for reading (1hour)

14.4 Gbps for reading (1day)

432 Gbps for reading (1month)

MM 1.228 Gbps for reading

246 Mbps for writing

SMS 1 Mbps for reading

1.28 Mbps for writing

17 © Nokia Solutions and Networks 2014

Existing Solution and Disadvantage

Public

•Traditional RDBMS became bottleneck for Big Data

storage and processing

•Low performance in Data Intensive application, e.g.

Generating business reports through big data analysis

•Incapable Scale-In/Out for ever-increasing data volume

Oracle database &

EMC disk array

18 © Nokia Solutions and Networks 2014

RDBMS Scaling

RDBMS

Add more
application

servers

Add slave
database

servers for
parallel read

Only the
master is
taking the

writes

Add cache

Loose
consistency
guarantees

Improve Main
Server

Hardware

Increases
costs and not

scalable to
infinity

Denormalise
databse

because of join
speed

bottlenecks

Almost raw data with

optimised machinery

Prematerialise
costly queries

Drop secondary
indexes

because of
maintenance

slowdown

Breakes
RDMBS

paradigm

Public

19 © Nokia Solutions and Networks 2014

CAP Theorem

Availability

Consistency Partition

Tolerance

Pick Two

MySQL,

Postgres, etc

Cassandra,

SimpleDB, Riak,

Dynamo, etc

MongoDB, Hbase,

BigTable, Redis,

etc

all nodes see the same data at

the same time the system continues to operate

despite arbitrary message loss

or failure of part of the system

a guarantee that every request receives a

response about whether it was successful or failed

Public

20 © Nokia Solutions and Networks 2014

• Open source: Apache 2.0 license

• Distributed
- Store and access data on 1-700 commodity servers

- Linear scaling of capacity and IOPS by adding servers

• Sorted Map Datastore
- Not a relational database

- Tables consists of rows, each of which has a primary key (row key)

- Each row may have any number of columns – like a Map<byte[],
byte[]>

- Rows are stored in sorted order

Hbase
Open source, distributed sorted map datastore

Public

21 © Nokia Solutions and Networks 2014

Sorted Map Datastore

Slide content © Cloudera Inc.

Row key Data

cutting info: {‘height’: ’274cm’, ‘state’: ‘CA’}

roles: {‘ASF’: ‘Director’, ‘Hadoop’:

‘Founder’}

tlipcon info: {‘height’: ‘170cm’, ‘state’: ‘CA’}

roles: {‘Hadoop’: ‘Committer’@ts=2010,

‘Hadoop’: ‘PMC’@ts=2011,

‘Hive’:’Contributor’}

A single cell might have different

values at different timestamps

Implicit PRIMARY KEY

in RDBMS terms

Data is all byte[] in HBase

Different types of

data separated into

different „column

families”

Different rows may have different sets

of columns (table is sparse)

22 © Nokia Solutions and Networks 2014

• Table contains sorted rows and dynamically splitted
into regions

- Rows stored in byte-lexicographic order based on rowkey

- Somewhat similar to Relational DB Primary Index
(always unique)

• Region is a continuous set of sorted rows

• Hbase ensures that all cells of the same rowkey are
all on the same server

Scalability with Regions

Public

23 © Nokia Solutions and Networks 2014

Table and Regions

Slide content © Cloudera Inc.

Rows

A

.

.

.

H

.

.

.

.

Q

.

.

Z

Keys: [T-Z)

Keys: [I-M)

Keys: [F-I)

Keys: [A-C)

Keys: [M-T)

Keys: [C-F)

Region Server 1 Region Server 2 Region Server 3

24 © Nokia Solutions and Networks 2014

• Get
- Retrieves a single row using a rowkey

• Scan
- Scans the full table

• Range
- Retrieves a range of rows between a given startRow

and stopRow

Hbase Query Methods

Public

25 © Nokia Solutions and Networks 2014

• Handling multi-dimensional data distribution

- Transformation of data in multi-dimension space to
single dimension (NoSQL/HBase is single rowkey
design)

- Adopt a linearization technique

• Data Partition

- Data must be well organized and distributed over nodes
to ensure query efficiency and to avoid hotspot in data
accessing

- Pre-defined region instead of automatic region split in
Hbase

- Keep frequently retrieved data stored together to utilize
Range Query as much as possible inside of region

Challenges

Public

26 © Nokia Solutions and Networks 2014

• Good extendibility in space size (recursion
level and region placeholder)

• Spatial indexing is natively supported (while
subdividing, prefix also fit to curve)

• Easy to build up additional indexing on top of it
(Prefix Hash Tree, B Tree, KD-Tree etc.)

• Different granularity in sub-space size

Rowkey Design
Rowkey algorithm by a space-filling curve

Public

27 © Nokia Solutions and Networks 2014

• It loosely preserves the locality of data-points in the multi-dimensional space

• Easy to implement.

- Binary Z-ordering space, bitwise interleaving .

- Using the Z-order value as rowkey.

Rowkey algorithm by Z-ordering

Public

00 01 10 11

11

10

01

00

00 01 10 11

11

10

01

00

Z-order encoding (2-D)
multiple-dimensional

Z-order curve Z-order curve (2-D)

28 © Nokia Solutions and Networks 2014

- little complex compared to the Z-order curve

- better one-dimensional continuity

Rowkey algorithm by Hilbert Curve

Public

Hilbert encoding (2-D) Hilbert curve (2-D)

00 01 10 11

11

10

01

00

multiple-dimensional

Hilbert curve

11

10

01

00

00 01 10 11

29 © Nokia Solutions and Networks 2014

Hilbert Curve Generation

Public

first order second order third order fourth order

30 © Nokia Solutions and Networks 2014

Z-order Curve and Hilbert Curve compared

Public

Z-order curve Hilbert curve

Space aggregation

•Hilbert curve keeps better space

aggregation than Z-order curve,

which can be seen from left figure.

•For the same region of space, the

Hilbert curve has less false-

positives than Z-order.

Calculation complexity

•Hilbert curve is more complicated

in calculation, which aims to keep

the space aggregation of data

points.

31 © Nokia Solutions and Networks 2014

• It can be achieved by pre-defined regions (bucket) in
Hbase

- Automatic region split can’t be used in consideration of
performance

• Region split solutions

- Trie-based space split (by the mid-point of dimension)

- Point-based space split (by the median of data points)

Data partitioning based on multi-dimension

Public

32 © Nokia Solutions and Networks 2014

Data Partitioning
Two dimensional data distribution by time and MSISDN

Public

MSISDN dimension:

-users’ data will be evenly

distributed to different

regions

- avoids the Writing

Hotspot in case of high

concurrent data insert

(20,000 per second)

Time dimension

-Inside a region, one users’s

data will be written in a time

continuous way

-increases query efficiency

33 © Nokia Solutions and Networks 2014

Binary Tree for Hilbert curve

Public

34 © Nokia Solutions and Networks 2014

• splits the space at the mid-

point of all dimensions

- equal size splits in space-

filling curve

- each subspace uniquely

corresponds to a segment of

the curve.

Data Partition: Trie-based region split

Public

35 © Nokia Solutions and Networks 2014

• Splits the space by the median of data points

• Results in subspaces with equal number of
data points

• Data point distribution must be known
beforehand to select median

KD-Tree

Public

36 © Nokia Solutions and Networks 2014

Solution and Results

Public

37 © Nokia Solutions and Networks 2014

...

• The rowkey algorithm uses multiple data attributes to generate
Hilbert curve.

• Each value in Hilbert curve represents the rowkey in HBase.

Rowkey algorithm based on Hilbert Curve

Public

Rowkey

Rowkey_1

...

...

Rowkey_2

Rowkey_3

Rowkey_n

Rowkey algorithm
data

data

data

data

data

data

data

data

data

38 © Nokia Solutions and Networks 2014

• Selecting the middle-point of each dimension to make customized region pre-
split

• Each segment represents a range Hilbert value and corresponds to a region.

Trie-based region split

Public

Hilbert curve

Value_ Range_1

...

Value_ Range_2

Value_ Range_3

Value_ Range_k

Value_ Range_n

HBase

Region_1

...

Region_2

Region_3

Region_k

Region_n

Rowkey algorithm

...

data

data

data

data

data

data

data

data

data

39 © Nokia Solutions and Networks 2014

...

• HBase table is divided into multiple data regions, and each region contains a part of data
(multiple rows), which have continuous rowkey in value.

• The region is represented by startkey and endkey, and it takes one row in .META. table of
HBase (the row also contains other information related to this region). Our approach uses the
.META. table as mapping structure to distribute user data across all regions.

Data Distribution

Start Key End Key

0 3

4 7

8 11

12 15

Public

Rowkey algorithm

...

data

data

data

data

data

data

Rowkey_0 value

RowKey_1 value

Rowkey_2 value

Rowkey_3 value

Rowkey_4 value

RowKey_5 value

Rowkey_6 value

Rowkey_7 value

Rowkey_12 value

RowKey_13 value

Rowkey_14 value

Rowkey_15 value

Mapping structure of

data to region

R
e

g
io

n
 1

R

e
g

io
n

 2

R
e

g
io

n
 4

40 © Nokia Solutions and Networks 2014

• Response time is
decreased from hours to
minutes (comparing to
original Oracle solution)

• ~3x performance
speedup after
optimizations

• Experiment with 1 master
+ 8 data node

• Better performance after
the extension of nodes
and memory

Results – URL Query Performance

Public

41 © Nokia Solutions and Networks 2014

• 1 minute to scan all data of
one subscriber within 3
month, it needs more than
5 minutes before
optimization

• 3~5x performance
speedup after optimization

• Experiment with 1 master
+ 8 data node

• Better performance after
the extension of nodes and
memory

Results – MSISDN Query Performance

Public

1 hour data

1day data 1 month data

2 month data

3 month data

One hour data 13s (1 Map) 13s (1 Map) Speedup = 1

24 hours data 18s (24 Map) 18s (1 Map) Speedup = 1

720 hours data (1 month) 33s (8 Maps) 113s (720 Maps) Speedup = 3.42x

1440 hours data (2

months)
49s (8 Maps) 216s (1440 Maps) Speedup = 3.54x

2160 hours data (3

months)
60s (8 Maps) 327s (2160 Maps) Speedup = 5.45x

42 © Nokia Solutions and Networks 2014

• Data Writing latency is less than
0.05ms on average (requirement
is <10ms)

• Before Optimization, region flush,
split and compaction will affect
writing latency badly, even cause
service break

• Region split and compaction
storm is avoided by scheduled
region compaction, flush and
advanced region split,
performance curve of high
concurrent writing become stable.

Results – Data Writing Performance

Public

43 © Nokia Solutions and Networks 2014

• Response time of reporting is decreased from hours to minutes
comparing to the original Oracle solution

• 4 minutes to scan 2 hours data (144m records) in high
concurrency (20,000tps), 3x performance speedup by Hadoop &
Hbase optimization

• 1 minute to scan all data of one subscriber within 3 month, 3~5x
performance speedup by further Hadoop & HBase optimization

• Writing latency is less than 0.05ms, much less than requirement
(<10ms)

Achievement

Public

