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The treatment scenario

The patient visits the doctor in fixed intervals. We will call this
interval the sampling time, denote it by Ts and measure it in days.
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The treatment scenario
At each visit, the doctor examines the patient, and we suppose that
as a result all internal states (tumor volume, endothelial volume,
inhibitor serum level) become available.
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The treatment scenario

The doctor defines the desired tumor volume for the next
investigation. The minimal amount of drug injection that is required
to reach the desired tumor volume is calculated using the tumor
growth model and the information acquired from the measurements
in the previous step using an optimization algorithm.

...
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The optimization problem

At the kth investigation (kth step) we know the internal states
of the system x1[k] := x1(kTs), x2[k] := x2(kTs), and
g [k] := g(kTs).
The desired tumor volume for the next step is denoted by
x1,d [k + 1].
We are looking for the minimal amount of injection u[k] such
that the tumor volume in the next step is less than or equal to
the desired tumor volume, i.e. x1[k + 1] ≤ x1,d [k + 1].
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The optimization algorithm

Input:The initial values x1[k], x2[k] and g [k]. The TOL accuracy of
the solution. The desired tumor volume x1,d [k + 1]. The maximal
drug injection UMAX .
Result: The minimal drug dosage u[k] that is required to reach the
desired tumor volume in the next step.
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The optimization algorithm

Let umax = UMAX and umin = 0
while umax − umin > TOL do

u = (umax − umin)/2 Calculate the tumor volume in the next
time instant (k + 1)Ts by solving the initial value problem on
time interval [kTs , (k + 1)Ts ] defined by the model with initial
values x1[k], x2[k], g [k] + u; denote it by x1[k + 1]
if x1[k + 1] > x1,d [k + 1] then

umin := u
else

umax := u
end

end
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Optimal solution

The previous algorithm is a binary search algorithm, thus it only
works if the model output is monotonous in the input.

Theorem
The output of the Hahnfeldt-model with linear pharmakokinetics is
monotonous in the input.
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Ts = 1 day, x1,d [k] = x1(0) exp(−4k)

Inhibitor serum level
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Ts = 10 day, x1,d [k] = x1(0) exp(−4k)

Tumor volume

Inhibitor serum level

Dániel András Drexler Taming cancer



16/46

Introduction
Tumor model and analysis

Main concept
Discrete therapy as an optimization problem
Continuous therapy

Maximal injection vs. Sampling Time
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Total inhibitor vs. Sampling Time
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Modeling the effect of bevacizumab

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,

x1 volume of the proliferating tumor cells [mm3];
x2 volume of the necrotic tumor cells [mm3];
x3 serum level of the drug [mg/ml];
y = x1 + x2 measured tumor volume [mm3];
u drug injection rate [mg/ml/day].
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Modeling the effect of bevacizumab: tumor proliferation

Tumor proliferation (mass-action kinetics)

X1
a−−→ 2X1

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,
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Modeling the effect of bevacizumab: tumor necrosis

Tumor necrosis (mass-action kinetics)

X1
n−−→ X2

ẋ1 = ax1−nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,
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The equilibria of the closed-loop system

Modeling the effect of bevacizumab: effect of the drug

Effect of the drug (Michaelis-Menten kinetics), pharmacodynamics

X1 + X3
b−−→ X2

ẋ1 = ax1 − nx1−b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

−bκ
x1x3

ED50 + x3
+ u,
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Modeling the effect of bevacizumab: depletion of the drug

Depletion of the drug (Michaelis-Menten kinetics), mixed-order
pharmacokinetics

X3
c−−→ 0

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,
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Modeling the effect of bevacizumab: the input

The input of the model increases the drug serum level
u ≥ 0

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,
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Model validation and measurements (one injection)
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Model equations

Model reduction

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ2 = nx1 + b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,

The second equation can be omitted since the other equations do
not depend on x2.
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Model equations, closed-loop system

Planar system

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u,

Closed-loop system
The applied control law is state feedback, i.e. u = k1x1 − k3x3.
Thus, the model of the closed-loop system is

ẋ1 = ax1 − nx1 − b x1x3
ED50 + x3

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ k1x1 − k3x3.
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Equilibria of the closed-loop system

First equilibrium

x∗
1 = 0, x∗

3 = 0.

The eigenvalues of the linearized system are

λ1 = −ED50
c + k3KB

KB
< 0

λ2 = ED50(a − n).

If a − n > 0, then the tumor grows (the growth rate is larger than
the necrotic rate), in this case this point is a saddle (the tumor
grows, the drug depletes).
If a− n < 0, then the tumor shrinks (the growth rate is smaller than
the necrotic rate), in this case this point is a stable node.
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Equilibria of the closed-loop system

Second equilibrium

x∗
1 = 0, x∗

3 = −c + k3KB
k3

< 0.

This equilibrium is physiologically unfeasible, since the inhibitor
serum level can not be negative.

Dániel András Drexler Taming cancer



38/46

Introduction
Tumor model and analysis

Model equations
The closed-loop system
The equilibria of the closed-loop system

Equilibria of the closed-loop system

Third equilibrium

x∗
3 = −ED50(a − n)

a − b − n .

The physiologically interesting case is when a − n > 0, i.e. the
tumor does not heal spontaneously. The equilibrium point for x∗

3 is
positive if and only if

a − b − n < 0.

It has been shown earlier that this is the condition for the drug to
be effective against tumor.
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Equilibria of the closed-loop system

Third equilibrium

x∗
1 = x1,n

x1,d

with

x1,n = bED50(a − n)
(
b(c + k3KB)

−a(c + k3(−ED50 + KB))
+(c − ED50k3 + k3KB)n

)
x1,d = (a − b − n)(abκ − bk1 − bκn) ·

·(a(ED50 − KB) + bKB

+(−ED50 + KB)n).
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Equilibria of the closed-loop system

Third equilibrium
Taking into account the previous conditions, this equilibrium is
positive if either

k1 > bκ
a − n

b

k3 > c a − b − n
aED50 − aKB + bKB − ED50n + KBn

or

k1 < bκ
a − n

b

k3 < c a − b − n
aED50 − aKB + bKB − ED50n + KBn .
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Equilibria of the closed-loop system

Third equilibrium
If the Jacobian J is a 2× 2 matrix, then the eigenvalues of the
Jacobian are

λ1,2 =
Tr(J)±

√
Tr(J)2 − 4Det(J)

2 .

In order to have eigenvalues with negative real parts (i.e., to
guarantee that the equilibrium point is stable) the parameters
should be chosen such that

Tr(J) < 0
Det(J) > 0.

Dániel András Drexler Taming cancer



42/46

Introduction
Tumor model and analysis

Model equations
The closed-loop system
The equilibria of the closed-loop system

Equilibria of the closed-loop system

Third equilibrium
The equilibrium is stable iff

k1 > bκ
a − n

b
k3 >

ϕ

ω

ϕ = c(−a + b + n)2(a2bκ(ED50 − KB)
−b2k1KB + 2abκ(−ED50 + KB)n
+bκ(ED50 − KB)n2)

ω = (a(ED50 − KB) + bKB

+(−ED50 + KB)n)2(a2bκ
+b2k1 − 2abκn + bκn2).
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Equilibria of the closed-loop system

Decreasing the third equibrium tumor volume

x∗
1 = x1,n

x1,d

∂k3x1,n = bED50(a − n)(bKB − a(−ED50 + KB)
+(−ED50 + KB)n) > 0

Decreasing k3 decreases equilibrium tumor volume, however, the
closed-loop system may become unstable.

Control input

u = k1x1 − k3x3.

Decreasing k3 results in increasing control input.
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Equilibria of the closed-loop system

Decreasing the third equibrium tumor volume

x∗
1 = x1,n

x1,d

∂k1x1,d = b(−a + b + n)(a(ED50 − KB) + bKB

+(−ED50 + KB)n) > 0

Increasing k1 means decreasing equilibrium tumor volume, no
conflict with stability.

Control input

u = k1x1 − k3x3.

Increasing k1 means increasing control input.
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Thank you for your attention!

Contact:
Dr. Dániel András Drexler drexler.daniel@nik.uni-obuda.hu
Óbuda University,
Research, Innovation and Service Center of Óbuda University,
Physiological Controls Research Center
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