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The treatment scenario

Main concept

Discrete therapy as an optimization proble
Continuous therapy

The patient visits the doctor in fixed intervals. We will call this

interval the sampling time, denote it by T and measure it in days
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Tumor model and a

The treatment scenario

At each visit, the doctor examines the patient, and we suppose that

as a result all internal states (tumor volume, endothelial volume,
inhibitor serum level) become available.
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Continuous therapy

The treatment scenario

The doctor defines the desired tumor volume for the next
investigation. The minimal amount of drug injection that is required
to reach the desired tumor volume is calculated using the tumor
growth model and the information acquired from the measurements
in the previous step using an optimization algorithm.
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- Continuous therapy

The optimization problem

@ At the kth investigation (kth step) we know the internal states
of the system xi[k] := x1(kTs), xo[k] := x2(kTs), and
glk] := g(kTs).

@ The desired tumor volume for the next step is denoted by
Xl’d[k + 1].

@ We are looking for the minimal amount of injection u[k] such
that the tumor volume in the next step is less than or equal to
the desired tumor volume, i.e. xi[k + 1] < xq 4[k + 1].
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- Continuous therapy

The optimization algorithm

Input:The initial values x1[k], x2[k] and g[k]. The TOL accuracy of
the solution. The desired tumor volume x; 4[k + 1]. The maximal
drug injection UMAX.

Result: The minimal drug dosage u[k] that is required to reach the
desired tumor volume in the next step.
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The optimization algorithm

Let Umax = UMAX and umin =0

while umax — Umin > TOL do

U = (Umax — Umin)/2 Calculate the tumor volume in the next
time instant (k 4+ 1) Ts by solving the initial value problem on
time interval [kTs, (k + 1) Ts] defined by the model with initial
values x1[k], xo[k], g[k] + u; denote it by xi[k + 1]

if x1[k + 1] > x1,g[k + 1] then

| Umin ‘= U
else
| Umax -= U
end

o = = = T 9aAC 1o/
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Continuous therapy

The previous algorithm is a binary search algorithm, thus it only
works if the model output is monotonous in the input.

The output of the Hahnfeldt-model with linear pharmakokinetics is
monotonous in the input.
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Ts =1 day, x1,4[k] = x1(0) exp(—4k)
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Maximal injection vs. Sampling Time

14000

12000

10000

8000

6000

4000

Maximal injection (mg/kg)

2000

1.2 3 4 5 6 7 8 9 10 11 12 13 14
Sampling time (day)

[m] (=) -

Taming cancer



Main concept
Discrete therapy as an optimization proble
Continuous therapy

Introduction
Tumor model and analysis

Total inhibitor vs. Sampling Time
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Modeling the effect of bevacizumab

. . b X1X3
X1 = axi — hxy — m
EDsy + x3
o = X3 s

_C —
Ks+xs  EDso+ x

x1 volume of the proliferating tumor cells [mm3];

x2 volume of the necrotic tumor cells [mm3];

]

"]

@ x3 serum level of the drug [mg/ml];

® y = x1 + xo measured tumor volume [mm3];
°

u drug injection rate [mg/ml/day].
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The closed-loop system

The equilibria of the closed-loop system

Modeling the effect of bevacizumab: tumor prollferatlon

Tumor proliferation (mass-action kinetics)

Xq = 2X;

. b X1X3

X1 = axip — nxy —

EDsg + x3
. X1X3
X = nxx+b
EDsg + x3

. X3 X1X3

X3 = —
Kg + x3

= A
50 + X3
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Model equations

The equilibria of the closed-loop system

The closed-loop system
Modeling the effect of bevacizumab: tumor necrosis

Tumor necrosis (mass-action kinetics)

X1 — Xo

X1 =

axi—nxy — b
X2

X1X3

EDsy + x3
nxy + b X1%3
. X3
X3 =

EDsg + x3

c X1X3
Ks + x3 " EDso + x3

+ u,
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Modeling the effect of bevacizumab: effect of the drug

Xy + X3 —2 X5

Effect of the drug (Michaelis-Menten kinetics), pharmacodynamics

X1

axiy — nx1—b

X1X3
EDsy + x3
) X1X3
Xo = nx b
2 1+ EDso + x3
. c X3 X1X3
X3 = — —
3 Ko +xs " EDso+ x5
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Model quations
T

ilibria of thk closed-loop system

pharmacokinetics

Depletion of the drug (Michaelis-Menten kinetics), mixed-order

Modeling the effect of bevaazumab depletion of the drug

X3 —— 0
. b X1X3
X1 = ax3 — hxy —
EDgg + x3
. X1X3
X = nx3+b
EDsy + x3
. X3 X1X3
X3 =
Kg + x3

- bli + LI,
EDsp + x3
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Model equations

ystem
The equilibria of the closed-loop system

Modeling the effect of bevacizumab: the input

The input of the model increases the drug serum level

X1

b X1X3
= axiy — nxi3 —
EDgg + x3
. X1X3
X = nx1+b
EDso + x3

. X3 X1X3

X3 = —C -
Kg + x3 HED50 + X3

+ u,
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Model validation and measurements (daily injections)

12000 T T T T T T T T
*  Mouse E1 i
A Mouse E2
100001 & Mouse E3 1
+ Mouse E4
“E goool] * MouseE5 J
E O Mouse E6
g ¢ Mouse E7
2 6000f| WV MouseE8 + 1
g O Mouse E9
g 20001 [RNE NN Average + L
= Simulation
N\
2000
e s =
0 2 4 6 8 10 12 14 16 18

Time (days)

o = = = DA™ 31/46
Déniel Andras Drexler Taming cancer



on

Introd
Table of contents

Tumor model and analysis

Model equations

The closed-loop system

The equilibria of the closed-loop system

© Tumor model and analysis

@ The closed-loop system

o = = = E DA 32/46
aniel Andras Drexler Taming cancer



Introduction Model equations
Tumor model and analysis e @leszikloa sysim
Model equations

The equilibria of the closed-loop system

Model reduction

. b X1X3
X1 = axi1 — nxy —
EDsy + x3
. X1X:
X0 nxy + b 3
EDsy + x3
. X3 X1X3
X3 = —C — Dg
Kg + x3 EDsg + x3
not depend on x;.

+ u,
The second equation can be omitted since the other equations do
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Planar system

. b X1X3

X1 = axq—nxg —b——"—
EDgo + x3

. X3 X1X3

X3 =

_C J—
Kg + x3 " EDsg + x3

Closed-loop system

The applied control law is state feedback, i.e. u = kix; — k3x3.
Thus, the model of the closed-loop system is

: b X1X3
X1 = axy—nxg —b———"—
EDsg + x3
. X3 X1X3
X3 = + kix1 — k3xz.

_C p—
Kg + x3 HED50—}—X3
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First equilibrium
x; =0,x3 =0.

The eigenvalues of the linearized system are

k3K
N = —ED50M<O
Ks

>\2 = ED5o(a—n).

If a— n > 0, then the tumor grows (the growth rate is larger than
the necrotic rate), in this case this point is a saddle (the tumor
grows, the drug depletes).

If a— n < 0, then the tumor shrinks (the growth rate is smaller than
the necrotic rate), in this case this point is a stable node.
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Model equations
Equilibria of the closed-loop system

The closed-loop system

The equilibria of the closed-loop system

Second equilibrium

This equilibrium is physiologically unfeasible, since the inhibitor
serum level can not be negative.
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Model equations
Equilibria of the closed-loop system

The closed-loop system

The equilibria of the closed-loop system

positive if and only if

. ED50(a — n)
BT T b
The physiologically interesting case is when a — n > 0, i.e. the

tumor does not heal spontaneously. The equilibrium point for x3 is

a—b—n<0.
be effective against tumor.

It has been shown earlier that this is the condition for the drug to
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Model equations
Equilibria of the closed-loop system

The closed-loop system

The equilibria of the closed-loop system

with

X1,n

bEDso(a — n) (b(c + k3Kg)

—a(c + ks(—EDsp + Kg))
+(c — EDspks + k3KB)n)

x1,4 = (a—b—n)(aby — bki — b.n) -

-(a(ED5o — KB) + bKB

+(—ED50 -+ KB)n).
o <& =, <= DA 39/46
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The closed-loop system

b,———
- b
k3

The equilibria of the closed-loop system :
Third equilibrium
Taking into account the previous conditions, this equilibrium is
positive if either
a—n
ky

a—b—n
>
©3EDsy — aKp + bKg — EDson + Kgn
or
a—n
kl < b,i b
a—b—n
ks < c 5
aEDsy — aKg + bKg — EDsgn + Kgn
o = = = T 9DQAC 40546
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Model equations
Equilibria of the closed-loop system

The closed-loop system

A2 =

The equilibria of the closed-loop system “\e'
Third equilibrium
If the Jacobian J is a 2 x 2 matrix, then the eigenvalues of the
Jacobian are

2

Tr(J) % /Tr(J)2 — 4 Det(J)

should be chosen such that

In order to have eigenvalues with negative real parts (i.e., to
guarantee that the equilibrium point is stable) the parameters

Tr(J) < O

Det(J) > 0.
o & = = DA 41/46
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Third equilibrium

The equilibrium is stable iff

a—n

ki > b

by,
ks > e
w
¢ = c(—a+ b+ n)?(a’b.(EDso — Kg)
—b?ky K + 2ab,(—EDso + Kg)n
+b,.(EDso — Kg)n?)
w = (a(EDso — Kg) + bKs
+(—EDso + Kg)n)?(a®by

2 2
+b°ky — 2ab.n + byn®). e
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Equilibria of the closed-loop system

Decreasing the third equibrium tumor volume

X1
Xy = el
X1,d

6k3X17n = bED50(a — n)(bKB = a(—EDSO aF KB)
+(—EDso + Kg)n) >0

Decreasing k3 decreases equilibrium tumor volume, however, the
closed-loop system may become unstable.

Control input

u = k1X1 — k3X3.

Decreasing k3 results in increasing control input.
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Equilibria of the closed-loop system

Decreasing the third equibrium tumor volume

X1
Xy = el
X1,d

Ox1,d = b(—a+ b+ n)(a(EDso — Ki) + bKg
+(—EDso + Kg)n) >0

Increasing k; means decreasing equilibrium tumor volume, no
conflict with stability.

Control input

u = k1X1 — k3X3.

Increasing k; means increasing control input.
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Equilibria of the closed-loop system
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