

MODELING AND IDENTIFICATION OF A NUCLEAR REACTOR WITH TEMPERATURE DEPENDENT REACTIVITY

CSABA FAZEKAS, ATTILA GÁBOR, KATALIN M. HANGOS

Process Control Research Group Computer and Automation Research Institute Budapest, Hungary

Contents

System description, aim

The model of the reactor

- engineering model
- system variables and parameters

Model parameter estimation

- measurements, estimation method
- evaluation of the fit and the estimates

Further improvements

Conclusions

Paks Nuclear Power Plant

- Founded in 1976, operation started in 1982
- Operates four VVER-440/213 type (pressurized water) reactor units
- Total nominal electrical power: 1860 MWs
- Produces about 40 percent of the electrical energy in Hungary

Motivation and Aim

A primitive model

Engineering Model Equations - 1

Balances for neutron and for delayed neutron emitting nuclei

$$\frac{dN}{dt} = \beta \frac{N}{\Lambda} \left(\rho - 1 \right) + C \frac{\beta}{\Lambda}$$
$$\frac{dC}{dt} = \lambda_C (N - C)$$

Reactivity equation

$$\rho = \alpha_f (T_f - T_{f0}) + \alpha_m (T_m - T_{m0}) + p_2 z^2 + p_1 z + p_0 + \frac{\sigma_X}{\beta \Sigma_f} (n_X - n_{X0})$$

Energy balances for the fuel and the moderator

$$\frac{dT_f}{dt} = -\frac{UA}{M_f c_{pf}} (T_f - T_m) + \frac{F}{M_f c_{pf}} N$$
$$\frac{dT_m}{dt} = \frac{UA}{M_m c_{pm}} (T_f - T_m) - \frac{m_p}{M_m} (T_{out} - T_{in})$$

Engineering Model Equations - 2

Equations of poisoning

$$\frac{dn_I}{dt} = Y_I \Sigma_f \frac{N}{N_0} \phi_0 - \lambda_I n_I$$
$$\frac{dn_X}{dt} = Y_X \Sigma_f \frac{N}{N_0} \phi_0 + \lambda_I n_I - \lambda_X n_X$$
$$- \sigma_X n_X \frac{N}{N_0} \phi_0$$

Measurements available

- neutron flux N
- average temperature of the moderator T_m
- rod position z

State-space model

State equations

$$\begin{aligned} \frac{dN}{dt} &= \beta \frac{N}{\Lambda} \left(\alpha_f (T_f - T_{f0}) + \alpha_m (T_m - T_{m0}) + \right. \\ &+ p_2 z^2 + p_1 z + p_0 + \frac{\sigma_X}{\beta} (X - X_0) - 1 \right) + C \frac{\beta}{\Lambda} \\ \frac{dC}{dt} &= \lambda_C (N - C) \\ \frac{dT_f}{dt} &= -A_1 (T_f - T_m) + A_1 \frac{T_{f0} - T_{m0}}{N_0} N \\ \frac{dT_m}{dt} &= A_3 (T_f - T_m) - A_3 \frac{T_{f0} - T_{m0}}{T_{m0} - T_{in0}} (T_m - T_{in}) \\ \frac{dI}{dt} &= Y_I \frac{N}{N_0} \phi_0 - \lambda_I I \\ \frac{dX}{dt} &= Y_X \frac{N}{N_0} \phi_0 + \lambda_I I - \lambda_X X - \sigma_X X \frac{N}{N_0} \phi_0 \end{aligned}$$

Output equations

$$y = [N, T_m]^T$$

State-space model: parameters

Identifier	Meaning	Domain
ϕ_0	equil. neutron flux	$[10^{13}, 10^{14}]$
σ_X	absorpttion cross section	$[2.8\cdot 10^{18}, 3.2\cdot 10^{18}]$
$lpha_f$	temp. coefficient, fuel	$[-5.5 \cdot 10^{-3}, -3.8 \cdot 10^{-3}]$
$lpha_m$	temp. coefficient, moderator	$[-3.5 \cdot 10^{-2}, -1.8 \cdot 10^{-2}]$
A_1	parameter, energy balances	[0.1, 1]
A_3	parameter, energy balances	[0.1, 1]
p_0	rod parameter	[-0.1, 0.1]
p_1	rod parameter	$\left[-1,-0.1 ight]$
p_2	rod parameter	$\left[-1,-0.1 ight]$
Λ	avg. generation time	$[1.5 \cdot 10^{-5}, 3.5 \cdot 10^{-5}]$
λ_I	decay constant of I	$[2.8 \cdot 10^{-5}, 3 \cdot 10^{-5}]$
λ_X	decay constant of Xe	$[2 \cdot 10^{-5}, 2.2 \cdot 10^{-5}]$

The parameters to be estimated possess physical meaning

Identification method

The properties of the parameter estimation problem

- model equations are nonlinear in parameters,
- big difference in the time constants (2 orders of magnitude),
- an optimization-based parameter estimation method, the Nelder-Mead simplex method is used with the fit measure

$$f_{obj} = \sqrt{\frac{\int_0^T (\hat{N}(t) - N(t))^2 dt}{\int_0^T N^2(t) dt} + \frac{\int_0^T (\hat{T}_m(t) - T_m(t))^2 dt}{\int_0^T T_m^2(t) dt}}$$

• the model-predicted output $\hat{y}(t)$ is computed by simulation ($y = \{N, T_m\}$)

Initial values: engineering tables Reliability domain could be determined

Measured input-output data

A relatively quick temporal off-loading transient, overall duration 10 hours

Estimated parameters

Identifier	Value	Domain
ϕ_0	$1.3 \cdot 10^{13}$	$[10^{13}, 10^{14}]$
σ_X	$2.85 \cdot 10^{-18}$	$[2.8 \cdot 10^{18}, 3.2 \cdot 10^{18}]$
$lpha_f$	$-5.362 \cdot 10^{-3}$	$[-5.5 \cdot 10^{-3}, -3.8 \cdot 10^{-3}]$
$lpha_m$	$-2.018 \cdot 10^{-2}$	$[-3.5 \cdot 10^{-2}, -1.8 \cdot 10^{-2}]$
A_1	0.1056	[0.1, 1]
A_3	0.8757	[0.1, 1]
p_0	0.0401	[-0.1, 0.1]
p_1	-0.44	$\left[-1,-0.1\right]$
p_2	-0.976	$\left[-1,-0.1\right]$
Λ	$2.18 \cdot 10^{-5}$	$[1.5 \cdot 10^{-5}, 3.5 \cdot 10^{-5}]$
λ_I	$2.9306 \cdot 10^{-5}$	$[2.8 \cdot 10^{-5}, 3 \cdot 10^{-5}]$
λ_X	$2.1066 \cdot 10^{-5}$	$[2 \cdot 10^{-5}, 2.2 \cdot 10^{-5}]$

The parameters are within their realiability domain

The fit

A relatively quick temporal off-loading transient

- duration: 3 hours (small compared to the poisoning effects)
- magnitude: 25 %: large compared to the validity domain of the model

Problems at the end of the transient

Further improvements

Improved parameter estimation with

- estimating the initial condition of the non-measurable state variables
- respecting the model validity domain (100-90 %) another transient

Much better fit

The quality of the estimates

Evaluation

- sensitivity of the loss with respect to single parameters
- sensitivity of the loss with respect to a pair of parameters

Conclusions and future work

Results

• Simple model in physical coordinates

- nonlinear in its variables and parameters
- parameters with physical meaning
- Model parameter estimation
 - Nelder-Mead simplex optimization
- Refinement by estimating the initial values of the state variables

Future work

- integrating the reactor model into the primary circuit model
- supervisory controller for coordinating the controllers in the primary circuit

