## Levels of mathematical modelling in systems neuroscience



Balazs Hangya Lendulet Laboratory of Systems Neuroscience Institute of Experimental Medicine Hungarian Academy of Sciences

BME Matematikai Modellalkotás Szeminárium 10 Oct 2017, Budapest







## **NEURONS**



How biologists see me



How lay people see me



How engineers see me



How kids see me



How artists see me



How it really is

## Neural communication



## Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

## Attention task in mice

- Sustained attention task
- Temporal focus (anticipation)





## Subjective hazard rate as temporal attention

$$h(t) = \frac{f(t)}{1 - F(t)}$$

$$F(t) = \int_0^t f(s) ds$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tau) e^{-(\tau - t)^2 / (2\Phi^2 t^2)} d\tau$$

$$\tilde{F}(t) = \int_0^t \tilde{f}(s) ds$$

$$\tilde{h}(t) = \frac{\tilde{f}(t)}{1 - \tilde{F}(t)}$$

$$r(t) = w_e + w_u A_u(t - \tau) + w_b A_b(t - \tau) + \varepsilon$$



Janssen and Shadlen, 2005

## Reaction time as a function of foreperiod



## Reaction time as a function of foreperiod





1.5

2.5

0.5

## Exponential foreperiod distribution



## Different versions of the subjective hazard model





Reaction time

$$\tilde{F}(t) = \int_0^t \tilde{f}(s) ds$$

$$A_b(t) = \frac{\tilde{f}(t)}{1 - \tilde{F}(t)}$$

$$r(t) = \mathbf{w_e} + \mathbf{w_b} A_b (t - \tau)$$

## Different versions of the subjective hazard model

4. 
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

5. 
$$r(t) = w_e + w_r e^{t-\tau} + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

6. 
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$$

7. 
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi(t^{\Psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/\left(2(\Phi t^{\Psi})^2\right)} dx$$

8. 
$$r(t) = w_e + w_r e^{t-\tau} + w_b A_b (t-\tau)$$
  $\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$ 

9. 
$$r(t) = \frac{\mathbf{w}_e}{\mathbf{w}_r} e^{t-\tau} + \frac{\mathbf{w}_b}{\mathbf{w}_b} A_b(t-\tau)$$
  $\tilde{f}(t) = \frac{1}{\Phi(t^{\psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/\left(2(\Phi t)^2\right)} dx$ 

## Different versions of the subjective hazard model

10. 
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

11. 
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$$

12. 
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi(t^{\psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/\left(2(\Phi t)^2\right)} dx$$

## Model fitting



## Model selection



## Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

## Sustained attention operationalized by RT and performance



Attention wanders...

## Some cells predict reaction time



## Some cells predict performance



## Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

## Activation by reward correlates with expectations



## Activation by reward correlates with surprise



## Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

## Are you sure?



## How to probe decision confidence?

Humans: just ask.... – easy (or is it?)

Non-human primates: uncertainty option, opt-out tasks, post-decision wager



Rodents: the waiting time task



Kepecs & Mainen

## We find recurring patterns of confidence...



...Is there a reason for that? What are the mathematical laws that describe decision confidence? How general are they?

## Fully stochastic model of decision making





## Statistical decision confidence

The choice can be evaluated in terms of a hypothesis testing problem:

- 1. Null hypothesis  $(H_0)$ : The choice  $\vartheta = \theta(\hat{d})$  is incorrect;
- 2. Alternative hypothesis  $(H_1)$ : The choice  $\vartheta = \theta(\hat{d})$  is correct.

**Definition 2.** *Define confidence as* 

$$c = P(H_1 | \hat{d}, \vartheta).$$

Equivalently,

$$c = P(\Pi(\theta) = 1 | \hat{d}, \vartheta).$$

## The belief function

**Definition 3.** Define the belief function  $\xi : \mathcal{R}(\hat{D}) \times \mathcal{R}(\theta) \to [0, 1]$  as

$$\xi(\hat{d}, \vartheta) = P(H_1|\hat{d}, \vartheta) = P(\Pi(\theta) = 1|\hat{d}, \vartheta), \tag{2.3}$$

where  $\mathcal{R}(\hat{D})$  denotes percept space and  $\mathcal{R}(\theta)$  denotes the range of all possible choices (i.e., the choice space).

**Definition 4.** Accuracy is the expected proportion of correct choices:

$$A = E[\Pi(\theta)]. \tag{2.4}$$

## First theorem: Confidence predicts accuracy

We seek to determine the following function:  $f : [0, 1] \rightarrow [0, 1]$ ,  $f : c \mapsto A_c$ , where  $A_c$  is the accuracy for choices with a given confidence. Our claim is that this function is the identity.

**Theorem 1.** Accuracy equals confidence:

$$A_c = c$$
.

Proof: Fairly easy.



## Define difficulty

**Definition 5.** *Define evidence discriminability as a (deterministic) function of the evidence distribution:* 

$$\Delta = \Delta(P(D)). \tag{2.6}$$

The evidence discriminability function has to fulfill the following property:

$$\Delta(P_1(D)) > \Delta(P_2(D)) \iff P(H_1|P_1(D)) > P(H_1|P_2(D))$$

$$\iff P(\Pi(\theta) = 1|P_1(D)) > P(\Pi(\theta) = 1|P_2(D))$$

$$\iff E(\Pi(\theta)|P_1(D)) > E(\Pi(\theta)|P_2(D)), \quad (2.7)$$

## Second theorem: Confidence increases for correct and decreases for incorrect choices with decreasing difficulty



#### **Theorem 2.** *Let us assume that:*

- Belief independence: the belief function (ξ) is independent of evidence discriminability
- Percept monotonicity: for any given confidence c, the relative frequency of percepts mapping to c by ξ changes monotonically with evidence discriminability for any fixed choice.

Under these assumptions, confidence increases for correct choices and decreases for incorrect choices with increasing evidence discriminability.

## Third theorem: Confidence predicts outcome beyond difficulty



**Theorem 3.** For any given evidence discriminability, accuracy for low-confidence choices is not larger than that of high-confidence choices (splitting the confidence distribution at any particular value). A strict inequality holds in all cases when accuracy is dependent on the percept.

Proof: Fairly straightforward consequence of the first theorem.

## Fourth theorem: Average confidence in neutral evidence

#### **Theorem 4.** Assuming

- The percept is determined by a symmetric distribution centered on the evidence ("symmetric noise model"),
- The evidence is distributed uniformly over the evidence space,
- *The choice is deterministic,*

the average confidence for neutral evidence is precisely 0.75.

**Lemma 1.** Integrating the product of the probability density function and the distribution function of any probability distribution symmetric to zero over the positive half-line results in 3/8:

$$\int_0^\infty f(t)F(t)\mathrm{d}t = \frac{3}{8}.$$
 (2.8)

## Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence
- Bonus: Hypothesis testing for action potential timing

## Stimulus-Associated Spike Latency Test



## Stimulus-Associated Spike Latency Test



$$D_{JS}^{2}(P||Q) = \sum_{i=1}^{N} \left( p_{i} \log \frac{2p_{i}}{p_{i} + q_{i}} + q_{i} \log \frac{2p_{i}}{p_{i} + q_{i}} \right)$$

distance of interval distributions after vs before the light pulse was measured by Jensen-Shannon information divergence





## Acknowledgement

Temporal focus

inputations Sustained attention

Sustained attention and reinforcement learning

g

Decision confidence

SALT

**Tamas Tardos** 



Sachin P. Ranade



Maja Lorenc



Joshua I.Sanders



Duda Kvitsiani



Adam Kepecs



# **Cold Spring Harbor** kepecslab,

## Acknowledgement

MARIE CURIE

Duda Kvitsiani Sachin P. Ranade Hyun-Jae Pi Maja Lorenc



Panna Hegedüs Nicola Solari Diána Balázsfi Katalin Sviatkó Barnabás Kocsis

Tamás Laszlovszky Bálint Király Flóra Bús Eszter Ujvári Katalin Lengyel







hangyalab, Hungarian Academy of Sciences