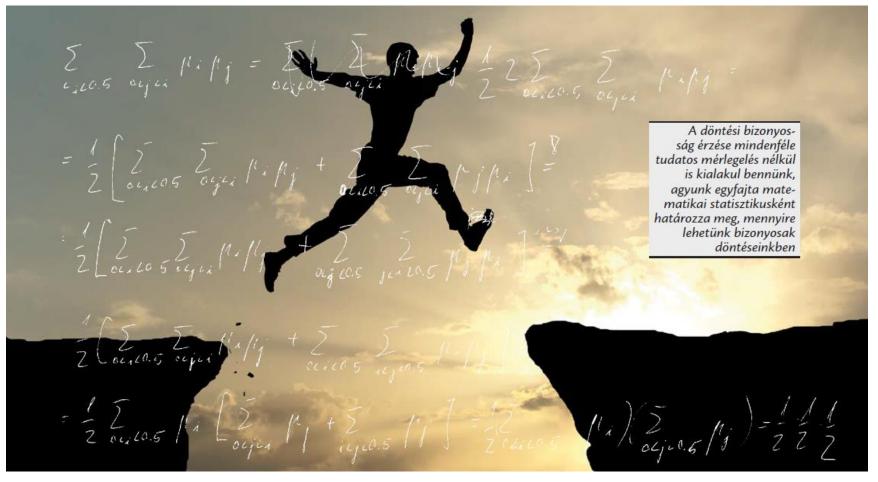
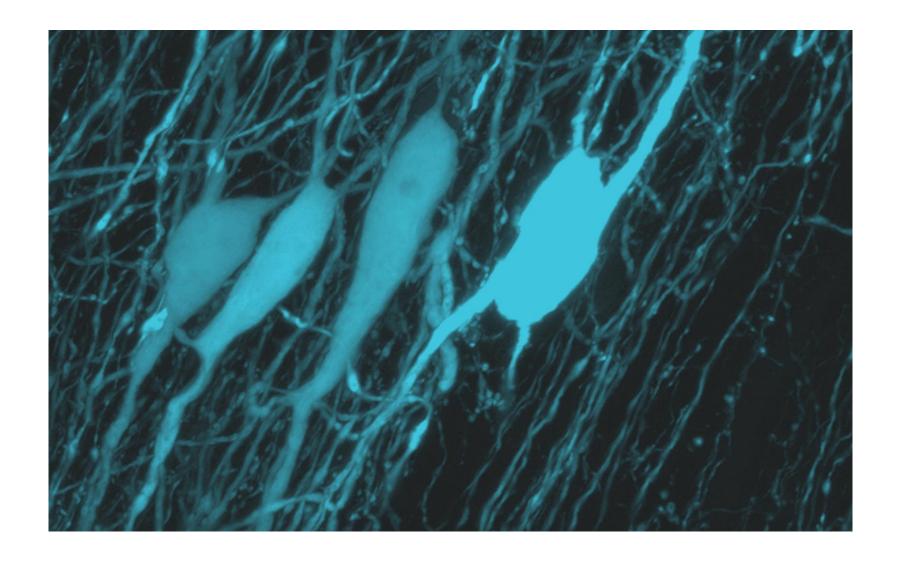
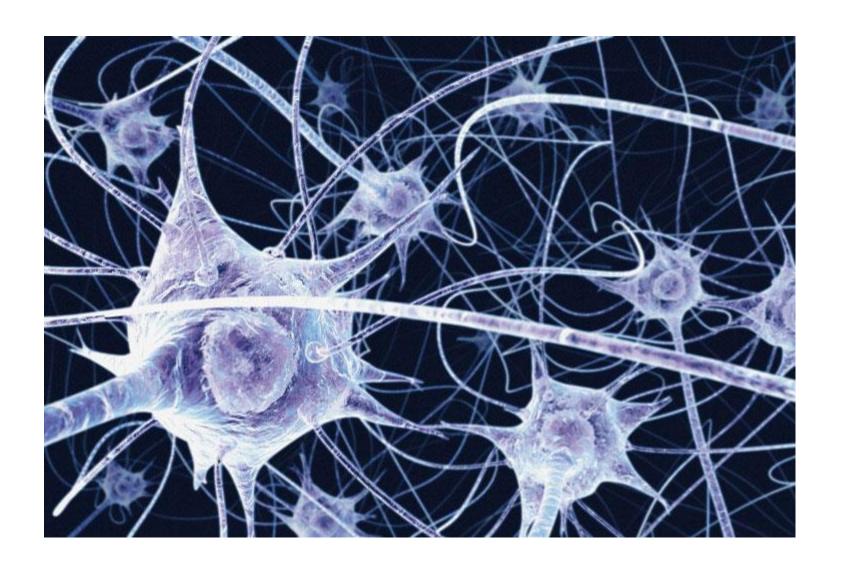
Levels of mathematical modelling in systems neuroscience

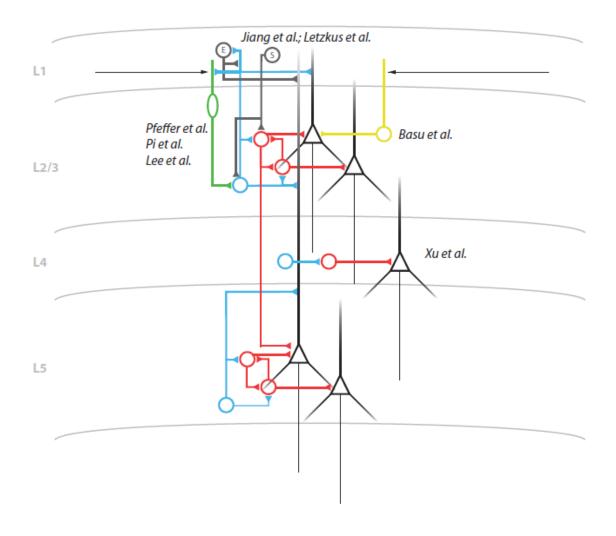


Balazs Hangya Lendulet Laboratory of Systems Neuroscience Institute of Experimental Medicine Hungarian Academy of Sciences

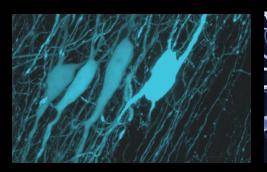
BME Matematikai Modellalkotás Szeminárium 10 Oct 2017, Budapest







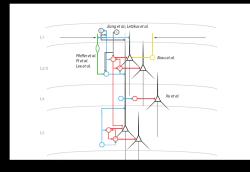
NEURONS



How biologists see me



How lay people see me



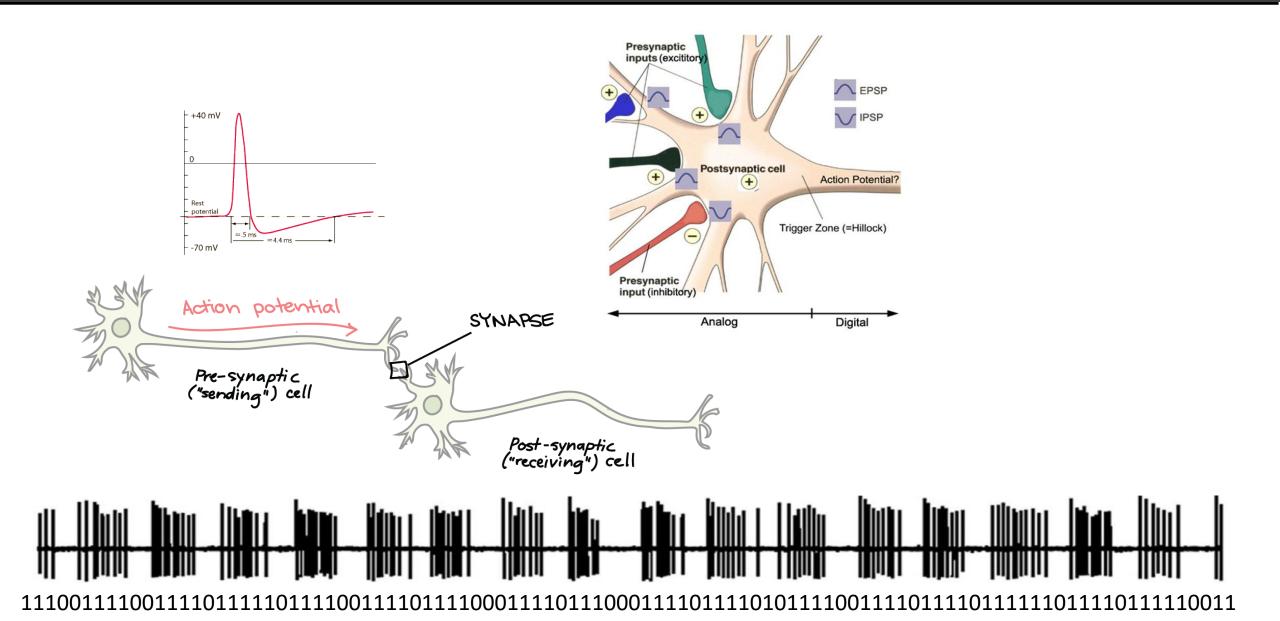
How engineers see me

How kids see me

How artists see me

How it really is

Neural communication

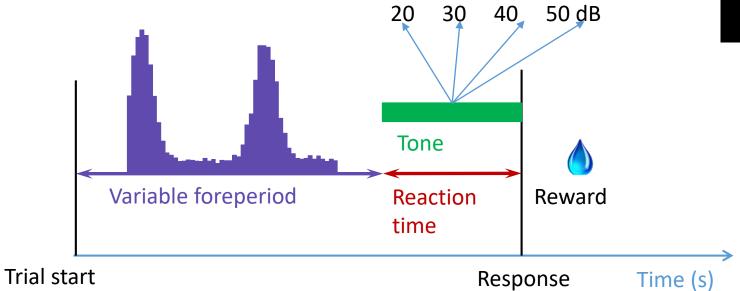


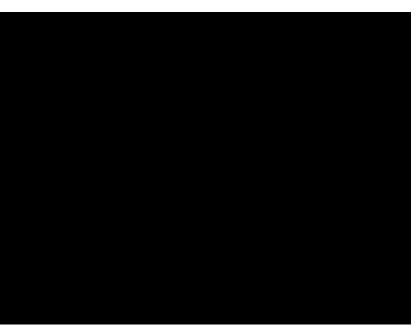
Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

Attention task in mice

- Sustained attention task
- Temporal focus (anticipation)





Subjective hazard rate as temporal attention

$$h(t) = \frac{f(t)}{1 - F(t)}$$

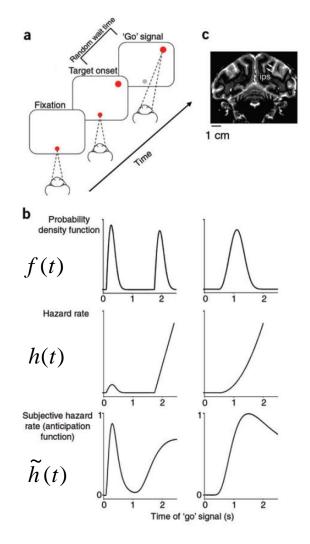
$$F(t) = \int_0^t f(s) ds$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tau) e^{-(\tau - t)^2 / (2\Phi^2 t^2)} d\tau$$

$$\tilde{F}(t) = \int_0^t \tilde{f}(s) ds$$

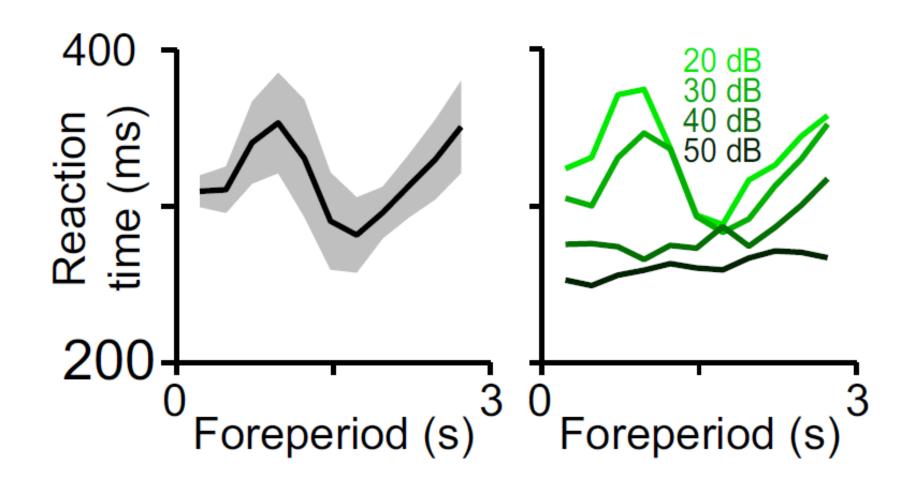
$$\tilde{h}(t) = \frac{\tilde{f}(t)}{1 - \tilde{F}(t)}$$

$$r(t) = w_e + w_u A_u(t - \tau) + w_b A_b(t - \tau) + \varepsilon$$

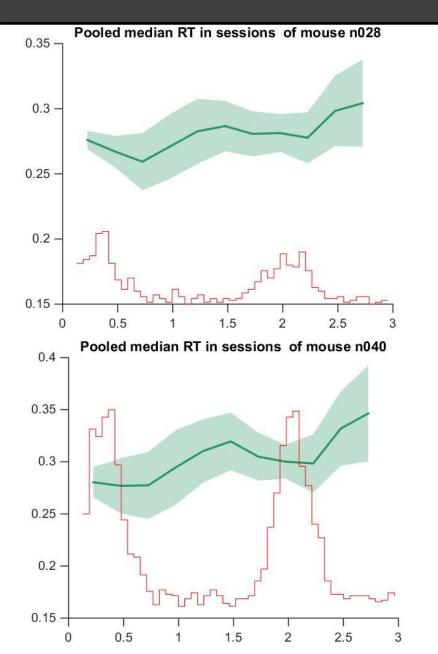


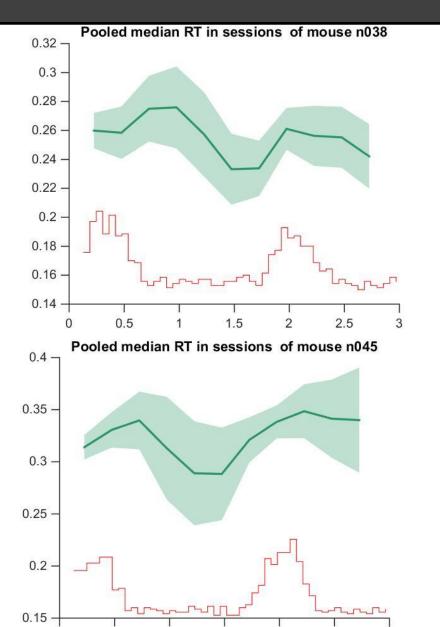
Janssen and Shadlen, 2005

Reaction time as a function of foreperiod



Reaction time as a function of foreperiod



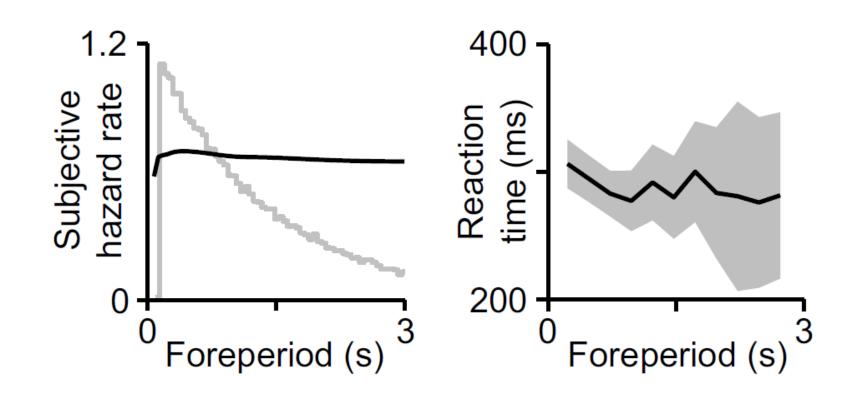


1.5

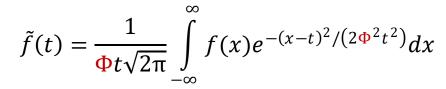
2.5

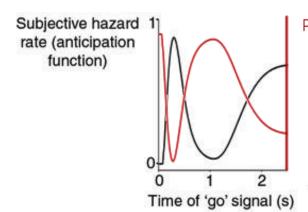
0.5

Exponential foreperiod distribution



Different versions of the subjective hazard model





Reaction time

$$\tilde{F}(t) = \int_0^t \tilde{f}(s) ds$$

$$A_b(t) = \frac{\tilde{f}(t)}{1 - \tilde{F}(t)}$$

$$r(t) = \mathbf{w_e} + \mathbf{w_b} A_b (t - \tau)$$

Different versions of the subjective hazard model

4.
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

5.
$$r(t) = w_e + w_r e^{t-\tau} + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

6.
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$$

7.
$$r(t) = w_e + w_b A_b (t - \tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi(t^{\Psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/\left(2(\Phi t^{\Psi})^2\right)} dx$$

8.
$$r(t) = w_e + w_r e^{t-\tau} + w_b A_b (t-\tau)$$
 $\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$

9.
$$r(t) = \frac{\mathbf{w}_e}{\mathbf{w}_r} e^{t-\tau} + \frac{\mathbf{w}_b}{\mathbf{w}_b} A_b(t-\tau)$$
 $\tilde{f}(t) = \frac{1}{\Phi(t^{\psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/\left(2(\Phi t)^2\right)} dx$

Different versions of the subjective hazard model

10.
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi t \sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-(x-t)^2/(2\Phi^2 t^2)} dx$$

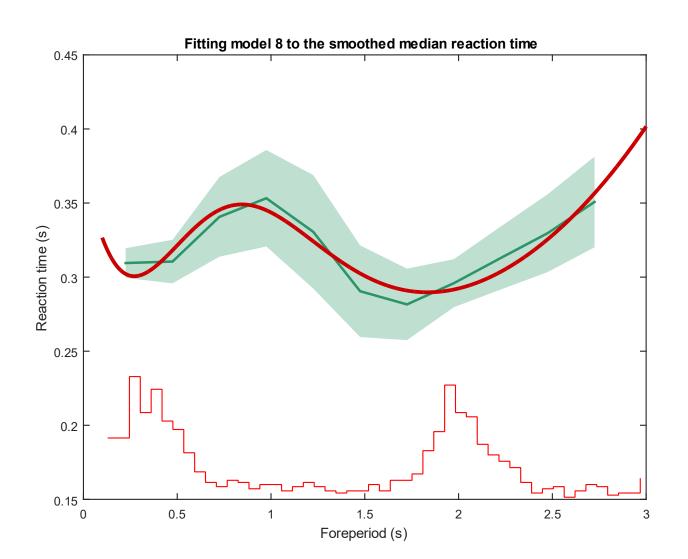
11.
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{(\Phi t + \psi)\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/(2(\Phi t + \psi)^2)} dx$$

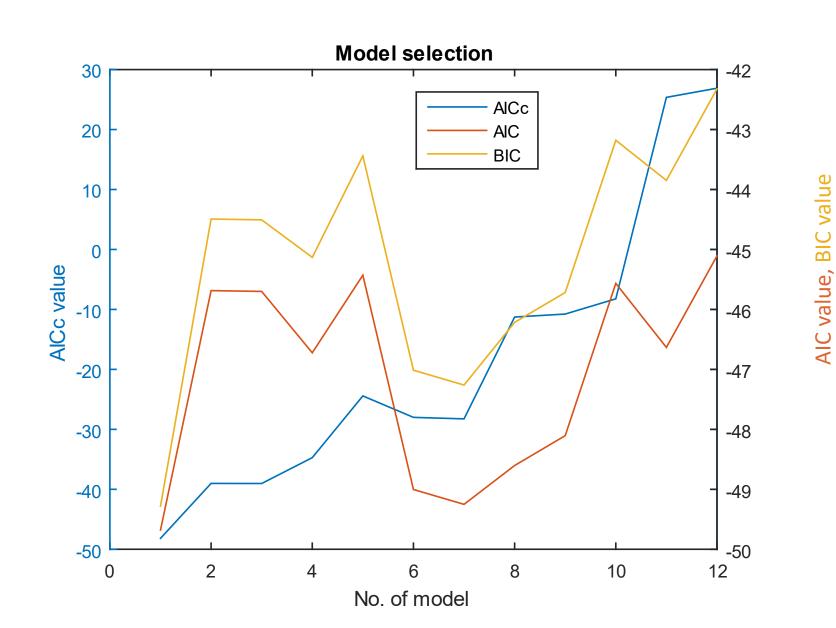
12.
$$r(t) = w_e + w_r e^{k(t-\tau)} + w_b A_b(t-\tau)$$

$$\tilde{f}(t) = \frac{1}{\Phi(t^{\psi})\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-(x-t)^2/\left(2(\Phi t)^2\right)} dx$$

Model fitting



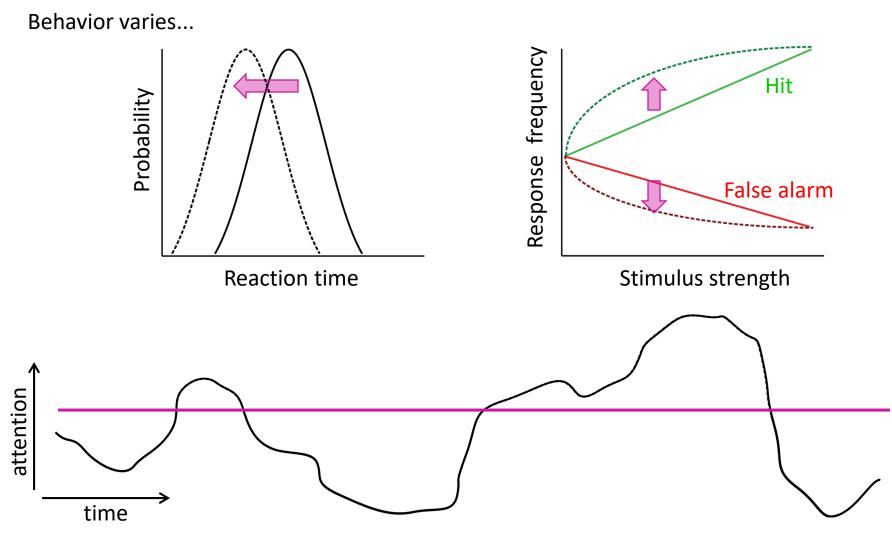
Model selection



Outline

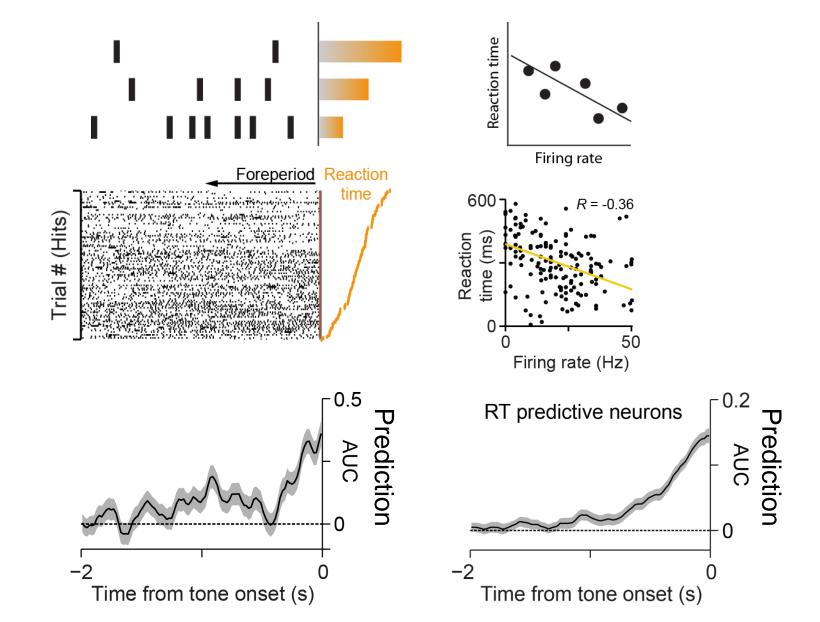
- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

Sustained attention operationalized by RT and performance

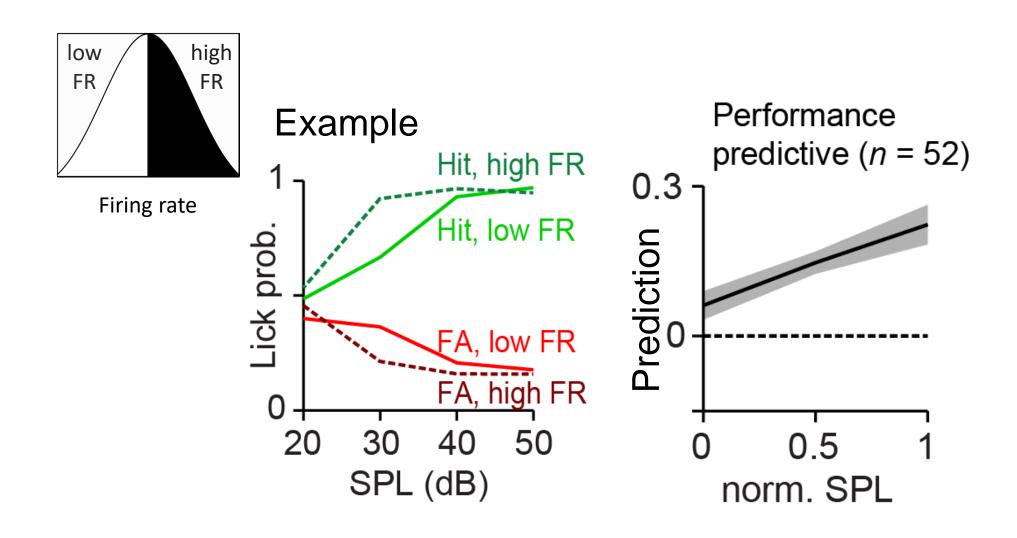


Attention wanders...

Some cells predict reaction time



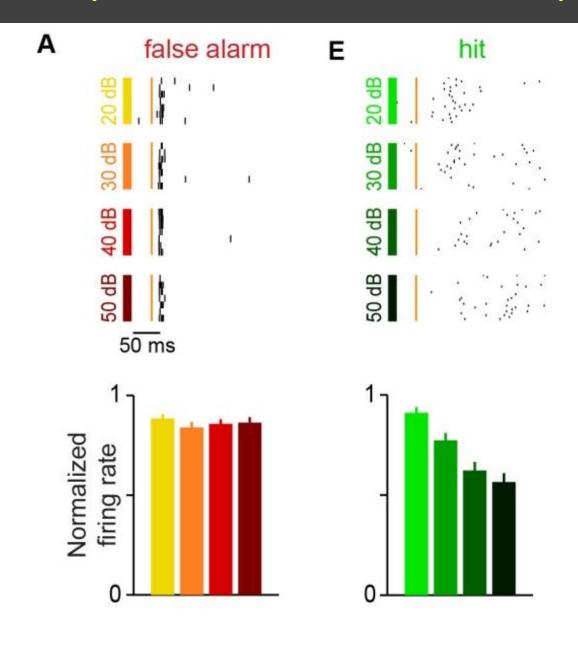
Some cells predict performance



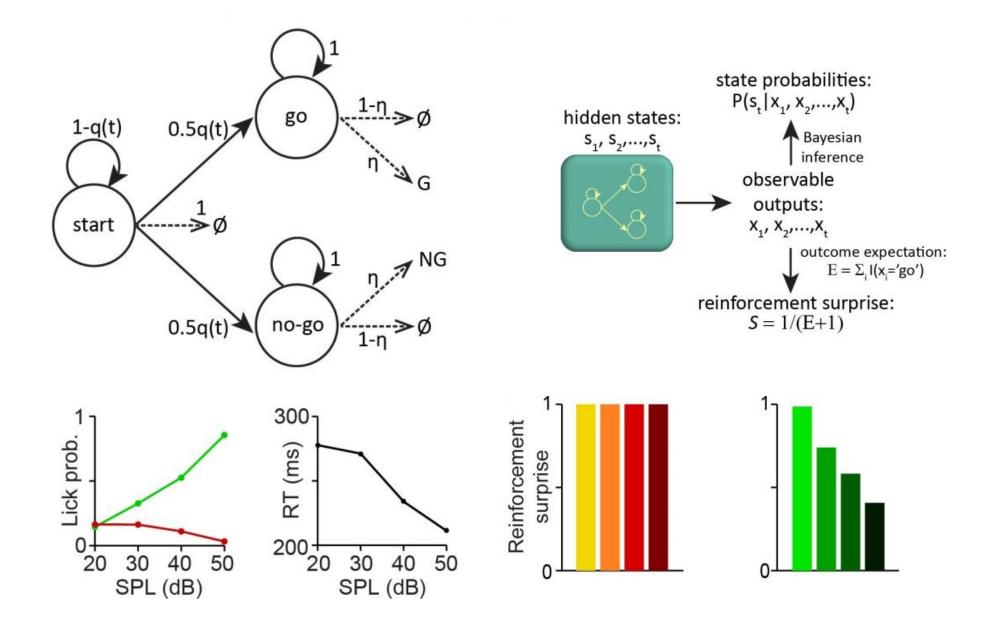
Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

Activation by reward correlates with expectations



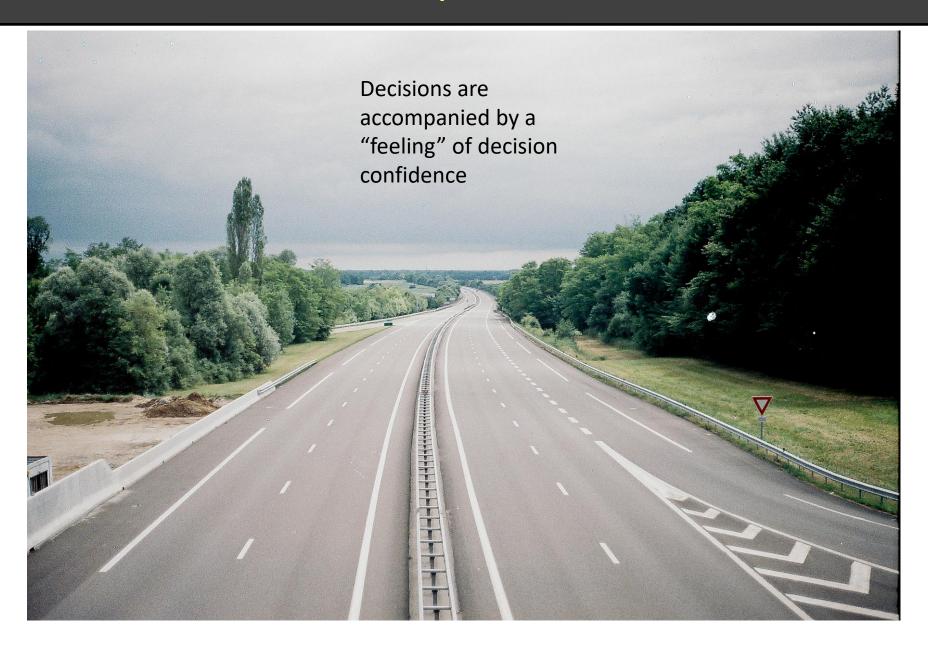
Activation by reward correlates with surprise



Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence

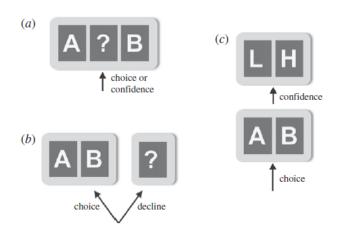
Are you sure?



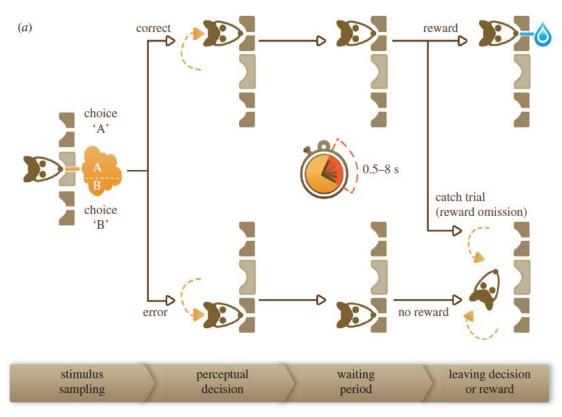
How to probe decision confidence?

Humans: just ask.... – easy (or is it?)

Non-human primates: uncertainty option, opt-out tasks, post-decision wager

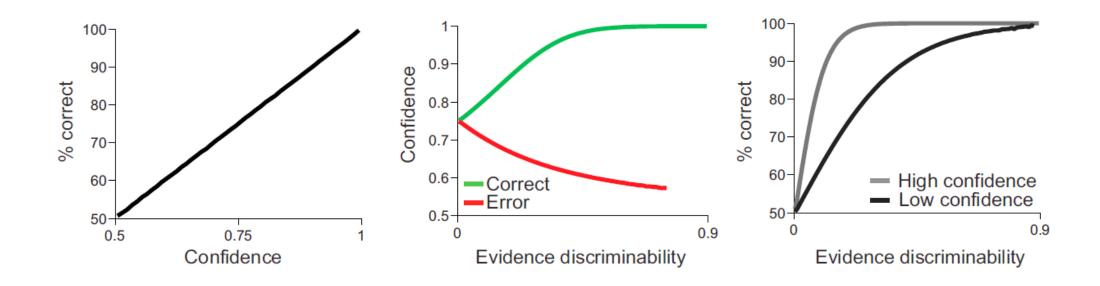


Rodents: the waiting time task



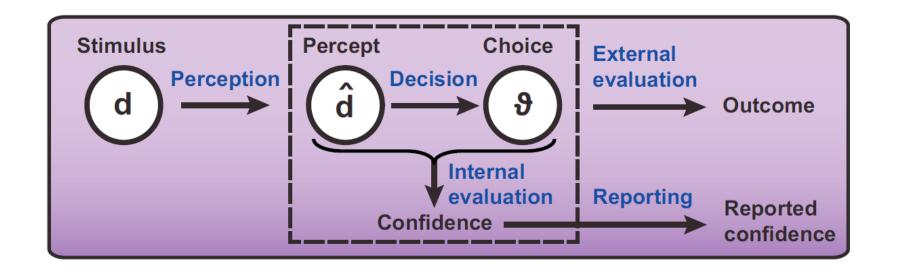
Kepecs & Mainen

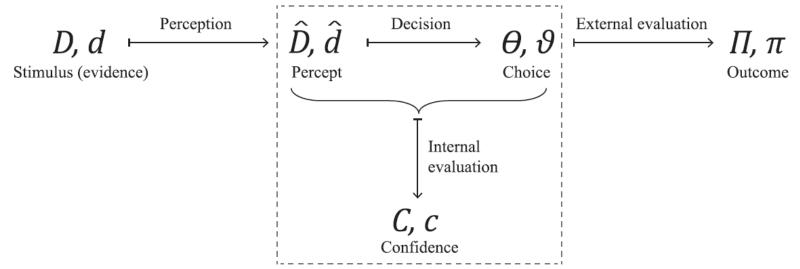
We find recurring patterns of confidence...



...Is there a reason for that? What are the mathematical laws that describe decision confidence? How general are they?

Fully stochastic model of decision making





Statistical decision confidence

The choice can be evaluated in terms of a hypothesis testing problem:

- 1. Null hypothesis (H_0) : The choice $\vartheta = \theta(\hat{d})$ is incorrect;
- 2. Alternative hypothesis (H_1) : The choice $\vartheta = \theta(\hat{d})$ is correct.

Definition 2. *Define confidence as*

$$c = P(H_1 | \hat{d}, \vartheta).$$

Equivalently,

$$c = P(\Pi(\theta) = 1 | \hat{d}, \vartheta).$$

The belief function

Definition 3. Define the belief function $\xi : \mathcal{R}(\hat{D}) \times \mathcal{R}(\theta) \to [0, 1]$ as

$$\xi(\hat{d}, \vartheta) = P(H_1|\hat{d}, \vartheta) = P(\Pi(\theta) = 1|\hat{d}, \vartheta), \tag{2.3}$$

where $\mathcal{R}(\hat{D})$ denotes percept space and $\mathcal{R}(\theta)$ denotes the range of all possible choices (i.e., the choice space).

Definition 4. Accuracy is the expected proportion of correct choices:

$$A = E[\Pi(\theta)]. \tag{2.4}$$

First theorem: Confidence predicts accuracy

We seek to determine the following function: $f : [0, 1] \rightarrow [0, 1]$, $f : c \mapsto A_c$, where A_c is the accuracy for choices with a given confidence. Our claim is that this function is the identity.

Theorem 1. Accuracy equals confidence:

$$A_c = c$$
.

Proof: Fairly easy.

Define difficulty

Definition 5. *Define evidence discriminability as a (deterministic) function of the evidence distribution:*

$$\Delta = \Delta(P(D)). \tag{2.6}$$

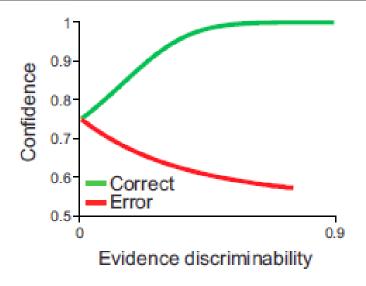
The evidence discriminability function has to fulfill the following property:

$$\Delta(P_1(D)) > \Delta(P_2(D)) \iff P(H_1|P_1(D)) > P(H_1|P_2(D))$$

$$\iff P(\Pi(\theta) = 1|P_1(D)) > P(\Pi(\theta) = 1|P_2(D))$$

$$\iff E(\Pi(\theta)|P_1(D)) > E(\Pi(\theta)|P_2(D)), \quad (2.7)$$

Second theorem: Confidence increases for correct and decreases for incorrect choices with decreasing difficulty

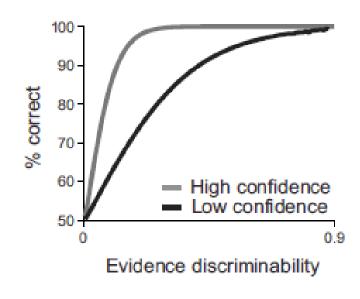


Theorem 2. *Let us assume that:*

- Belief independence: the belief function (ξ) is independent of evidence discriminability
- Percept monotonicity: for any given confidence c, the relative frequency of percepts mapping to c by ξ changes monotonically with evidence discriminability for any fixed choice.

Under these assumptions, confidence increases for correct choices and decreases for incorrect choices with increasing evidence discriminability.

Third theorem: Confidence predicts outcome beyond difficulty



Theorem 3. For any given evidence discriminability, accuracy for low-confidence choices is not larger than that of high-confidence choices (splitting the confidence distribution at any particular value). A strict inequality holds in all cases when accuracy is dependent on the percept.

Proof: Fairly straightforward consequence of the first theorem.

Fourth theorem: Average confidence in neutral evidence

Theorem 4. Assuming

- The percept is determined by a symmetric distribution centered on the evidence ("symmetric noise model"),
- The evidence is distributed uniformly over the evidence space,
- *The choice is deterministic,*

the average confidence for neutral evidence is precisely 0.75.

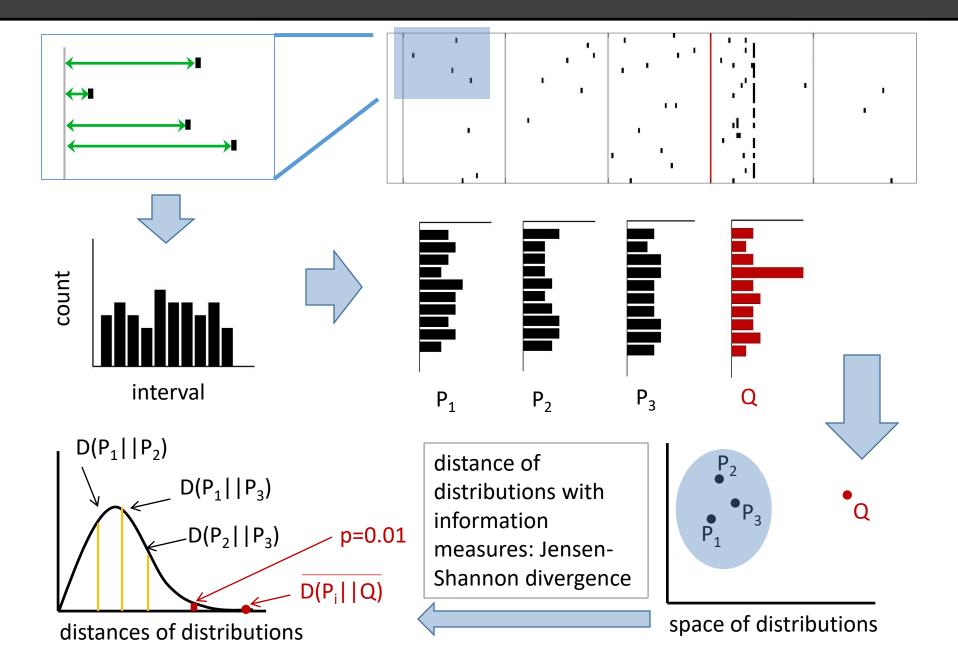
Lemma 1. Integrating the product of the probability density function and the distribution function of any probability distribution symmetric to zero over the positive half-line results in 3/8:

$$\int_0^\infty f(t)F(t)\mathrm{d}t = \frac{3}{8}.$$
 (2.8)

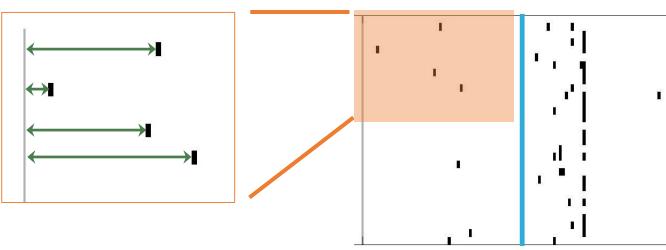
Outline

- Example #1: Temporal focus
- Example #2: Sustained attention
- Example #3: Reinforcement learning
- Example #4: Decision confidence
- Bonus: Hypothesis testing for action potential timing

Stimulus-Associated Spike Latency Test

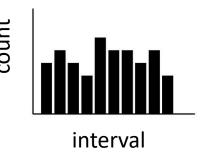


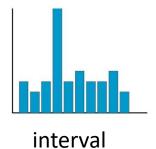
Stimulus-Associated Spike Latency Test



$$D_{JS}^{2}(P||Q) = \sum_{i=1}^{N} \left(p_{i} \log \frac{2p_{i}}{p_{i} + q_{i}} + q_{i} \log \frac{2p_{i}}{p_{i} + q_{i}} \right)$$

distance of interval distributions after vs before the light pulse was measured by Jensen-Shannon information divergence





Acknowledgement

Temporal focus

inputations Sustained attention

Sustained attention and reinforcement learning

g

Decision confidence

SALT

Tamas Tardos

Sachin P. Ranade

Maja Lorenc

Joshua I.Sanders

Duda Kvitsiani

Adam Kepecs

Cold Spring Harbor kepecslab,

Acknowledgement

MARIE CURIE

Duda Kvitsiani Sachin P. Ranade Hyun-Jae Pi Maja Lorenc

Panna Hegedüs Nicola Solari Diána Balázsfi Katalin Sviatkó Barnabás Kocsis

Tamás Laszlovszky Bálint Király Flóra Bús Eszter Ujvári Katalin Lengyel

hangyalab, Hungarian Academy of Sciences