Levels of mathematical modelling in systems neuroscience
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 Example #1: Temporal focus
* Example #2: Sustained attention
* Example #3: Reinforcement learning

* Example #4: Decision confidence



Attention task in mice

= Sustained attention task

= Temporal focus (anticipation)
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Subjective hazard rate as temporal attention
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Reaction time as a function of foreperiod
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Exponential foreperiod distribution
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Different versions of the subjective hazard model
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Different versions of the subjective hazard model
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Different versions of the subjective hazard model
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Model fitting
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* Example #1: Temporal focus
* Example #2: Sustained attention
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Sustained attention operationalized by RT and performance

Behavior varies...
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Trial # (Hits)

Some cells predict reaction time
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Some cells predict performance

low high
FR FR
Example Performance
Hit high FR predictive (n = 52)
1 g 0.3 -
Firing rate == .
; o Hit, low FR —
O O
o _ [= /
v P " —
= FA low FR @ O
0 'F'A"H] ghFR &
20 30 40 50 0 0.5 1

SPL (dB) norm. SPL



* Example #1: Temporal focus
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Activation by reward correlates with expectations
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Activation by reward correlates with surprise

state probabilities:
P(s. | X ;X ;....;X)
hidden states: SRR

51, 52,,,_,5t Bayesian
inference

B
observable
—>» outputs:
X.p XopoousX,

outcome expectation:
¢ E =2 I(x="go’")

reinforcement surprise:
S=1/(E+1)

1- 300- V]
P g ©
2 & £ 8
N = S 21
S o € 3
O———— 200+——— 2

20 30 40 50 20 30 40 50 o

SPL (dB) SPL (dB)



* Example #1: Temporal focus
* Example #2: Sustained attention
* Example #3: Reinforcement learning
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How to probe decision confidence?

Humans: just ask.... —easy (or is it?)

Non-human primates: uncertainty option, opt-out tasks, post-decision wager
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We find recurring patterns of confidence...
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...Is there a reason for that? What are the mathematical laws that describe
decision confidence? How general are they?

Hangya, Sanders, Kepecs 2016, Neural Computation



Fully stochastic model of decision making
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Statistical decision confidence

The choice can be evaluated in terms of a hypothesis testing problem:

1. Null hypothesis (H,): The choice ¥ = 6(d) is incorrect;
2. Alternative hypothesis (H,): The choice ¢ = 6(d) is correct.

Definition 2. Define confidence as
c = P(H;|d. v).
Equivalently,

c=DP1(0)=1|d,9).

Hangya, Sanders, Kepecs 2016, Neural Computation



The belief function

Definition 3. Define the belief function & : R(D) x R(8) — [0, 1] as
£(d,v)=P(H,|d,®)=P1(0)=1|d, ), (2.3)

where R(D) denotes percept space and R(9) denotes the range of all possible choices
(i.e., the choice space).

Definition 4. Accuracy is the expected proportion of correct choices:

A= E[I1(8)]. (2.4)

Hangya, Sanders, Kepecs 2016, Neural Computation



First theorem: Confidence predicts accuracy

We seek to determine the following function: f : [0, 1] — [0,1], f:c
A., where A_ is the accuracy for choices with a given confidence. Our claim
is that this function is the identity.

Theorem 1. Accuracy equals confidence: 1997
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-2 70+
60+
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Define difficulty

Definition 5. Define evidence discriminability as a (deterministic) function of the
evidence distribution:

A= A(P(D)). (2.6)
The evidence discriminability function has to fulfill the following property:

A(P;(D)) > A(P,(D)) <= P(H;|P;(D)) > P(H;|P,(D))
<= P(I1(9) = 1| P{(D)) > P(I1(¢) = 1| P,(D))
<= E([1(9)|P;(D)) = E(IT(0)|P,(D)),  (2.7)

Hangya, Sanders, Kepecs 2016, Neural Computation



Second theorem: Confidence increases for correct and decreases for

incorrect choices with decreasing difficulty
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® Belief independence: the belief function (§) is independent of evidence
discriminability

® Percept monotonicity: for any given confidence c, the relative frequency of
percepts mapping to ¢ by & changes monotonically with evidence discrim-

inmability for any fixed choice.

Under these assumptions, confidence increases for correct choices and decreases
for incorrect choices with increasing evidence discriminability.



Third theorem: Confidence predicts outcome beyond difficulty

== High confidence
== | ow confidence
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Evidence discriminability

Theorem 3. For any given evidence discriminability, accuracy for low-confidence
choices is not larger than that of hi¢h-confidence choices (splitting the confidence
distribution at any particular value). A strict inequality holds in all cases when
accuracy is dependent on the percept.

Proof: Fairly straightforward consequence of the first theorem.

Hangya, Sanders, Kepecs 2016, Neural Computation



Fourth theorem: Average confidence in neutral evidence

Theorem 4. Assuming

® The percept is determined by a symmetric distribution centered on the evi-
dence (“symmetric noise model”),

® The evidence is distributed uniformly over the evidence space,

e The choice is deterministic,

the average confidence for neutral evidence is precisely 0.75.

Lemma 1. Integrating the product of the probability density function and the
distribution function of any probability distribution symmetric to zero over the
positive half-line results in 3/8:

(2.8)
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f F(OF (Hdt =

Hangya, Sanders, Kepecs 2016, Neural Computation



* Example #1: Temporal focus

* Example #2: Sustained attention

* Example #3: Reinforcement learning
* Example #4: Decision confidence

* Bonus: Hypothesis testing for action potential timing



Stimulus-Associated Spike Latency Test
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Stimulus-Associated Spike Latency Test
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