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Linearly constrained, separable concave minimization problem

min F'(x)
Ax<b (P)
1<x<u

where Ac R™", beR™, 1,Luce R"and 1> 0.

Objective function: F(x) := zn: fi(z;), where f; : R — IR are concave
functions and for the domain of fj:1[lj, u;] € Dy, holds. Let us introduce the
sets A:={x€R":Ax<b} and T ={xeR":1<x<u}.
Feasible solution set: ~ P =ANT

set of the optimal solutions: P*:={x € P : F(x) < F(x), x € P}

Known results:

1. If P # () then P* # () holds, since F is continuous and P is bounded and
closed.

2. There is optimal solution at a vertex of the polytop P. wuenberger, 1973)

3. The problem (P) is in the class of NP-complete problems. vury and Kabadi, 1987)
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Practical problems

Several practical problem can be formulated by problem ( P) like
e some control problems (e.g. Apkarian and Tuan, 1999),
e concave knapsack problems (e.g. Moré and Vavasis, 1990/91),

e some production and transportation problems (e.g. Kuno and Utsunomiya,
2000),

e production planning problems (e.g. Liu, Sahinidis and Shectman, 1996),
e process network synthesis problems (e.g. Friedler, Fan and Imreh, 1998),
e some network flow problems (e.g. Yajima and Konno, 1999),
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Solution methods

e listing vertices of the polyhedron P (e.g. Dyer, 1983; Dyer and Proll, 1977),
e cutting plane methods (e.g. Hoffman, 1981; Tuy, Thieu and Thai, 1985),

e branch-and-bound algorithms, BB (e.g. Falk and Soland, 1969; Shectman
and Sahinidis, 1998; Phillips and Rosen, 1993; Locatelli and Thoai, 2000)

and

e other methods ...
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Example

min 5 sin(g x1) + 3 cos(§ z2)

r1 —3x9 <2, r1 — x99 <3, 31 — x99 <12
2x1 + x2 <11, — x1 +bxy <10, —3x1 +2z0 <0
—3r1 — 22 < =3,
0<z1 <5 0<29<3
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Elementary properties of concave functions

Theorem. Let f be one dimensional function on interval I C Djy.
The following statements are equivalent

(a) Function f is concave on interval I.

b)Let x,y€l, v#y and m(x,y) = Li(:”) If a,b, cel,
a < b < ¢ then the following holds m/(a, b) > m(a,c) > m(b,c).

(c) Forany t € I, my(x) =m(t,x) function is decreasingon [\ {t}.

@If a,b,cel, a<b<c then m(a,b) > m(b,c). o

Theorem. Let f be one dimensional concave function on open interval
I C Dy, then

(a) Function f is continuous on interval 1.

(b) Atany t € I the function is left and right differentiable and
frt) > fi(t).
©If a,b,el, a<b then f' (a)>mla,

b) > f'(b), moreover, if f
is strict concave on interval I, then [’ (a) > m(

m(a,b) > f'(b). o

BME DE
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Linear relaxation of concave functions

BB-type linear relaxation of the concave functions f; : R — IR on the closed interval [/;, u;] is

filug) — f5(1)  filwy) — f5)

u]-—lj Uj—lj

9i(x5) = m(lj, uj) (v; —1;) + f(l;) = zj+ (fj(lj) j) = ¢jxj+dj,

where ¢; = m(l;,u;) and d; = f;(l;) — m(l;,u;) ;. Then the objective function F(x) = > f;(z;)
=1
is approximated by the linear function

G(x) = Zgj(xj) = Z(Cj 2+ fil) —cjly) =c"x+ (FQ) =) = cTx +
j=1 j=1

on the set P = ANT, where § = F(I) —c’l. Itis easy to show that

F(x) > G(x) = cI'x +96, holds for all x € P.

Example (continue) =z € [0,5] and zy € [0, 3]

5sin(Z 5 1 1
file) =ssinCe): o= L gm0 5 g =t
3 cos(Z3) — 3 cos(0
f2($2)23008(%l‘2)2 cy = (5 )3 (0) =—1, do=3 = ga2(r2) = —22+3
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Linear relaxation of the problem

Lower bound for the objective value of (P) can be computed using the following linear program-
ming problem

: T
;nelgc x+0 (Prp)

Proposition. Let x € P;, and assume that F' € C(int(7)) then

B=c'x+6=G((%) < F(x)<F(X) + (VF)T (x - %)

holds for all x € P. °

Example (continue)

min %xl—x2+3

r1 —3x9 <2, r1 — Ty <3, 3z1 — x9 <12
2x1 4+ x9 <11, —x1 “+5zo <10, —3x1 +2z0 <0
311 — x9 < =3,
O0<z1 <5 O0<z2<3

Optimal solution: ;1 = 1.53846, T9 = 2.30769, and G(x) = 1.46154

G(x) = 1.46154 < F(x) = 5 sin(§ x1) + 3 cos(§ v2) < 1.8135 11 — 1.4687 22 + 5.269
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Linear programming relaxation of the original problem

Let us consider the relaxed LP problem (and it’s dual) of (P) in the following form

min ¢’'x max —bly +17z —u’'s
Ax<b (PLP) —ATy+Z—S:C (DLP>
I<x<u y>0, z>0, s>0

Set of the dual feasible solutions: D = {(y,z,s): —Aly+z—-s=c,y>0,z>0,s>0}
Weak Duality Theorem. Let x € P and (y, z,s) € D vectors then
c’'x>-bly+1Tz—u's
inequality holds. Previous inequality holds with equality if and only if
0=clx+bly —1Tz4+uls=y'(b-Ax)+2l(x-1)+s (u—x). o

Optimality criteria: Ax<b, 1<x<u
—ATy+z—s:c, y>0,z>0,s>0
y(b—Ax)=0, z(x—-1)=0, s(u—x)=0,

Pr={x*cP:cI'x*<clx, x € P} isthe set of the optimal solutions of the problem (Prp).
Index sets:  J =JpUJN =TpU(TLUITL), TsgnNIn = 0.
Basic vectors {a;:j € Jp} are linearly independent. Let x € P basic feasible solution, then

Xp = B~ 'b-— E lja; — E uj aj, where a; = B_laj.
JETL JETN
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Optimality criteria of the relaxed linear programming problem

Let x* € P; be a basic solution belonging to the basis B and y* = ¢ B~ > 0, we get that

e incase of j € Jp, l; <) <uj, zj = 0and s; = 0 hold and thus  —aly =¢;,
e incase of j € Ji, [j = x%, z; > 0 and s; = 0 hold and thus zj=cj+ajy >0,
e incaseof j € Jy, uj = 2}, zj = 0 and 5; > 0 hold and thus ~ —s; = ¢; +aly <0.

Finally, we obtain a basic solution x* € P, which is optimal if and only if

y'=ckB™! > 0 (1)
—ch_laj < ¢j, any j € jfv and (2)
—cpBTla; > ¢, any jeJy 3)

hold.

Let us consider the set of all objective function coefficients of linear programs for which the
current basic solution, x* € P is an optimal basic solution

Cp = {c € R" : constraints (1) — (3) are satisfied} # ()

Example (continue) Sensitivity analysis shows that if ¢; € [0.2,1.5] and ¢y € [—2.5,—0.33] then
1 = 1.53846, 72 = 2.30769 remains optimal solution of the relaxed LP(c) problem.
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Linear approximation of concave functions

General linear approximation of the concave functions f; : R — IR on the closed interval [a;, b;]
is

hj(w;) = m(a;. by) (x5 — az) + fi(aj) = hjxj +7;
where [; < a; <bj <wuj, hj =m(aj,b;) and r; = fj(aj) — m(aj,b;)a;. Then for the function

Zh 7j) Zh zj + fj(aj) = hja;) = h'x + (F(a) —h'a) =h'x + o,
j=1

where o = F(a) — h'a, and the following inequalities holds

F(x) > H(x), forallx e P(a,b), and F(x) < H(x), forallxe P\ P(a,b),
where a,be 7, a<b and P(a,b)=AN{xeR": a<x<b}
Set of the normal vectors of the general linear approximations:

Hf;:{heR”wv—L+<> € [u)} U (he R - hy = fI_(1), t & (5]} U
{h e R": hj =m(a;,bj), [; <aj <bj <uj}

Question. Is there any relations between the sets Cp and Hy ?
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Linear approximation of concave function
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Example summary: iteration 1

separable concave, objective function:

F(x)=5 sin(%zl) +3 cos(%xg) = fi(z1) + fa(z2)
feasible solution set:
P=ANT={xeR": Ax<b}n{xeR": 0< 2 <5, 0< 129 <3}

linear approximation of the objective function: G(x) = g1(z1) + g2(x2) = % 1 —x9+3

optimal solution of the linear approximation: 1 = 1.53846, T3 = 2.30769, and G(x) = 1.46154
G(X) = 146154 < F(x) = 5 sin(Z 1) + 3 cos(% x2) < 1.8135 21 — 14687 x5 + 5.269 = Fx(x)

sensitivity analysis: if ¢; € [0.2,1.5] and ¢y € [-2.5,—0.33] then Z; = 1.53846, T3 = 2.30769
remains optimal solution of the relaxed L P(c) problem.

finding branching point p:
(Eq1) y1 =02z1andy; =5 sin(% x1) or (Eq2) y1 =15z7andy; =5 sin(%xl)
p: 1bp—>5 Sin(%p) =0 pe€(3.29393,3.29394) then P;=ANT; and Py =ANT;

Ti={xeR": 0< 2 <3.29393, 0< 25 <3} and T3 = {x € R": 3.20394 < 2, < 5, 0 < 9 < 3}

3 . . . . -
Gi(z) = 51— 22 + 3, x € P; is an optimal solution and G (x) = 3 < F(x) < F(x) = 4.6698.
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Example: iteration 2

(LP): mi71)1 G(x) optimal solution 7; = 1.53846, 79
XE

230769, and G(X) = 1.46154

branching point p € (3.29393,3.29394):  (LPy) and (LP)

(LP): min Gi(x) % = (153846,2.30760) € P, (1(%) = 3 < F(%) = 4.6698;
XEF1

sensitivity analysis: ¢; € [1.5,400) and ¢y € [—1,0.5]

(LP,) : min Ga(x)

XEP,

Ga(x) = g7 (21) + g3(z9) = —1.4307 1 + 9.6535 — z9 4+ 3 = —1.4307 x1 — 22 + 12.6535

optimal solution 7; = 4.09091, 5 = 2.818182, and Ga(x) = 3.982454
Ga(X) = 3.982454 < F(%) = 4.4914 and Ga(X) < F(x) < —1.4154 21 — 1.5637 29 + 14.6885

[ Problem | T \ X [ G(x) | F(x) [ Status |
(LP) 0<z1<hH, 0<29<3 (1.53846,2.30769) | 1.46154 | 4.6698 1
(LPy) 0 <z <3.29393, 0 <2y <3| (1.53846,2.30769) 3 4.6698 1

(LPy) 329394 <z <5, 0<um9 <3| (4.09091,2.818182) | 3.982454 | 4.4914 1
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Branch & bound algorithm: based on sensitivity analysis

Step 0

Solve the relaxed LP problem. (Solution: %, G(X), F(X), sensitivity analysis data. Current best
solution: x* := x and F* := F(x).)

Choose a decision variable for branching and compute the branching point, p.

Put the LP problem into the list of problems.

Step 1
Define 7’ and 7" using the branching point of the previous problem.
Produce the corresponding LP’ and LP” problems and put them into the list of problems.

Step 2
Select an LP problem from the list of problems that has not bee analyzed or solved, yet.
If the list of problems is empty then stop.

Step 3

Solve the selected LP problem: x, G(x), F'(X), sensitivity analysis data.

If G(x) > F* then delete this problem from the list of problems and go to Step 2.
Choose a decision variable for branching and compute the branching point, p.
Put the LP problem into the list of problems.

If F(x) < F* then F* := F(x) and delete all problems from the list for which G(x) > F™.
Go to Step 1.
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Example: result

| Function value | Vertex | Function value |
P =(%,3) 7.7274 Psg = (30,50 4.6698
Py = (%, 2) 5.6569 Ps7 = (3,1) 4.3082
Py =(2,2) 5.109 Pry = (1,0) 5.5
P = (£, %) 4.4914 Po1 = (2,0) 7.3301
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Necessary optimality condition

Lemma. Consider problem (P). Let x € P* then G(x)= mi%l G/(x), where
xe)

G(x) = (VF(x))T(x — %)+ F(x). Thus x € P;, where h= VF(x). Furthermore, if
x 1s a basic solution belonging to basis B then V/F'(x) € Cp.

Proof. Because of the concavity of function F
F(x) < G(x) = (VF(%))" (x — %) + F(%),

with equality at X, namely F'(x) = G(X). Then F(X) = mi71)1 F(x) < mi7r31 G(x) < G(x) = F(x),
Xe XeE
from which

min @(x) = G(f{)
is obtained. Furthermore
celCp <= cI'x<clx, forallxe P <<= cccone(P\{x})".

Since x € P*, thenthereisno x € P, such that the function F(x) is decreasing in the
direction x —x, namely (VF(X)) € cone(P\{x})T =Cp. e

Remark. 1. If F is not differentiable at x then any inner point of the set of subgradients is also
suitable for function G.
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A property of linear relaxation

Consider problem (P). Let us define the set H C R" such that the elements of this set are

e coefficients of the the objective functions of (general) linear programming relaxations of the
problem (P);
e if the optimal solutions of linear programming problem related to all elements of set H were

known, then the optimal solution of problem (P) could be generated, too.

Remark. One possibility to approximate #H is H;, which uses the information given in the
problem (P) about the function F' and about the box constraints 7. However, no information
about the set A is taken into consideration.

Proposition. Consider the basic solution x € P, with basis B and let h € H be a given vector.
If heCp={ce R": vector csatisfies equation (1) — (3) } then the x is an optimal solution
of the following linear programming problem.

in h' P;
min X} (Fr),

namely x € P;, where P; denotes the set of optimal solutions of problem (). e

From this result follows that
if HCCp then xeP; 4)

holds for any h € H.

Ilés Tibor BME DE



Sufficient optimality condition

Theorem. Consider the linearly constrained, separable concave minimization problem (P), and
suppose the functions f; are strictly concave. Let X € P be a basic solution with basis B that
‘H C Cp holds, then P* = {x}.

Proof. Since H C Cp thus x € P; holds for any h € H.

There exist global minimal solution x of (P) which is an extremal point of the set P. Suppose
that x # x.

Let h = V f(%). Since previous lemma asserts x € P, otherwise x € Pr. The following
relations hold,

P(x) =G(%) =G(x) > F(x), )

which is a contradiction, thus x = %, then P* = {x}. o

Remark. The strict inequality comes from the strict concavity. If the condition of strict concavity
is removed from the previous Theorem then the inequality (5) will be modified as

F(x) > F(x) =G(x) =GX) > F(x)
so F(x) = F(x), thus x € P*  but the equality |P*| =1 cannot be guaranteed.
It has been proved that the sufficient optimality condition for a basic solution x € P of problem

(P) with basis B is
H C Cp.
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Approximating set H

If the set approximating # is only based on the properties of problem (P), we can get
Hp={heR": hje[fi_(u), fi ()]}

and H C H holds. Based on the previous result for a basic solution x € P of problem (P) with
basis B, if HC H; C Cp then P* = {x}.

Let us determine set approximating H for a given basic solution x € P then
Hyx={heR":hje[d,c¥]}  (Phillips and Rosen, 1993)
this set (hyper rectangle) will contain the coefficients of all possible relaxed linear functions, where

_ ), w3 A and o= IR T 7

J { j’ (1), otherwise J { fjl-_(uj), otherwise

U

From the concavity of the function F, we can get the inequalities
fi-(ug) < ¢ = m(@5,u5) <mlly,z5) = ¢f < fi () (6)
and therefore H fx € My holds.
2" relaxed LP problems have a common optimal solution <= H;5x CCp

extremal points of ;g areelementsof Cp <<= H;x CCp
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Test points

Theorem. (Phillips and Rosen, 1993) Consider the linearly constrained, separable concave mini-
mization problem (P). Let x € P be a basic solution with basis B such that H ;¢ C Cp holds,
then x € P*. o

Let us define a test point, which belongs to H %, and violate the constraint indexed by j € J%
—chflaj = —cgéj < ¢j.

It means, we choose such vertex of Hx, which increase the left side of inequality and decrease
the right side as much as possible. Therefore the test point h; can be defined as follows

Czlf’ ifi=j
o Cjs ifa;; >0,i€ Jp
* 0?7 ifdij <0,2€ Jp

hij, lf,Z ¢ (._73 \ {’L Dy = 0}) U {j}, where hij € [cé,cﬂ.
It is obvious that h; € H ;¢ holds. From the construction of the test point it is clear that
hLa; + h;; <hka; +hj; holds for any h € H ¢, which is

0> —~hja; — hj; > —hLa; — hj;. (7)

Now, if the test point does not violate the inequality, that is the red inequality holds, then there is
no element of set H ;5 which can violate the inequality j € J%.
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Test points (continue)

In general, the test point hy, for any index k € J} U J# will be defined, using sets 7;", 7, and
1 € Jp, as follows

Lo ifkeJ i€ Js
v ifke gt ie s
hip =% ct, ifi=k andk e J}
cf, ifi=k andk e Jy
hi, ¢ (Jp\{i: ay=0})U{k}, whereh; € [c},c¥]

where

I = {keJk :ay <0yu{ke Ty ay >0}, and
I~ = ke Tl ay >0 u{ke T am <0}

Based on these observations, we can get the following proposition.

Proposition. If test point hy does not violate the inequality k € J% U J then no point h € Hx
violates either. e

Moreover, in case of j € JL (j € T
cT ! O
_hB,j aj > Cj (—hTBJ' aj < C;“L)

the test point h; violates the optimality criteria which belongs to the variable ;.
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Procedure for checking the optimality of a basic solution

We can determine a test point for testing inequality system hLB~1 > 0.
Let matrix B = B~! and let b; denote the i** column of matrix B, then
Cé, ifbjz' >0,5€JIB
hJZ: C?, lfbjz <O,j ejB B
hi, ifjeJhugeui{je Jp : bj =0} where, h; € [cé.,c;‘]
In this case, if Bf B b; > 0 holds, then for any vector h € H 7x the it nonnegativity condition is
satisfied.
Remark. Instead of testing 2" vertices of hyper rectangle Hx, itis enough to determine n
test points in order to check whether the inclusion H ;s € Cp holds or not.
Let us introduce the index set KC = {i : h; test point violates i'" inequality }.

It is obvious that, the equality I = () leadsto H;x C Cp, thus x € P* holds. The decision,
whether basic solution x € P 1is optimal for the problem (P), can be performed as follows

1. generate set Hx,
2. using matrices B! and B~'Ay generate test point hj,

3. check the test points, if there is no index j for which test point Bj violates j¥* condition
then x is optimal solution for problem (P).

Question: if any test point h; can be founded which violates ;* condition, can we conclude
that x € P is not an optimal solution of the problem (P) ?
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Illustration: set Cp for different bases
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Illustration: a test point violating a constraint

A
T __ ./
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Illustration: a test point violating a constraint
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Illustration: projections of the Cp sets
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IMustration: projections of the Cp and the corresponding # r ¢ sets
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