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• We have a (possibly) non-linear, but deterministic function f(x) that depends on one or more 

independent variables.

• f(x) is probably expensive to evaluate, and we may or may not be able to efficiently and/or 

accurately (!) compute its gradient or Hessian.

• Problem: find a minimum of f(x) with as few evaluations as possible.

• Examples of real-life problems

• MLE, model fitting, cost minimization, performance maximization

• How do we recognize what we are looking for?

• local vs. global optima

• trying to find the longest straw in the haystack

Problem Definition
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• Analogy with bisection root search.

• Given an initial bracket of a minimum [a,b,c], i.e. a < b < c, and f(b) < f(a), and f(b) < f(c), we 

take a guess at a point x either in (a,b) or in (b,c). We evaluate f(x) and update our bracket 

accordingly.

• e.g. x is in (a,b): if f(x) < f(b) then the new bracket is [a,x,b], else the new bracket is [x,b,c]

• We repeat this until the bracket is small enough.

• e.g. suppose that b is fraction a fraction w of the way between a and c, so w = (b-a)/(c-a). Let the next trial point be 

a fraction z before b, so z = (b-x)/(c-a). Hence the size of the next bracket is either w or or 1-w+z. Minimizing the 

worst case probability yields z = 2w-1. z is positive only if x is in the larger segment (w > ½). If z is “optimal” then so 

was w, which suggests that z / w = 1-w, which in turn gives w²+w-1=0, i.e. w ≈ 0.61803.

• Optimal choice of x is (1-w) fraction into the larger interval from the middle.

One-dimensional Optimization: Golden Section Search 
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• Convergence is linear: count of successive significant figures grows linearly with iterations.

• Do not set tolerance in x to lower than the square root of your numerical precision.

• Close to a minimum at b, f(x) ≈ f(b) + ½f’’(b)(x - b)², because the first derivative vanishes.

• The second term above is ε times smaller than the first, i.e. ε|f(b)| > ½f’’(b)(x - b)² if

|x - b| < √ε |b| √( 2 |f(b)| / { b² f’’(b) } ), where the final square root is a number of order one for most functions.

• Unless you know a better estimate for the final square root, apply the limit suggested above.

A Note on Accuracy 
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• Parabolic interpolation: try to fit a parabola through [a,b,c] and jump to its minimum as a 

guess for x.

• Caveats: parabolic interpolation may converge to a maximum, or the fit might not be feasible because of collinearity.

• An ideal scheme can avoid unnecessary evaluations, switch between a robust and slow 

(e.g. Golden Section) technique and parabolic interpolations as f(x) permits, and carefully 

define a stopping criterion.

• Brent’s method is good at all the above at the expense of maintaining six function points 

instead of three and defining robust rules for acceptance of guesses.

One-dimensional Optimization: Fancier Methods 
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• What if we can also use derivatives?

• Keeping the bracketing idea and updating the bracket based on function as opposed to 

derivative information is more robust.

• You can try to fit a higher order polynomial to function and derivative information.

• You can also try to select the interval to look at based on the derivative at the middle point.

• The latter idea combined with extrapolation to zero of the derivative and robust rules for 

acceptance of the results as in Brent’s method appears to work well.

One-dimensional Optimization: Fancier Methods (Cont’d) 
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• Methods without using derivatives

• Downhill simplex

• Line methods in general

• Direction set methods (line methods)

• Methods with using derivatives

• Conjugate gradient methods (line methods)

• Quasi-Newton methods

• Levenberg-Marquardt method

• Methods using random numbers

• Simulated annealing

• Genetic algorithm

• Ant colony optimization

Multidimensional Optimization: An Overview 
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• Definitely not the best in the number of required function evaluations, but can be used for 

initial trials. Also, sometimes more robust than other methods.

• A simplex is a geometrical figure consisting of N+1 vertices and all their interconnecting line 

segments or polygonal faces, etc. in N dimensions.

• We are now interested in simplexes with a finite inner N-dimensional volume (>0).

• We need an initial simplex when starting the algorithm.

• e.g. P0 is an initial starting point, and Pi = P0 + ∆iei, where ei are the unit vectors and ∆i are some characteristic 

length scales.

• The one-dimensional bracketing does not work, so we take a slightly different approach to 

modify the simplex in the iterations of the algorithm.

Downhill Simplex 
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• Given an initial simplex, the following list of moves

is considered at each iteration:

• reflection: most of the time just move the point with the largest

function value through the opposite face of the simplex

• reflection and expansion: the above combined with increasing 

the search step size, if reflection yields a significantly better point

• contraction: when in a “valley”, the simplex is contracted in the 

transverse direction, i.e., when the reflected point is worse than 

the one with the second largest function value

• multiple contraction: when passing through the eye of a needle 

it is best to contract around the point with the lowest function

value, i.e., when none of the above works

Downhill Simplex (Cont’d) 

high low
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• Solution at each iteration is the best point found so far.

• Stopping criteria can be tricky:

• terminate when vector distance of last move is less than some tolerance limit (not smaller than square root of 

machine precision)

• terminate when decrease of function value in the last iteration is less than some tolerance limit (can be approx. 

machine precision)

• it is often a good idea to restart the algorithm where it claims to have found a minimum, because an anomalous step 

might cause the stopping criteria to be triggered

Downhill Simplex (Cont’d) 
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• Let us now build on the available one-dimensional routines.

• If we have a starting point P and a vector n in N dimensions, then (1) we can use our one-

dimensional minimization routine to minimize f(λ) = f(P+λn). Thus n is the search direction.

• We can then (2) reset our starting point to the minimum found along the search direction 

and (3) determine a new search direction and continue with step (1) above.

• The various line methods differ by how they choose the search direction.

Line Methods in General



Financial Modeling and Information Technology Morgan Stanley – Budapest Technology Centre

13

• First, not too bad idea:

• take a set of directions, e.g. the unit vectors ei,

• iterate over the set of directions and minimize along the current direction, then from there along the next direction, 

and so on until the function stops decreasing.

• Problem: what if the function has a narrow valley at an angle to the unit vectors?

• Let us use conjugate directions,

• which are directions that do not impact the efficacy of minimization along themselves.

• If we minimize along some direction u, then the gradient of the function must be perpendicular to u at the minimum.

• Using Taylor series: f(x) = f(p) + b x + ½ x A x + …, where b is the gradient at p and A is the Hessian at p.

• The approximation of the gradient at x is A x + b (derivative with respect to x).

• The gradient vanishes at x that solves A x = -b, and change in the gradient when moving along x is A (δx).

• If we move along direction u to a minimum, then a new direction v does not spoil our minimization as long as

0 = u A v , i.e., the change in the gradient along v is perpendicular to u (note that u and v are conjugate vectors).

Direction Set Methods (Line Methods)
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• If we can find a set of N linearly independent, mutually conjugate directions, then N line 

minimizations will reach exactly the minimum of a quadratic form.

• If our f(x) is not exactly quadratic, we will be close, and repeated cycles will yield quadratic 

convergence.

• Powell’s method: (1) Initialize the set of directions u i to the basis vectors ei. (2) Save your 

starting position as P0. (3) For i = 0,…N-1 move Pi to the minimum along direction u i and call 

this point Pi+1. (5) For i = 0,…N-2 set u i := u i+1. (6) Set uN-1 := PN - P0. (7) Move PN to the 

minimum along direction uN-1, and call this point P0. (8) Repeat from step (3).

• N iterations, that is, N(N + 1) line minimizations will exactly minimize a quardatic form.

• Problem: throwing away u0 in favor of uN-1 tends to produce linearly dependent directions.

• One (and not the best) solution: rerun step (1) after every N or N+1 iterations.

Direction Set Methods (Cont’d)
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• Let us now return to f(x) ≈ c + b x + ½ x A x . Each element of b and A can affect the 

location of the minimum, so the information content of this form is ~N².

• When minimizing via direction sets, we collect this amount of information via O(N²) separate 

line minimizations. If we can easily evaluate the gradient, we get N pieces of new 

information and hence O(N) carefully chosen line minimizations should suffice.

• Note that the gradient may need O(N) function evaluation time to compute, but there might 

be repeating computations to take advantage of. Also, each gradient evaluation spares a 

line minimization, which itself requires possibly many function calls.

Conjugate Gradient Methods (Line Methods with Derivatives)
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• Steepest descent performs poorly: takes many steps in a long valley.

• Ideally, we want to proceed along a direction that is chosen to be conjugate to the previous 

gradient, as well as all previous directions to the extent possible.

• Conjugate gradient methods make use of the technique available for solving sparse linear 

systems of equations in the context of function minimization.

Conjugate Gradient Methods (Cont’d)
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• Let an arbitrary vector g0 be our first auxiliary vector. Let the first direction be h0 = g0.

• Let g i+1 = g i – λi A h i, and let h i+1 = g i+1 + γih i, where

λi = g i g i / ( h i A h i ), and γi = g i+1 gi+1 / (g i g i) [improvement: γi = (g i+1 – g i) g i+1 / (g i g i)].

• The generated sequence will satisfy g i g j = 0, h i A h j = 0 and g i h j = 0 for j < i.

• Problem: as opposed to the case of solving the linear system of equations, here we don’t 

know A.

• Solution: let g i = -grad f(p i) and we go along the direction h i to the local minimum of f(x) at 

p i+1. Let then g i+1 = -grad f(p i+1). This is equivalent to our choice of g i+1 above, and does not 

require the knowledge of A.

Conjugate Gradient Methods (Cont’d)
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• Described method is called Fletcher-Reeves. Improvement is called Polak-Ribiere: provides 

smoother transition between iterations and falls back to using local gradient when additional 

gain is lost.

Conjugate Gradient Methods (Cont’d)
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• Let us now again return to f(x) ≈ f(x i)+ (x – x i) grad f(x i) + ½ (x – x i) A (x – x i). Recall that we 

do not know A, and so our aim is to collect its information content somehow.

• Basic idea: try to construct an iterative approximation Hi to the matrix A-1 to mimic Newton’s 

minimum search method. That is, making the gradient at x, grad f(x i) + A (x – x i), equal to 

zero yields the equation x – x i = – A-1 grad f(x i), where we use Hi to replace A-1.

• The name “Quasi”-Newton comes from not using the actual Hessian but the current 

approximation of its inverse only. It is actually better, because we need to descend, hence 

we want grad f(x i) (x – x i) = – (x – x i) A (x – x i) < 0, which means A must be positive 

definite. There is no guarantee that the Hessian will always be positive definite, but the 

series Hi can be defined so.

Quasi-Newton Methods (Methods with Derivatives)
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• Derivation of the iterative approximation Hi is somewhat involved, but the two main updating 

formulas are referred to as Davidon-Fletcher-Powell (DFB) and Broyden-Fletcher-Goldfarb-

Shanno (BFGS), the latter being recognized as empirically superior.

• Note that it might be worth using Quasi-Newton Methods with finite difference 

approximations of the gradient to decrease total computation effort compared to using 

methods without derivatives. 

Quasi-Newton Methods (Cont’d)
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• Let’s say now that our f(a) = χ2(a) = ∑[{yi – y(xi|a)}/σi]2, i.e., we are looking for a least-square 

fit. We again use the quadratic approximation χ2(a) ≈ c + b a + ½ a A a, which suggests 

using either amin = acur + A-1[– grad χ2(acur)], if the quadratic approximation is good enough, 

or a steepest descent anext = acur – constant * grad χ2(acur), if it isn’t.

• Here we do know the form of the Hessian:

αkl = ∂2χ2 / (∂ak∂al) = 2∑1/σi
2 [ ∂y(xi|a) / ∂ak * ∂y(xi|a) / ∂al – {yi – y(xi|a)} * ∂2y(xi|a) / (∂al∂ak) ]

• Now, we neglect the second partial derivatives in the above expression, because

• they are often small enough to be negligible in practice;

• the term multiplying them should be a random, uncorrelated measurement error in a 

successful model, which can have either sign, so they will probably cancel;

• they might lead to destabilizing in the presence of outliers.

Levenberg-Marquardt Method (Methods with Derivatives)
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• Levenberg-Marquardt solves the equation ∑αkl ∆al = βk (r.h.s. is the gradient) by replacing 

αkl with zkl, where zjj = αkl (1 + λ), and zjk = αjk. This will ensure a smooth scaling between 

the two extremes of using the inverse Hessian and using the steepest descent.

• Outline of algorithm is then: (1) given an initial guess a, and an initial setting of λ (=0.001), 

(2) solve the above system of equations for ∆a. (3) If χ2(a + ∆a) >= χ2(a), then increase λ by 

a significant factor, otherwise decrease λ by a significant factor. (4) Continue with step (2) 

after setting a := a + ∆a.

• The stopping condition can be tricky. Decrease in χ2 less than 1 is often not significant 

statistically, but 0.001 will put you on the safe side. Method tends to wander around near the 

minimum in a flat valley.

Levenberg-Marquardt Method (Cont’d)
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• Now think about f(x) as a function with multiple local minima.

• Apply the analogy of liquids freezing and crystallizing from thermodynamics.

• At high temperatures, the molecules move freely.

• At lower temperatures this mobility is gradually lost.

• If cooling is slow, the molecules can arrange in an ordered fashion leading to (or near to) the state of the lowest 

energy.

• If cooling is fast, the result is a polycrystalline or amorphous state with higher energy.

• The key is to keep cooling slow to allow for atoms to redistribute.

• A state of energy E is occupied with probability ~exp(-E/kT) at temperature T. k is Boltzmann’s constant.

Simulated Annealing 
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• Outline of the Metropolis algorithm

• Define an initial temperature. (How high?)

• Generate a random move from state x to x+∆x. (What moves to pick from? How to choose?)

• Accept new state with probability min(exp{-[f(x+∆x)-f(x)]/kT}, 1).

• Decrease T. (How fast? Repeats at the same temperature?)

Simulated Annealing (Cont’d) 
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• Think about -f(x) as a measure of success of an individual in a population (fitness function). 

Think about x as the genome of the individual. 

• Define the following rules of evolution

• Set up an initial population. (What size? Which individuals?)

• Select the part of the current population for reproduction. (Randomized based on fitness.)

• Apply crossover and mutation operators to selected subpopulation. (How to define operators? More than two 

parents?)

• Evaluate termination criteria (Number of generations? Average fitness?) and continue with selection step, if needed.

• The details are highly problem-specific.

Genetic Algorithm 
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• How do ants search for food? How do they form trails connecting the colony with the food 

source?

• To illustrate the concept, think about x as a Hamiltonian cycle in a given graph with given 

non-negative edge weights. Let f(x) be the sum of the weights of edges in the cycle. 

Minimizing f(x) now amounts to solving the traveling salesman problem.

Ant Colony Optimization 
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• ACO solution to traveling salesman problem:

• Let’s imagine a number of ants that walk on the graph.

• We define the following rules for one iteration:

• Each ant must visit each node exactly once.

• The smaller the weight and the stronger the pheromone trail the more likely that an ant chooses a particular 

edge as a next step on its cycle.

• We iterate over the following steps:

• Each ant visits a Hamiltonian cycle according to the rules above.

• Each ant lays pheromone trail on the edges it visited in the current iteration. The shorter the Hamiltonian cycle 

the stronger the trail.

• All pheromone trails evaporate (weaken).

Ant Colony Optimization (Cont’d) 
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• Get to know your f(x) as much as possible to identify qualitative behavior, parameter ranges 

of interest and signs of numerical errors.

• Try to use as much information about f(x) as possible, e.g. go for LM if f(x) is χ².

• Try to match the scales of function parameters (coordinates in x).

• Try changing your initial guess.

• When working on a constrained problem, hide the constraints from the optimizer by applying 

variable transforms.

• e.g. f(exp(y)) lets the optimizer work in the range (-∞, ∞) even if the domain of f(x) is R+.

• Recall the shape of objective function value plotted against iterations taken in a random 

optimization method.

• There is not any single best recipe, so experiment with different approaches.

Tips&Tricks, Suggestions
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Q & A
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