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Preliminary
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LMIs

A Linear Matrix Inequality (LMI) is an expression of the form

F (x) = F0 + x1F1 + . . .+ xmFm = F0 + T (x) > 0 (1)

where

x = (x1, . . . , xm) is a vector of real numbers called decision variables.

F0, . . . ,Fm are real, symmetric matrices, i.e. Fi = FT
i ∈ Rn×n

the inequality ’> 0’ means positive definite, i.e. uTF (x)u > 0,∀u 6= 0

The affine function F (x) is often given with matrix argument in the form F (X ). The
decision variable X ∈ Rn×n is a matrix. This is a special case of (1) because by choosing
a basis E1, . . . ,Em s.t. X =

∑m
i=1 xjEj then

F (X ) = F

(
m∑

i=1

xjEj

)
= F0 +

m∑
i=1

xjF (Ej ) = F0 +
m∑

i=1

xjFj = F (x)

Why do we like LMIs? An LMI defines a convex set, that is, the set {x | F (x) > 0} is
convex. The optimization of a convex (e.g. linear or affine) function f (x) : Rm → R with
LMI constraints is thus a convex problem, which can be solved efficiently.

Solvers: LMIlab,SeDuMi,Yalmip
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General control loop
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uncertainties

yc
u y

zw

P : ẋ = F (x , u, d ,w), w = ∆(z), [z, e, y ] = G(x , n) (System model)

K : ẋc = K(xc , uc , r), yc = L(xc , uc , r) (Controller)

x: states, y: measured outputs, u: control input, d,n: disturbance and noise, r: reference to be
tracked, e: tracking error (Cx − r),
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System models (P=?)

Linear Time-Invariant (LTI):

Time domain: ẋ = Ax(t) + Bv(t)

y = Cx(t) + Dv(t), x(0) = x∗

Frequency domain (jω): G(jω) = C(jωI − A)−1B + D.
If the Fourier transform v(jω) = F(v(t)) exists, then y(jω) = G(jω)v(jω) when x(0) = 0

S-domain (s): G(s) = C(sI − A)−1B + D.
If the Laplace transform v(s) = L(v(t)) exists, then y(s) = G(s)v(s) when x(0) = 0

Convolution. Let δ(t) be the dirac delta defined as

δ(t) = 0, if t 6= 0 and

∫ ∞
−∞

δ(t)dt = 1

The impulse response g(t) of the LTI system is the output if v(t) = δ(t) and x(0) = 0.
g(t) is the inverse Laplace transform of G(s) For some u(t) the output can be expressed by
using g(t) as follows:

y(t) =

∫ t

0
g(t − τ)v(τ)dτ
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System models (P=?)

Linear Parameter-Varying (LPV)

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))v(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))v(t),

ρ ≤ ρ(t) ≤ ρ, δ ≤ ρ̇(t) ≤ δ

Nonlinear, input-affine: ẋ = f (x(t)) + g(x(t))v(t)

Stability: The origin is (exponentially) stable if x(t)→ 0 at exponential decay rate. This is
equivalent to the existence of a positive definite Lyapunov function V (x(t)) > 0 satisfying

V̇ (x(t)) < 0. For LTI systems

V (x) = xT Xx , X > 0 is enough and

the stability is equivalent to that the eigenvalues of A (or the poles of G(s)) are strictly in
the left half plane

Example Lyapunov stability. Let ẋ = Ax be an autonomous, linear, time-invariant system. From
Lyapunov theorem we know that it is stable is there exists a quadratic Lyapunov function
V (x) = xT Xx with X > 0, s.t. AT X + XA < 0. These conditions are equivalent to the following
LMI: (

X 0
0 −AT X − XA

)
> 0
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Signal spaces and operators
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Signal spaces

Signal spaces: vector spaces of functions mapping the ’time axis’ T ⊂ R into a vector space
V ⊂ Rn. Examples for T in case of continuous time systems are real numbers R = (−∞,∞) or
R+ = (0,∞)

Normed (signal) space L: a linear vector space equipped with a norm ‖ · ‖

‖f ‖ = 0 ↔ f ≡ 0

‖αf ‖ = |α|‖f ‖
‖f + g‖ ≤ ‖f ‖+ ‖g‖

If the normed space is complete, i.e. its Cauchy sequences converge, the normed space is called
Banach space. Examples for Banach spaces:

Lp [0,∞) : ‖f ‖p =

(∫ ∞
0
|fi |p dt

)1/p

Lp(−∞,∞) : ‖f ‖p =

(∫ ∞
−∞
|fi |p dt

)1/p

L∞[0,∞) : ‖f ‖∞ = ess sup
t∈R+

|f (t)|

where |f | is the standard Euclidean norm |f | = (f T f )1/2.
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Signal spaces

Inner product space: linear vector space equipped with an inner product 〈·, ·〉 satisfying the
following properties (where f , g : T 7→ R and α ∈ R)

〈f , g〉 = 〈g , f 〉
〈αf , g〉 = α〈f , g〉

〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉

The inner product induces a norm:

‖f ‖ =
√
〈f , f 〉

If an inner product space is complete it is called Hilbert space. Hilbert spaces will be denoted by
H to be distinguished from the normed spaces. Examples for Hilbert spaces:

Lm
2 [0,∞) : 〈f , g〉 =

∫ ∞
0

f (t)T g(t)dt =
1

2π

∫ ∞
−∞

f̂ (jω)∗ĝ(jω)dω

Lm
2 (−∞,∞) : 〈f , g〉 =

∫ ∞
−∞

f (t)T g(t)dt =
1

2π

∫ ∞
−∞

f̂ (jω)∗ĝ(jω)dω

where f̂ (jω) is the Fourier transform of f (t). The examples show that, if p = 2 then Lp [0,∞)

and Lp(−∞,∞) are not only Banach but also Hilbert spaces.
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Operators

Operators: mapping from one normed (signal) space into another. Now ’one=another’, i.e.
H : L → L

Properties of operators:

Composition: H1H2 is also an operator defined by (H1H2)(f ) = H1(H2(f ))
Sum: αH1 + βH2 is also an operator defined by (αH1 + βH2)(f ) = αH1(f ) + βH2(f )
Linearity (we will assume it often): H(αf + βg) = αH(f ) + βH(g)
Gain and boundedness:

‖H‖ = sup
f∈L,f 6=0

‖Hf ‖
‖f ‖

<∞ (2)

Multiplicativity rule: ‖H1H2‖ ≤ ‖H1‖ · ‖H2‖

Example 1 (RH∞): Let ẋ = Ax + Bu,y = Cx + Du, x(0) = 0 be a finite dimensional, linear,
time-invariant (LTI) dynamical system with poles strictly in the left half plane. The LTI system
defines an operator in terms of convolution

(Gu)(t) = (g ∗ u)(t) =

∫ t

0
g(t − τ)u(τ)dτ G(s) = C(sI − A)−1B + D

where g(t) = L−1{G} is the weighting function (impulse response). Since all poles are stable,
this operator is bounded on every on Lp [0,∞) space. (All poles on the left half plane is a
necessary and sufficient condition for an operator to be bounded on Lp [0,∞) spaces. )
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Operators

If we consider G as an operator on L2[0,∞) then its bound can be determined as follows:

‖G‖ = supf∈L2[0,∞),f 6=0
‖Hf ‖
‖f ‖

= sup
ω∈[0,∞)

σmax (G(jω)) (the well-known H∞ norm)

If we consider G as an operator on L∞[0,∞) then its bound will be calculated as

‖G‖ = supf∈L∞[0,∞),f 6=0
‖Hf ‖
‖f ‖

=

∫ ∞
0
|g(t)| dt (i.e., the L1 norm of the impulse response)

Example 2 (RL∞): If the LTI system has poles both in the right and the left half plane, but
there is no pole on the imaginary axis, then G is a bounded operator on Lp [−∞,∞). The
operator is defined in terms of convolution:

(Gu)(t) =

∫ ∞
−∞

g(t − τ)u(τ)dτ (3)

where g(t) = L−1{G(s)} If G ∈ RL∞ is considered on L2[−∞,∞) then

‖G‖ = sup
ω∈[0,∞]

σmax (G(jω))

Remark. The system norms can be computed in MATLAB by norm function.
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Adjoint operators

Adjoint operators:
Let H : H → H be a bounded linear operator. The Hilbert adjoint H∗ of H is the operator
H∗ : H → H s.t.

〈Hf , g〉 = 〈f ,H∗g〉 ∀f , g ∈ H

An operator is self-adjoint if H∗ = H. Examples:

Let H ∈ RH∞ be an operator with state space realization H(s) = C(sI − A)−1B + D.
Then H∗(s) = H(−s)T = −BT (sI + AT )−1C T + DT . So, if H(s) stable then its adjoint
will be unstable.

More generally, if H ∈ RL∞ then H∗(s) = H(−s)T .

Properties of Hilbert adjoint. The Hilbert adjoint H∗ exists uniquely and it is a linear operator
with ‖H∗‖ = ‖H‖. Furthermore, for bounded operators H,H1,H2 : H → H the following
equations hold:

a) (αH)∗ = αH∗ b) (H1 + H2)∗ = H∗1 + H∗2 c) (H∗)∗ = H
d) (H1H2)∗ = H∗2 H∗1 e) ‖H∗H‖ = ‖HH∗‖ = ‖H‖2 f )(H∗)−1 = (H−1)∗
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Self-adjoint operators and quadratic forms

Self-adjoint operators. A bounded linear operator H : H → H is self-adjoint if H∗ = H.

Remark. If H ∈ RH∞ and H is self-adjoint, then it is constant.

Quadratic forms.
The quadratic form σ(f ) = 〈Hf , f 〉 defined by a self-adjoint operator H is positive semidefinite
(positive definite) (denoted by H > (≥)0 if 〈Hf , f 〉 ≥ (>)0 for all f ∈ H.

Let Φ = Φ∗ : H → H. Then σ(f ) = 〈Φf , f 〉 is a quadratic form not only on H but also on its

subspace H̃ ⊂ H. Φ ≥ 0 obviously implies that σ ≥ 0 on H̃ , but the reverse implication is not at
all clear. In the particular case when Φ = Φ∗ ∈ RL∞ and H = L2(−∞,∞), H̃ = L2(0,∞) then
the reverse implication holds, too:

σ(f ) ≥ 0 for all f ∈ L2[0,∞) ⇔ Φ(jω) ≥ 0 (4)

This makes it possible to define IQCs with noncausal Φ while the signals remain in L2[0,∞).
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Methods for analyzing the stability of feedback
interconnections
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Extended spaces

The signal spaces examined so far contains only
signals which have finite integral. Many impor-
tant signals e.g. (sin(t), et ) do not satisfy this
requirement. The signal spaces are extended now
to contain signals, which are integrable over a finite
time interval.

Extended normed spaces:

Le = {f : T → V : ‖fT ‖ <∞, ∀T ≥ 0}

where fT = PT f with the truncation operator

PT f =

{
f (t), t ≤ T
0, t > T

Examples: sin(t), et ∈ Lpe [0,∞), 2k ∈ lpe (Z+)

Operator on an extended space: Let H : Le → Le be an operator defined on an extended space.
The notion of ’gain’ and ’boundedness’ can be extended in the following way:

‖H‖ = sup
f∈Le ,‖PT f ‖L 6=0,T≥0

‖PT (Hf )‖L
‖PT f ‖L

(5)

Tamas Peni (MTA-SZTAKI) Seminar October 2, 2012 16 / 42



Causality

Causality: the value at a certain time does not depend on future values of the argument

PTHPT = PTH, ∀T ∈ T

Anticausality: the future matters only, i.e. (I − PT )H = (I − PT )H(I − PT )

An important consequence of causality: If an operator is causal then it is bounded on
Le if and only if it is bounded on L and the gain defined over the two signal spaces (Le

and L) are equal:

‖H‖ = sup
f∈Le ,‖PT f ‖L 6=0,T≥0

‖PT (Hf )‖L
‖PT f ‖L

= sup
f∈L,f 6=0

‖Hf ‖L
‖f ‖L

This lemma enables us to use the L2-space, instead of the extended L2e during the
stability analysis.
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Elementary system properties

H 2

H 1

u2

e1u1

e2

-

H1,H2 are operators on normed space Le .

Well-posedness: the interconnection makes sense, that is the system does not have finite escape
time, u uniquely determines e and the mapping u 7→ e is causal.

Example1: Let H1(s) = 1/(s + 1), H2(x) = −x − x2, u1(t) = θ(t) (unit step function), u2 = 0.
Then the closed loop realizes the differential equation ẋ = x2 + 1. The solution is
x(t) = tan(t)θ(t), which goes to infinity if t → π/2. This means the closed loop has finite
escape time so it is ill-posed.

Example2: Let H1 = 1, H2(x) = e−sT − 1, u2 = 0. Then the closed loop realizes the mapping
y(t) = u1(t + T ), so the closed loop is not causal.

Definition. The interconnection is well-posed if for any u1, u2 ∈ Le there exists a solution
e1, e2 ∈ Le and they depend causally on u1 and u2.

Stability: A well-posed system is stable if there exists c1, c2, c3, c4 s.t.

‖e1T ‖ ≤ c1‖u1T ‖+ c2‖u2T ‖
‖e2T ‖ ≤ c3‖u1T ‖+ c4‖u2T ‖

where eiT = PT ei .
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Integral Quadratic Constraints

Δ

G

e

w
0

v

+

S 1 :

G : LTI transfer function defining a bounded, causal
operator on the extended Hilbert-space He

∆: bounded, causal operator on the same He space.

We particularly interested in the special case when
He = L2e [0,∞)

Integral Quadratic Constraint (IQC). Let Π be a bounded, self-adjoint operator. Then we say,
∆ satisfies the IQC defined by Π (∆ ∈ IQC(Π)) if

σΠ(v ,∆(v)) =

〈[
v

∆(v)

]
,Π

[
v

∆(v)

]〉
≥ 0 ∀v ∈ L2[0,∞)

We call Π the multiplier that defines the IQC. (Note that the IQC is defined on L2 even though
the operators are defined on the extended L2e space.)

Remark. If ∆ ∈ IQC(Π1) and ∆ ∈ IQC(Π2) then ∆ ∈ IQC(τ1Π1 + τ2Π2), τi ≥ 0.

Remark. Since we defined the IQC over L2[0,∞) space, Π can be taken as a transfer function
Π(jω) = Π(jω)∗. The condition above then reduces to

σΠ(v ,∆(v)) =

∫ ∞
−∞

[
v̂(jω)
ˆ∆(v)(jω)

]∗
Π(jω)

[
v̂(jω)
ˆ∆(v)(jω)

]
≥ 0, ∀ v ∈ L2[0,∞)
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The IQC Theorem

IQC Theorem:
Assume there exists a bounded, self-adjoint operator Π so that all of the following statements
hold

i) the interconnection (G , τ∆) well-posed for all τ ∈ [0, 1]

ii) For all τ ∈ [0, 1] τ∆ satisfies the IQC defined by Π, i.e.

σΠ(v ,∆(v)) =

〈[
v

∆(v)

]
,Π

[
v

∆(v)

]〉
≥ 0 ∀v ∈ L2[0,∞]

iii) there exists ε > 0 s.t.

σΠ(Gv , v) ≤ −ε‖v‖2 (∗)

then the interconnection is stable.

Remark. Since we are on the L2[0,∞) space, (4) applies and thus (∗) is equivalent to[
G
I

]∗
Π

[
G
I

]
≤ −εI , that is

[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
≤ −εI ∀ω ∈ R

By IQC Theorem the stability analysis reduces to finding a suitable multiplier.

Remark. Note that, item i) is not too strict condition, since in general

Π =

(
Π11 Π12

Π∗12 Π22

)
, Π11 ≥ 0,Π22 ≤ 0

then the fact ∆ satisfies the IQC implies that the IQC is satisfied by all τ∆, τ ∈ [0, 1].
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System analysis by using IQCs
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The closed loop system

K

ΔmW m(s)

P
r e

n

d

W e(s)

W u(s) u p

u

ΔaW a(s)

1 Nominal model P, defining an LTI causal and bounded operator.

2 Controller. We assume that the controller has already been designed so it is known now.

3 External inputs. Inputs coming from the environment. They can be disturbances, sensor- or
actuator noises. The reference signal, which has to be tracked by the output of the plant, is
also an external signal. The external signals are assumed to come from some extended
Hilbert space He . Typically He = L2e [0,∞).
IQCs can also be used to formulate the properties of the external signals:

σΨ(d) =

∫ ∞
−∞

d̂(jω)∗Ψ(jω)d̂(jω)dω ≥ 0

holds for input d ∈ L2[0,∞] with some Ψ ∈ RL∞ then this property can be taken into
account during the analysis procedure.

4 Performance outputs. Inner signals or outputs, the behavior of which are important for us.
They can also be weighted - We (s),Wu(s)
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The closed loop system

K

ΔmW m(s)

P
r e

n

d

W e(s)

W u(s) u p

u

ΔaW a(s)

5 Nonlinear elements and time delays. The nonlinear components can either be static (e.g.
saturations, deadzones) or dynamic (e.g. friction).

6 Uncertainty. Models the difference between the mathematical model and the real system.
Uncertainty can be present due to approximation or identification errors, change of
parameters and nonlinearities due to wear or change of operating conditions. Typical
uncertainty models:

LTI Dynamic uncertainty. It represents unmodeled dynamics or model error from
identification. It is defined by an unknown, stable transfer function with bounded H∞
norm. Typically, ‖∆‖H∞ ≤ 1 and W (s) weighting function is applied to describe the
frequency distribution of the uncertainty. It can be inserted into the system either by
additive or multiplicative structure.
Parametric uncertainty. It is used to model uncertain gain, uncertainty in the location
of poles or zeros or unknown changes in physical parameters.
Polytopic uncertainty. Special class of parametric uncertainty. The possible parameter
values come from a convex polytope:

p(t) ∈ ∆ = {p | p =
∑

i

λi pi , λ1 ≥ 0,
∑

i

λi = 1, i = 1, . . . ,N}
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The closed loop system

K

ΔmW m(s)

P
r e

n

d

W e(s)

W u(s) u p

u

ΔaW a(s)

The aim of the analysis is to check whether the system satisfy the robust performance criterium.
Robust performance comprises the following two conditions:

robust stability. The system has to be stable for all possible values of uncertainties,
nonlinearities, delays, etc.

performance. The performance outputs should satisfy the prescribed specification. The
performance is generally formalized by a quadratic relation, e.g.

σP (zP ,wP ) =

∫ ∞
0

[
zP (t)
wP (t)

]T

P

[
zP (t)
wP (t)

]
dt ≤ 0, zP ,wP ∈ L2[0,∞)

Important performance measure: the induced L2-norm (i.e the H∞ operator norm in LTI
case):

‖zP‖L2

‖wP‖L2

≤ γ ⇒ σP (zP ,wP ) =

∫ ∞
0

[
zP (t)
wP (t)

]T [
γ−1I 0

0 −γI

] [
zP (t)
wP (t)

]
dt ≤ 0
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LFT representation

The first step of analysis is pulling out the unknown and nonlinear blocks:

wP=[ rnd ]

Δm

G

Δ

zP=[ eu p ]

GwP=[ rnd ] zP=[ eu p ]

Δ

Δm

z

zw

w

Upper LFT: zP = Fu(G ,∆)wP = [G22 + G21∆(I − G11∆)−1G12]wP (left)

Lower LFT: zP = Fl (G ,∆)wP = [G11 + G12∆(I − G22∆)−1G21]wP (right)
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System analysis by using IQCs

STEP 1.

1 Construct a suitable, linearly parameterized set of IQCs for each uncertain, nonlinear block.

∆k ∈ IQC(Πk (λΠk
)), for all λΠk

∈ ΛΠk

Build one diagonal IQC, that is satisfied by the augmented block ∆ = diag(∆1, . . . ,∆N ):

∆ ∈ IQC(Π(λΠ)), Π(λΠ) = diag(Π1(λΠ1
), . . . ,ΠN (λΠN

)), λΠ = (λ1, . . . , λN )

The IQC defines quadratic inequality condition between w and z : σΠ(λΠ)(z,w) ≥ 0

2 You may choose (linearly parameterized) IQC conditions for the external inputs:
σΨ(λΨ)(wP ) ≥ 0

3 Prescribe the performance requirements by using IQC: σP(γ)(zP ,wP ) ≤ 0
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S-procedure

S-procedure. Let σk : H → R be quadratic forms defined as

σk (f ) = 〈Φk f , f 〉, k = 0, 1, . . . ,N

where Φk are linear, bounded, self-adjoint operators on H. We consider the following two
problems:

S1 : σ0(f ) ≤ 0 for all f ∈ H s.t. σk (f ) ≥ 0, k = 1, . . . ,N.

S2 : there exists τk ≥ 0, k = 1, . . . ,N, such that

σ0(f ) +
N∑

k=1

τkσk (f ) ≤ 0, ∀f ∈ H

It is obvious that S2 implies S1. The opposite direction holds only in special cases.

STEP 2.

The interconnection satisfies the robust performance requirements if there exist λΠ, λΨ s.t.

σP(γ)(G21w + G22wP ,wP ) + σΠ(λΠ)(G11w + G12wP ,w) + σΨ(λΨ)(wP ) < 0

which, over the L2[0,∞) space, is equivalent to the frequency domain inequality:[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
< 0, ∀ω ∈ [0,∞]

where Π(jω) collects all multipliers Π(λΠ),Ψ(λΨ),P(γ) and thus depends on λΠ, λΨ, γ.

Tamas Peni (MTA-SZTAKI) Seminar October 2, 2012 27 / 42



Transforming frequency domain inequalitis to LMI

We want to check the feasibility of[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
< 0, ∀ω ∈ [0,∞]

Let

Π =

[
(jωI − Aπ)−1Bπ

I

]∗
Mπ

[
(jωI − Aπ)−1Bπ

I

]
where Bπ = [Bπ,v Bπ,w ] and Aπ is stable. For simplicity, the dependence of Π(jω) on λ is
omitted. Then we have[

(jωI − Aπ)−1Bπ
I

]
·
[

G(jω)
I

]∗
Mπ

[
(jωI − Aπ)−1Bπ

I

]
·
[

G(jω)
I

]
< 0

To perform the multiplications we use the following lemma:

If Gi (s) = Ci (sI − Ai )
−1Bi + Di =

[
Ai Bi

Ci Di

]
then

G1G2 =

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2


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Transforming frequency domain inequalitis to LMI

Then we find that the original inequality can be formulated as[
(jωI − A)−1B

I

]∗ [
Q S

ST R

] [
(jωI − A)−1B

I

]
> 0 (�)

where

A =

[
Aπ Bπ,v CG

0 AG

]
, B =

[
Bπ,v DG + Bπ,w

BG

]
and [

Q S
ST R

]
= −

 I 0 0
0 CG DG

0 0 I

T

Mπ

 I 0 0
0 CG DG

0 0 I


From (4) it follows that (�) is equivalent to the existence of ε > 0 s.t.

ε‖w‖2 ≤
∫ ∞
−∞

[
(jωI − A)−1Bŵ(jω)

ŵ(jω)

]∗ [
Q S

ST R

] [
(jωI − A)−1Bŵ(jω)

ŵ(jω)

]
(6)

=

∫ ∞
0

(xT Qx + 2xT Sw + wT Rw)dt (7)

for all pairs (x ,w) ∈ L2[0,∞), where ẋ = Ax + Bw , x(0) = 0, w ∈ L2[0,∞). This is a

linear-quadratic optimal control problem.
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Kalman-Yakubovic-Popov Lemma

The following statements are equivalent:

there exist of ε > 0 s.t.∫ ∞
0

(xT Qx + 2xT Sw + wT Rw)dt ≥
∫ ∞

0
|x |2 + |w |2dt

for all pairs (x ,w) ∈ L2[0,∞), where ẋ = Ax + Bw , x(0) = 0, w ∈ L2[0,∞).

we have[
(jωI − A)−1B

I

]∗ [
Q S

ST R

] [
(jωI − A)−1B

I

]
> 0 ∀ω ∈ [0,∞)

there exists P = PT s.t.

[
PA + AT P PB

BT P 0

]
+

[
Q S

ST R

]
> 0 LMI condition!

Linear dependence of Π(jω) on the parameters λ = (λΠ, λΨ, γ) is generally shifted into Mπ(λ),
which results in parameter dependent Q(λ), S(λ) and R(λ).
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List of IQCs
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LTI uncertainty

1. D-scaling:

Let ∆ = diag(∆1, . . . ,∆m) LTI operator with norm ‖∆i‖∞ ≤ 1. In frequency domain we can
choose an IQCwith multiplier

Π(jω) =

[
−D(jω)∗D(jω)

D(jω)∗D(jω)

]
s.t. ∆D = D∆

where D(jω) is a free variable. Since(
I
∆

)∗ [
D(jω)∗D(jω)

−D(jω)∗D(jω)

](
I
∆

)
= −∆∗D∗D∆ + D∗D = D∗[I −∆∗∆]D > 0

The condition of stability in this special case can be given as follows(
G
I

)∗ [
D(jω)∗D(jω)

−D(jω)∗D(jω)

](
G
I

)
= −D∗D + G∗D∗DG < 0 ⇔ ‖DGD−1‖ < 1

This is the D-iteration part of the D-K iteration used in robust control design. The design of
scaling D(jω) is a construction of a suitable multiplier.
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Polytopic uncertainty

2. Time-varying, causal, linear, structured uncertainty:

(∆z)(t) = ∆(t)z(t), ∆(t) = diag(δ1(t)I , . . . , δm(t)I ) |δi (t)| ≤ 1 for t ≥ 0. Then

Π =

{(
Q ST

S R

)
| R = −Q, Q = diag(Q1, . . . ,Qm) > 0,

S = diag(S1, . . . ,Sm), Sj + ST
j = 0

}

3. Time-varying, causal, linear, polytopic un-
certainty:

(∆z)(t) = ∆(t)z(t), ∆(t) ∈ co{∆1, . . . ,∆N},
∆i ∈ Rn×n. Then

Π =

{(
R ST

S Q

)
| Q < 0,

(
I

∆j

)T

Π

(
I

∆j

)}
Δ1

Δ(t)

Δ2

Δ(t)=∑
1

m

α jΔ j

∑
1

m

α j=1,α j≥0

Δm−1

Δm

Tamas Peni (MTA-SZTAKI) Seminar October 2, 2012 33 / 42



Sector bounded nonlinearities

4. Memoryless nonlinearity in a sector

Let w(t) = (∆z)(t) = φ(z(t), t)) : R× R→ R be a
function contained in a sector [α, β], i.e.

αz2 ≤ φ(z, t)z ≤ βz2, ∀z ∈ R, t ≥ 0

φ( z)
β z

α z

Then βz − φ(z, t) and φ(z, t)− αz have the same sign, that is (βz − φ(z, t))(φ(z, t)− αz) ≥ 0.
This implies the following constant multiplier:

Π(jω) =

[
−2αβ α+ β
α+ β −1

]
(8)

5. The ”Popov” IQC
If w(t) = (∆z)(t) = φ(z(t)) : R→ R be a continuous function, z(0) = 0 and both w(·) and ż(·)
are square summable, then

∫∞
0 ż(t)w(t) = 0 holds. This implies in frequency domain the

following IQC:

Π(jω) = ±
[

0 jωλ
−jωλ 0

]
, λ ∈ R (9)

Note that, this multiplier is not proper, so in general it is combined with other multipliers or
instead of ∆, the modified ∆̃ = ∆ ◦ 1

s+1
is considered. The modified (proper) multiplier is

Π(jω) = ±
[

0 jω
1+jω

λ

− jω
1+jω

λ 0

]
, λ ∈ R

Remark. The sum of (8) and (9) gives the Popov criterion for memoryless, sector bounded,
continuous nonlinearities.
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Slope restricted nonlinearities

Let w(t) = (∆z)(t) = φ(z(t)) : R → R be a static
nonlinearity with the following properties:

i) φ(0) = 0

ii) With some α ≤ β

α ≤
φ(z1)− φ(z2)

z1 − z2
≤ β

iii) there exists k > 0 s.t. |φ(z)| ≤ k|z|

φ(z)

β z

α z

6. Zames-Falb multiplier [Zames,Falb 1968]:
The following multiplier was derived by Zames and Falb in [Zames,Falb 1968]:

Π(jω) = T T

[
0 1 + H(jω)∗

1 + H(jω) 0

]
T

where H is a strictly proper rational transfer function with impulse response h and the following
constraints are satisfied:

h(t) ≤ 0 for all t ∈ R. If φ is an odd function then this constraint is not needed.

L1-norm constraint: ‖h‖1 =
∫∞
−∞ |h(t)|dt ≤ 1

T =

[ β
β−α − 1

β−α
− α 1

]
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Slope restricted nonlinearities

Sketch of proof : We prove only the special case, when φ is odd and β = 1, α = 0. The normed
saturation nonlinearity satisfies these properties.

Since |v(t)| ≥ |ϕ(v(t))| and |ϕ(v(t))| ≥ |h ∗ ϕ(v(t))| thus

[v(t)− ϕ(v(t))] · [ϕ(v(t)) + (h ∗ ϕ(v(t)))] ≥ 0

Consequently

0 ≤
∫ ∞

0
2[v − ϕ(v)] · [ϕ(v) + h ∗ ϕ(v)]dt =∫ ∞
−∞

2Re[v̂(jω)− ϕ̂(v)(jω)]∗[ϕ̂(v)(jω) + H(jω)ϕ̂(v)(jω)]dω

=

(
v̂(jω)

ϕ̂(v)(jω)

)∗ [
0 1 + H(jω)

1 + H(jω)∗ −2(1 + ReH(jω))

](
v̂(jω)

ϕ̂(v)(jω)

)

Remark 1. The filter H can be non-causal (poles on the right half plane!). The construction of H

is not easy, only approximate solutions exist. E.g. [Chen and Wen, 1995]
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Beyond the analysis

Tamas Peni (MTA-SZTAKI) Seminar October 2, 2012 37 / 42



Controller synthesis

wP

Δm

G zP

zw

K

yu

Π=?

K=?

Analysis ≡ find a multiplier

Synthesis ≡ find a multiplier

and a controller

so that the closed-loop satisfies the robust perfor-
mance.

The synthesis cannot be transformed to a convex
optimization problem.

Iterative design is needed: the multiplier and the con-
troller are tuned alternately until the performance re-
quirements are met.

convergence cannot be guaranteed in general

numerical problems

problem-specific solvers are needed
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Linear Parameter-Varying (LPV) systems

Useful extension of the LTI dynamics:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t), y = C(ρ(t))x(t) + D(ρ(t))u(t)

where ρ(t) ∈ Rp is the measured, time-varying scheduling parameter, which has in general,

well-known magnitude and rate bounds: ρ
i
≤ ρi (t) ≤ ρi , δi ≤ ρ̇i (t) ≤ δi .

Properties:

good modeling capabilities - by letting ρ(t) = f (x(t)) the nonlinear behavior can be
embedded into the LPV structure

powerful analysis and design tools of LTI system theory remain applicable

Controller synthesis:

wP G (s) zP

zw

K (s)

yu

ρ

wP G (s) zP

zw

K (s)

yu

Φ(ρ)

ρ

Φ(ρ)

wP G (s ,ρ) zP

K (s ,ρ)

yu
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Beyond the IQCs
(Hard constraints in control)
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Set-theoretic methods

Hard constraints:

u(t) ∈ U, x(t) ∈ X X ,U are convex sets, polytopes

These constraints cannot be handled by IQCs! Different approach is needed!

The problem seems easier in discrete-time:

ẋ = Acx(t) + Bcu(t) + Ecd(t) ⇔ZOH x(k + 1) = Ax(k) + Bu(k) + Ed(k)

A = eATs , [B E ] =

∫ Ts

0

eA(t−τ)[Bc Ec ]dτ

1 If Ac is not stable and u is subject to hard constraints the system can be stabilized
only on a closed set of states. How can this set be determined?

2 If Ac is stable and d(k) ∈ D and D is convex (polytope) then the states converge to
a closed set around the origin. This is the minimal disturbance invariant set. How
does it look like?

3 The maximal disturbance invariant set contained in X is the maximal subset of X ,
which cannot be leaved by the trajectories of the system in the presence of
constrained disturbance d(k) either. How can this set be computed efficiently?
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Examples

Maximal disturbance invariant set Minimal disturbance-invariant set.
contained in X

Problems: numerical difficulties, exponentially growing complexity, increasing number of vertices
Problem to be solved: find at each step the best inner and outer approximation by using only
fixed number of vertices.
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