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A graph with N nodes is given

The nodes can be susceptible (S) or infected (I)

Transitions:

S → I, rate: kτ , k is the number of I neighbours.

I → S, rate: γ

AIM: Derive a simple system of differential equations yielding the
expected number of infected nodes [I](t).

Known models:

Master equation

Mean-field equation

Pairwise model

Compact pairwise model

...
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GENERAL MATHEMATICAL MODEL

A graph with N nodes is given

The nodes can be in the states {a1, a2, . . . am}.

The state space of the graph has mN elements

The transitions between different states can be described by a
Poisson process

Probability of a transition from state ai to state aj in a time interval of
length ∆t is:

1 − exp(−λij∆t).
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NETWORK PROCESSES

Rumour spreading

States of the nodes: {X ,Y ,Z} (ignorant, spreader, stifler).

Transitions and their rates

X → Y , λ = kτ , k is the number of Y neighbours.

Y → Z , λ = γ + jp, j is the number of Y and Z neighbours.
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Propagation of activity in neuronal networks

States of the nodes: {E+,E−
, I+, I−} (active and inactive excitatory

neurons, active and inactive inhibitory neurons).
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NETWORK PROCESSES

Propagation of activity in neuronal networks

States of the nodes: {E+,E−
, I+, I−} (active and inactive excitatory

neurons, active and inactive inhibitory neurons).

Transitions and their rates

E+ → E
−

, λ = α.

E
−
→ E+, λ = tanh(iwE − jwI + hE), i, j is the number of E+ and

I+ neighbours.

I+ → I
−

, λ = α.

I
−
→ I+, λ = tanh(iwE − jwI + hI), i, j is the number of E+ and I+

neighbours.
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Derive differential equations for different processes and for different
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AIM OF THE RESEARCH

Derive differential equations for different processes and for different
types of graphs.

Frequently used random graphs:

Erdős-Rényi

Configuration model (Bollobás)

Small-world (Watts-Strogatz)

Graphs with scale free degree distribution (Barabási-Albert)

Examples for network processes:

Epidemic propagation

Rumour spreading

Propagation of neuronal activity
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A graph with N nodes is given

The nodes can be susceptible (S) or infected (I)
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A graph with N nodes is given

The nodes can be susceptible (S) or infected (I)

State space for a triangle

I I

I

S I

I

I S

I

I I

S

S S

I
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Infection: SIS → SII, IIS

Recovery: SIS → SSS
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SIS EPIDEMIC

Master equations

ẊSSS = γ(XSSI + XSIS + XISS),

ẊSSI = γ(XSII + XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII + XIIS)− (2τ + γ)XSIS ,

ẊISS = γ(XISI + XIIS)− (2τ + γ)XISS ,

ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS + XISS)− 2(τ + γ)XIIS ,

ẊIII = −3γXIII + 2τ(XSII + XISI + XIIS),
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Master equations

ẊSSS = γ(XSSI + XSIS + XISS),

ẊSSI = γ(XSII + XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII + XIIS)− (2τ + γ)XSIS ,

ẊISS = γ(XISI + XIIS)− (2τ + γ)XISS ,

ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS + XISS)− 2(τ + γ)XIIS ,

ẊIII = −3γXIII + 2τ(XSII + XISI + XIIS),

The size of the system can be reduced by using the automorphisms
of the graph:

Simon, P.L., Taylor, M., Kiss., I.Z., Exact epidemic models on graphs using graph-automorphism

driven lumping, J. Math. Biol., 62 (2011).
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MEAN-FIELD APPROXIMATION FOR SIS EPIDEMIC

Exact equation: ˙[I] = τ [SI] − γ[I]

[SI](t): expected number of SI edges

This differential equation holds for any graph
Simon, P.L., Taylor, M., Kiss., I.Z., Exact epidemic models on graphs using graph-automorphism

driven lumping, J. Math. Biol. 62 (2011), 479-508.
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Exact equation: ˙[I] = τ [SI] − γ[I]

Approximation [SI] ≈ n [I]
N [S], where the average degree is n

Approximating differential equation for [I]

İ = τ
n
N

I(N − I)− γI.

This is the well-known compartmental model, which does not give
accurate result for networks.
Reason: the approximation assumes random distribution of infected
nodes.

Better idea: derive a differential equation for [SI], this leaded to the
pairwise model.
Keeling, M.J., The effects of local spatial structure on epidemiological invasions, Proc. R. Soc.

Lond. B 266 (1999), 859-867.
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PAIRWISE APPROXIMATION

Keep the exact equation ˙[I] = τ [SI] − γ[I]

and derive a differential equation for [SI].
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Keep the exact equation ˙[I] = τ [SI] − γ[I]

and derive a differential equation for [SI].

Exact differential equations:

˙[I] = τ [SI]− γ[I],
˙[SI] = γ([II]− [SI]) + τ([SSI] − [ISI]− [SI]),
˙[II] = −2γ[II] + 2τ([ISI] + [SI]),
˙[SS] = 2γ[SI]− 2τ [SSI].

Approximation:

[ABC] ≈
n − 1

n
[AB][BC]

[B]
, n average degree

M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss, From Markovian to pairwise epidemic

models and the performance of moment closure approximations, J. Math. Biol. 64 (2012),

1021-1042.
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Regular random graph with N = 1000 nodes, average degree n = 20,
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τ = τcr ⇔ basic reproduction number R0 = 1.
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COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with N = 1000 nodes, average degree
n = 20, γ = 1, τ = 2τcr = 2γ/n
N/2 nodes have degree d1, N/2 nodes have degree d2.
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Bimodal random graph with N = 1000 nodes, average degree
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n

[AB][BC]
[B] it is

assumed that each node has the same degree n.
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[ASI] =
K
∑

k=1

[ASk I], [ASk I] ≈
dk − 1

dk

[ASk ][Sk I]
[Sk ]

[Sk ]: expected number of susceptible nodes of degree dk ,
[Sk I]: expected number of edges connecting an infected node to a
susceptible node of degree dk
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Differential equations are needed for the new unknowns.
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[ASI] =
K
∑

k=1

[ASk I], [ASk I] ≈
dk − 1

dk

[ASk ][Sk I]
[Sk ]

˙[Sk ] = γ[Ik ]− τ [Sk I], k = 1, 2, . . . ,K .

[Sk A] ≈ [SA]
dk [Sk ]

∑K
l=1 dl [Sl ]

[ASk I] ≈
[AS][SI]dk (dk − 1)[Sk ]

S2
1

⇒ [ASI] ≈ [AS][SI]
S2 − S1

S2
1

S1 =
N
∑

k=1
dk [Sk ], S2 =

K
∑

k=1
d2

k [Sk ].
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COMPACT PAIRWISE MODEL

˙[Sk ]c = γ[Ik ]c − τdk [Sk ]c
[SI]c
Ss

,

˙[SI]c = γ([II]c − [SI]c) + τ([SS]c − [SI]c)[SI]cP − τ [SI]c ,
˙[SS]c = 2γ[SI]c − 2τ [SS]c [SI]cP,

˙[II]c = 2τ [SI]c − 2γ[II]c + 2τ [SI]2cP,
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˙[SS]c = 2γ[SI]c − 2τ [SS]c [SI]cP,

˙[II]c = 2τ [SI]c − 2γ[II]c + 2τ [SI]2cP,

with Ss =
∑K

k=1 dk [Sk ]c and P = 1
S2

s

K
∑

k=1
(dk − 1)dk [Sk ]c .
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˙[SI]c = γ([II]c − [SI]c) + τ([SS]c − [SI]c)[SI]cP − τ [SI]c ,
˙[SS]c = 2γ[SI]c − 2τ [SS]c [SI]cP,

˙[II]c = 2τ [SI]c − 2γ[II]c + 2τ [SI]2cP,

Compact pairwise model: K + 3 equations

More complex and accurate models:

Pre-compact pairwise model: 5K equations

Heterogeneous pairwise model: 2K 2 + K equations
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COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with N = 1000 nodes, average degree
n1 = 20, γ = 1, τ = 3γn1/n2, ni =

∑

d i
k pk

N/2 nodes have degree d1 = 5, N/2 nodes have degree d2 = 35.
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ANALYSIS OF THE MEAN-FIELD MODEL

Exact equation: ˙[I] = τ [SI] − γ[I]
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ANALYSIS OF THE MEAN-FIELD MODEL
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Steady states and their stability

If τ(n − 1) < γ, then there is no endemic steady state and the
disease-free steady state is asymptotically stable.

If τ(n − 1) > γ, then the endemic steady state is asymptotically
stable and the disease-free steady state is unstable.
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Direction field: τ(n − 1) < γ (left panel), τ(n − 1) > γ (right panel).
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