DESIGNING OPTIMAL BENEFIT RULES FOR FLEXIBLE RETIREMENT

Péter Eső (Northwestern U) A. Simonovits (IE, HAS also BUTE, CEU) J. Tóth (BUTE)

1. Introduction

Macroformula for pensions:

 $benefit = \frac{lifetime \ contribution}{remaining \ lifespan}$

i.e.

$$b = \frac{\tau R w}{t - R}$$

where

w = total wage

- $\tau = \text{contribution rate}$
- b = benefit
- R =adult retirement age
- t = adult life span

Problem of 21st century

because life span increases,

- benefit/net wage decreases
- contribution rate increases
- retirement age increases (LECTURE)

How to deal with heterogeneity in LEXP Flexible retirement

benefit depends on age at retirement

Naive proposal (NDC):

$$b = \frac{\tau R w}{m - R}$$

where m = Et = average adult life span

but asymmetric information undermines the optimality

longer employment \rightarrow longer lifespan

Memo: miner vs. professor

Table 0. Comparison of solutions

Benefits in terms of total wage (1.25 net wage) Retirement ages – 20 years Yield–variance trade-off

Table 0. Summary results

	NDC	NEUT	EST
b_{50}	0.59	0.44	0.64
b_{55}	0.79	0.50	0.72
b_{60}	1.19	0.80	0.80
R_{50}	42.3	34.4	41.8
R_{55}	45.0	39.3	43.3
R_{60}	47.9	48.0	44.7
V	40.2	38.7	40.8
D^2	13.4	0	6.8

NDC unfair NEUT low yield–no variance EST optimal

Plan

- 1. Introduction
- 2. Theoretical background
- 3. Model
- 4. Redistribution vs. neutrality
- 5. First-best optimum
- 6. Second-best optimum
- 7. Numerical results
- 8. Conclusions

2. Theoretical Background

Optimum mechanism design

Two examples

• Optimal income tax (Mirrlees 1971)

makes people interested in working and paying taxes asymmetric information calls for incentive compatibility: Nobel-prize

- \Rightarrow second best solution
- Insurance design (Rothschild–Stiglitz, 1976)

low risk must prove his type by accepting partial insurance neutrality may be Pareto-inferior to redistribution

Optimal pension design

Diamond–Mirrlees (1978): opt. disability retirement

Now: Opt. old-age retirement incentives

Table 1. Models and assumptions

		Labor	Retirement	
Author	Lifespan	disutility	age	Benefit
	t	ε	R	b
Fabel	2	fixed	contin.	arbitrary
Diamond	contin.	arepsilon(t)	R_m, R_M	arbitrary
Simon.	contin.	arbitrary	contin.	linear
EST	discrete	fixed	contin.	arbitrary

3. Model

population: lifespan $t = S, \ldots, T$

mandatory pension system with life annuity

Table 2. Stages

Stage	worker	pensioner
consumption	$1-\tau$	b_t
span	R_t	$t - R_t$
inst. utility	u	w

$$u(x) = w(x) - \varepsilon$$
, τ fixed, $u = u(1 - \tau)$
individual lifetime utility

$$v_t = R_t u + (t - R_t) w(b_t)$$

Lifetime balance: $z_t = \tau R_t - (t - R_t) b_t$
Budget constraint:

$$Z = \sum_{t=S}^{T} z_t f_t = 0$$

where f_t = frequency of type t.

4. Redistribution vs. neutrality

Neutral: $z_t \equiv 0$:

$$R_t^N = \frac{b_t}{\tau + b_t}t, \qquad t = S, \dots, T.$$

Inevitability of redistribution

Innocent assumption: increasing benefits: $b_{t+1} \ge b_t$ Additional plausible assumption

Moderate sensitivity to life expectancy:

$$R_{t+1} - R_t < \frac{b_t}{\tau + b_t} < 1$$

Strong form of redistribution

Decreasing balances:

$$z_S > \cdots > z_t > z_{t+1} > \cdots > z_T.$$

Theorem. Increasing benefits and moderate sensitivity \rightarrow decreasing balances

Corollary: $z_S > 0 > z_T$

5. First-best optimum

• no asymmetric information Two objective functions: maximizing the average utility and minimizing the variance of balances unifi cation with penalty coeff. $\delta \ge 0$

benevolent dictator

$$\max_{b_t, R_t)_t} \sum_{t=S}^T [v_t - \delta z_t^2] f_t$$

subject to

$$\begin{array}{lcl} v_t &=& [u-w(b_t)]R_t+w(b_t)t,\\ z_t &=& (\tau+b_t)R_t-tb_t,\\ && \sum_{t=1}^T z_tf_t=0 \end{array}$$

First-best optimum

Theorem. First-best benefit: $b_t^* \equiv b^*$:

$$F(b^*) = 0.$$

First-best retirement age:

a) no penalty

$$R_t^* = R^* = \frac{b^*}{\tau + b^*}m.$$

b) penalty

$$R_t^N = \frac{b^*}{\tau + b^*}t.$$

 R_t^N also no-penalty first-best but is not second-best, because

the govt. does not know $t \rightarrow$

individuals underreport t

6. Second-best optimum

First-best problem

with incentive compatibility (IC) constraints: (D) type t + 1 prefers (b_{t+1}, R_{t+1}) to (b_t, R_t) , (U) type t prefers (b_t, R_t) to (b_{t+1}, R_{t+1}) , Corollary [Monotonicity]:

$$b_t \le b_{t+1}, \qquad R_t \le R_{t+1}.$$

(U) dropped and (D) reduced to (D=)

Simple optimal isoperimetric control problem:

$$v_{t+1} = v_t + w(b_t), \qquad t = S, \dots, T-1$$

v =state, b =control

Two cases are distinguished:

- (i) No penalty for redistribution (Utilitarian)
- (ii) Penalty for redistribution

(i) No penaltyTheorem. Inflexible plan:

$$\hat{b}_t = b^*$$
 and $\hat{R}_t = R^*$

and second-best is first-best

(ii) Penalty

now first-best is not socially optimal:

too much redistribution from the short-lived to the long-lived Corollary: $b_T = b^*$ (first-best).

Typical for second-best

Lagrange multipliers: λ to Z and μ_t to IC_t Theorem. Necessary First-Order Conditions

7. Numerical results

NFOC easy to solve numerically but this problem has many stationary solutions for n > 3

Run 1. Three types: S = 50 and T = 60, uniform.

No penalty: $R^* = 44$ years, $b^* = 0.8$

Run 2. Equivalent solutions, no penalty

Table 3. Equivalence

v_{50}	v_{55}	v_{60}	b_{50}	b_{55}	R_{50}
31.7	41.0	50.3	0.8	0.8	44.0
31.9	40.9	50.2	0.76	0.8	43.2

From now on positive penalty

• Run 3 Comparisons

Benefits in terms of total wage (1.25 net wage) Retirement ages – 20 years NDC unfair NEUT low yield–no variance EST optimal

		NDC	NEUT	EST
b	50	0.59	0.44	0.64
b	55	0.79	0.50	0.72
b	60	1.19	0.80	0.80
I	3_{50}	42.3	34.4	41.8
$\parallel F$	3_{55}	45.0	39.3	43.3
$\parallel F$	R ₆₀	47.9	48.0	44.7
V	Γ	40.2	38.7	40.8
$\parallel I$	\mathcal{D}^2	13.4	0	6.8

Table 4. Comparison of solutions

 under asymmetric information on lifespan, actuarial fairness is naive

 paradox: the government cannot solve numerically its optimum problem

- paradox: the government cannot solve numerically its optimum problem
- generalization to (leisure elasticity, lifespan): difficult, opt. control is not applicable

- paradox: the government cannot solve numerically its optimum problem
- generalization to (leisure elasticity, lifespan): difficult, opt. control is not applicable
- analysis of imperfect benefit formulas

- paradox: the government cannot solve numerically its optimum problem
- generalization to (leisure elasticity, lifespan): difficult, opt. control is not applicable
- analysis of imperfect benefit formulas
- more analytical results are needed