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Talk Summary

• Introducing trade compression as a concept.

• Financial, regulatory motivation.

• Simple overview of algorithms and approaches used in the industry, 

introducing a naive loop algorithm.

• Finding an optimal solution: trade compression as a linear optimization 

problem.
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Trade compression in the financial industry

The size of the credit-default-swap 

(CDS) market, which stood at a 

monumental $57 trillion dollars in 

June 2008, has grabbed attention. 

That number has since shrunk 

dramatically. According to the Bank 

for International Settlements, the 

value of outstanding CDS contracts 

had fallen to $42 trillion in 

December. 

The apparent collapse is largely 

down to something called trade 

compression.



My first guess…



What is trade compression?

• Trade compression is used to reduce the number of contracts that banks 

have on their books, while keeping the same economic exposure (present 

value, risks). 

• Unilateral basis: cancelling offsetting contracts in their own portfolio.

• E.g., bilateral basis, firms cancel offsetting involving two parties:
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• Multilateral basis, firms cancel offsetting contracts involving multiple parties:
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What is the economic motivation for performing compressions?

• Reducing number of outstanding contracts (number of trades, total notional).

• Reduction of capital needed to cover trading book risk.

• Mitigating credit/counterparty risk.

• Easier to manage trading book and hedge with a smaller number of 

positions.

• There are firms offering algorithms for compressing trades: TriOptima and 

CLS are the main market providers.

• The issue is even more acute with central clearing, as one position turns into 

two:

Bank A Contract Bank B
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Trade compression

• Compression is an optimization problem, where the task is to find a portfolio 

for each counterparty that is equivalent to the original one, while minimalizing 

a measure (e.g., number of trades). Equivalence could be defined with a set 

of boundary conditions: 

–Present Value

–Credit Risk

–Total Notional

Can be prescribed to remain constant.

• Compression effectiveness in greatly facilitated by the level of 

standardization of the underlying product. For instance, if maturities, coupons 

are standardized, as it is the case for CDS, then finding offsetting positions is 

more straightforward.



Example: compressing CDS (insurance against default trades)

• We assume that we have N counterparties.

• We have one generic type of contract a CDS that is an insurance against 

default, like car/home insurance. I.e., paying a quarterly premium and get 

reimbursed if a default event happens (car collision).

• We assume that counterparty (𝑖) bought insurance with a notional 𝐶𝑖,𝑗 on a 

reference entity from every other counterparty (𝑗) .

• 𝐶𝑖,𝑗 is antisymmetric i.e., 𝐶𝑖,𝑗 = −𝐶𝑗,𝑖 , because buying protection for one 

counterparty means selling for another. Also naturally 𝐶𝑖,𝑖 = 0.

•

0 ⋯ 𝐶1,𝑁

⋮ ⋱ ⋮
−𝐶1,𝑁 ⋯ 0

net long positions for each: ℎ𝑖 = σ𝑗 𝐶𝑖,𝑗



Example: compressing CDS, (naive algorithm).

• The goal is to minimize the counterparty exposure measure 𝐿2 𝐶 = σ𝑖,𝑗 𝐶
𝑖,𝑗

2
, 

while keeping the exposure ℎ𝑖 = σ𝑗 𝐶𝑖,𝑗 for each counterparty the same.

Loop Compressing Algorithm (Trioptima):

• Enumerate all closed loops (e.g., depth first search algorithm).

• Net each loop, subtract the smallest element from each at once.
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Example: compressing CDS, part III.

• This algorithm will reduce 𝐿2(𝐶), while keeping the exposures constant: ℎ𝑖 .

• Netting applies only to closed loops, the number of these grows exponentially 

and could become very expensive.

• It is not clear how we could incorporate additional conditions (on top of 

exposure preservation).

• Not a global optimal algorithm.

• One can find optimal compression algorithms for 𝐿1 𝐶 using linear 

programming for this problem. A simple unilateral compression algorithm will 

be detailed in the second half of this presentation.



Trade compression in an unilateral case

Example



Example of trade compression in an unilateral case

• Until now we have looked at cases involving multiple parties, now we are 

trying to compress trades in a single portfolio.

• This example was implemented in our current production system.

• The goal is to reduce the number of securities in a portfolio to minimize the 

computational cost for our simulations, while keeping the additive risk profiles 

constant.

• Unfortunately, solving this is a NP-complete problem. Instead, we investigate 

a related question that approximates this: Minimalizing the total absolute 

notional 𝐿1 𝐶 .

• The new portfolio will be a linear combination of the original.

• Such additive risks are:

–Current Market Price (MTM) of the securities.

–First and higher order derivatives of the market price.



Compression for one counterparty

• We have 𝑁-trades in a portfolio.

• Let’s denote the vector of nationals corresponding to these by [c1⋯ cn].

• We have 𝑀-risk factors (j) for each trade (i): 𝑨𝒊,𝒋 . E.g., Market Price (MtM) and 

it’s derivatives. The sum of these risk factors over the whole portfolio is: 

• We organize this information as follows:

We seek a vector of portfolio weights  

𝒘𝟏

⋮
𝒘𝑵

with the boundary condition:

𝟎 ≤ 𝒘𝒊 ≤ 𝒘𝒎𝒂𝒙

𝚺 + 𝐋 ≤ 𝐀𝑻𝐰 ≤ 𝚺 + 𝐔

Where 𝐋 and 𝐔 are tolerance levels.

𝒄𝟏

⋮
𝒄𝑵

𝑨𝟏,𝟏 … 𝑨𝟏,𝑴

⋮ ⋱ ⋮
𝑨𝑵,𝟏 … 𝑨𝑵,𝑴

𝜮𝟏 … 𝜮𝑴



Problem as linear programming

• Minimalizing the total notional under boundary conditions:

𝐰: argmin
𝐰

𝐜𝑇𝐰

such that
𝟎 ≤ 𝒘𝒊 ≤ 𝒘𝒎𝒂𝒙

𝚺 + 𝐋 ≤ 𝐀𝑻𝐰 ≤ 𝚺 + 𝐔

 LP optimization problem

• Initial solution: 𝐰 = 𝟏 (not optimal, but feasible)

• Solution is not unique

• Solution tends to be sparse

𝐀𝑻𝐰
−𝐀𝑻𝐰

≤
𝚺 + 𝐔

− 𝚺 + 𝐋

canonical

form



How to solve LP problems – Simplex algorithm

• Graphical method

2-D N-D

• Construct the smallest convex hull based on the constraints

• Walk on the edges towards increasing/decreasing objective function (greedy 
algorithm)

• (Too many vertices for exhaustive search.)

• Global optimum is guaranteed

• Usually efficient, worst-case exponential

• Listed as one of the top 10 algorithms in the 20th century (by IEEE)



How to solve LP problems – Other methods

• Other group of algorithms: interior point methods

–Can visit any point in the feasible region, not only vertices

–Similar efficiency as the simplex algorithm, depends on the actual problem

• Approximate algorithms:  solution is 𝑂 1 + 𝜀 optimal [1]

–Matrix A is 𝑛 x 𝑚, and has N non-zero entries

–Best sequential takes 𝑂 𝑁 + 𝑙𝑜𝑔𝑁 𝑛 + 𝑚 𝜀−2 time

–Best parallel takes 𝑂 𝑙𝑜𝑔𝑁 2𝜀−3 time

[1] Allen-Zhu, Zeyuan, and Lorenzo Orecchia. "Using optimization to break the epsilon barrier: A faster and simpler width-

independent algorithm for solving positive linear programs in parallel." In Proceedings of the Twenty-Sixth Annual ACM-SIAM 

Symposium on Discrete Algorithms, pp. 1439-1456. Society for Industrial and Applied Mathematics, 2015.



Implementation

• Using NAG

–Leading numerical algorithm library

–Efficient and well maintained functionality

–nag_opt_lp (e04mfc)

• Example:

–Original: 266 trades 754 bn INR notional

–Compressed: 26 trades 88 bn INR notional

9.77% 11.69%



Summary

• Trade compression is therefore an important means of reducing gross 

notional amounts

–For achieving regulatory capital savings; and reducing operational and 

counterparty risk exposures. 

–When used on a multilateral basis, for example, with cleared OTC 

derivatives trades, it also cuts back on double counting of risk. 

–The unilateral trade compression saved a lot of computational resources 

when calculating CVA.

–Therefore the importance of trade compression should not be 

underestimated.

References: 

–Dominic O’Kane: Optimizing the compression cycle


