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Intro

• Stat Phys

• Random walks



Brain - What For?

Sensory Inputs

Thoughts

Feelings

Learning

Consciousness

Decisions

Motor Outputs



14 October 2016

The brain

In the human brain there are:

~ 1012 (trillion) Neurons
~ 1015 (quadrillion) Synapses

~ 105 Neurons/mm3

~ 109 Synapse/mm3

~ 4 Km Axon/mm3

~ 500 million dendrites /mm3

~ 104 Input Synapses / neuron
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Intro

• Stat Phys

• Random walks

• Computational neuroscience 

• Pattern NAP I

• NAP II

• Wigner CP

• Computational neuroscience 

• DA

• ML

• Math models
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joint work with 

Zsigmond Benkő, Ádám Zlatniczki, Dániel Fabó, 

Zoltán Somogyvári
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Which was first?
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Francis Bacon  physics – metaphysics,

only physical causation can be considered causality

Deterministic.. or ?

Modern view of causality
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Which region is the source of the epileptic seizure?

Shah AK, Mittal S. Invasive electroencephalography monitoring: Indications and presurgical

planning. Ann Indian Acad Neurol 2014;17, Suppl S1:89-94

12a

16b

Application
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Sztochasztikus kapcsolat
Sample:  Xi , Yi i=1,….,n

correlation?

Modern tudomáyStochastic relationships

X causes Y ?

Y causes X ?

Y Y Y

Y Y Y

X

X

“Correlation is not causality!”
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Can we learn something!

If X moves like that , Y does as well, 

or if X moves like that , Y does not care

X degrees of freedom 1

Y degrees of freedom 1

togeather?  

From correlation to causality
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Xt , Yt two timeseries t=1,….,T

Which causes the other? 

X1 X2 Xt-1 Xt

Y1 Y2 Yt-1 Yt

Time series
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Xt , Yt two timeseries t=1,….,T

Which causes the other? 

X1 X2 Xt-1 Xt

Y1 Y2 Yt-1 Yt

Time series
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Xt , Yt two time series =1,….,T

Let           the forecast for Xt+1 and the error

e2=E[ (          - Xt+1)
2 |  …  ]

The error       e|X1,…t based on the past of X

e|X1,…t,Y1,…t based on the past X and Y

If the forecast using the past of Y in addition to X

decreases the error

then, Y Wiener-Granger – causes X.  

Granger kauzalitásTime series
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Granger causality

Granger causality

1. Axiom – cause precedes caused

2. Axiom – Using the past of the cause improves the forecast 

of the caused based solely on its own past..
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Life of the ants

Granger causality
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Life of the ants

Granger causality
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Granger causality confused by 

hidden common cause 

Hidden common cause!

Granger causality
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X2 X3 X4 Xt-1

Y3 Y4 Y5 Yt

Z1 Z2 Z3 Zt-2

Xt

Yt-1

Hidden common cause!

Granger causality

Granger causality confused by 

hidden common cause 
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X2 X3 X4 Xt-1

Y3 Y4 Y5 Yt

Z1 Z2 Z3 Zt-2

Xt

Yt-1

Hidden common cause!

Granger causality

Granger causality confused by 

hidden common cause 
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For given i  (Xi , Yi )

How typical is that position?

N(r) = # { (i,j)   :   |(Xi , Yi )-(Xj , Yj )|<r }

N(r)  rd

Correlation - a new look

d the joint 

“degrees of freedom”
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Xi , Yi uptil now, IID sample i=1,….n !

Now let it be time series! 

Xt , Yt reflects only the link between them, but in the series in 

time t=1,….,T , much richer information

Connection?  Spot Y if you know X?

N(r) = # { (s,t)  :  |(Xs , Ys )-(Xt , Yt )|<r }

N(r)  rd

d is the correlation 

dimension

Correlation - a new look
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Takens’ Theorem

Let f:MM the map for a discrete time dynamical system with a 
strange attractor A with box counting dimension dA.

at+1=f(at)

xt=g(at)

α must be twice-differentiable observation function, m>2dA then,

the delay embedding

Ft(x)=(xt, xt-1,… xt-m+1)  

embeds A into Rm and left dA invariant.
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On causality

Granger causality (1969)

• Detect uni-directional causality

• Fails to detect bi-directional causality

• Cheeted by common cause

Takens’ (1981) time delay embedding shows the real dimension

Hirata (2010) all type of causality detected, heuristic

Sugihara  - convergence cross embedding (2012)

• Detect uni-directional causality

• Detect bi-directional causality

• In some cases detects common cause (qualitative decision)
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Time delay embedding

(𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2) (𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2)

Embedding of single variables

Joint embedding

(𝑥𝑡, 𝑥𝑡−1, 𝑦𝑡)
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Time delay embedding

Takens’ Theorem

Example: logistic map

Embedded in D=2,3, the manifold is still one dimensional.

𝑥𝑛+1=𝑟𝑥𝑛(1 − 𝑥𝑛)
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(𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡) (𝑦𝑡−2, 𝑦𝑡−1, 𝑥𝑡)

Example 1.

Time delay embedding
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(𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡) (𝑦𝑡−2, 𝑦𝑡−1, 𝑥𝑡)

Dimension increase indicates independence

y d=1 (in D=3) Joint d=2 (in D=3) 

Time delay embedding
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(𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡) (𝑥𝑡−2, 𝑥𝑡−1, 𝑦𝑡)

Example 2.

Time delay embedding
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(𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡) (𝑥𝑡−2, 𝑥𝑡−1, 𝑦𝑡)

Lack of dimension increase indicates causality,

y causes x

2d in 3D joint embedding is still 2d

Time delay embedding
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Dimensions

          BdAddBdAd  joint,max

In general
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Dimensions Causal relation

d(A) < d(B) = d(A,B) A  B

d(B) < d(A) = d(A,B) B  A

d(A) = d(B) = d(A,B) A B

d(A),d(B) < d(A,B) = d(A)+d(B) A  and B are 

independent
d(A),d(B) < d(A,B ) < d(A)+d(B) A,B have a common 

cause
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Dimensions

• Information  dimension

• Intrinsic Dimension (ID)

• ID of the time delayed embedded manifold

• Local ID estimate

• ID as average of local ID-s 
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Rényi information dimension

 

 

  







i

ii

N
N

N

pppH

N

XH
d

N

NX
X

log

log
lim



14 October 2016

Volume of  balls for the time delayed manifold
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Local intrinsic dimension
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t

tXd
n

d
 1

Estimate of the 

intrinsic dimension

For embedding dimension m,

time series x0,x1,….. xt,xt+1,..   ,

the delay vector Xt=(xt,xt-1,..xt-m+1)

where the LID is estimated  for a “good” r.
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Test and application of the method 

• Logistic map

• An old puzzle

• Brain surgery
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Logistic map

Embedded in D=2,3, the manifold is still one dimensional.

𝑥𝑛+1=r𝑥𝑛(1 − 𝑥𝑛)
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(𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡) (𝑥𝑡−2, 𝑥𝑡−1, 𝑦𝑡)

Lack of dimension increase 

indicates causality,y causes x

2d in m=3 d joint embedding is still 2d

Time delay embedding
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Logistic map 

Y

X
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Logistic map 
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Logistic map 
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Which one came first?
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Alkalmazás

1930-1983 egg production 

and chicken population

*Mark E Fisher ≠ Ronald Fisher father of modern statistics

*
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Which one came first?
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Which one came first?

Therefore, we conclude that chicken came first
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Kezdeti eredmények

paraméter

Which one came first?
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Which region is the source of the epileptic seizure?

Shah AK, Mittal S. Invasive electroencephalography monitoring: Indications and presurgical

planning. Ann Indian Acad Neurol 2014;17, Suppl S1:89-94

12a

16b

C

Application to epilepsy focus detection
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Application to epilepsy focus detection
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Application to epilepsy focus detection
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Application to epilepsy focus detection

Magenta areas have been removed
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Application to epilepsy focus detection

Discussion
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Granger causality (1969)

Takens (1981) time delay embedding

Hirata (2010)  recurrence maps - heuristic

Sugihara  - convergence cross mapping (2012)  

– qualitative on causality

– common cause detection in some cases

Our method

• Detects and distinguish all causality relations (expect cc in the 

shadow of bi-directional.)

• Provides probability to all causality relations

Summary
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Thanks for the attention


