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Fundamental definitions 

Definition 1: S , , ,N L T I   is a weighted, directed 

multigraph if  

(a) L is the set of vertices, 

(b) T  is the set of edges, 

(c) :I T L L   is the incidence function of the edges, 

where L L  is the set of ordered pairs of L, and 

(d) :T   is a weight function over the set T . 



Definition 2: The quadruple S , , ,N L T I   in Def. 1 is a 

spectroscopic network (SN) if 

(a) L is the set of (rovibronic) energy levels, 

(b) T  is the set of transitions among the energy levels, 

(c) there is a (conservative) potential function : L    

such that, for all T   of incidence    1 2,I    , 

     2 1        (Rydberg–Ritz principle), and 

(d)   is the function of potential differences. 

 



Definition 3: If T   with    1 2,I    , then 1  and 2  

are the lower and upper levels of  , respectively. 1  and 2  

will be denoted with  low   and  up  , respectively, 

where low: T L  and up: T L  are two functions. 

Definition 4: The transitions T   and T   are coinci-

dent if    I I   . 

Definition 5: The set of all T   coincident to T   is the 

coincidence class of  . 



 
Figure 1: An example for a SN 



Definition 6: S , , ,L T    is the underlying network 

of S , , ,N L T I  , if  

(a) L L  is the set of L’s unordered pairs, and 

(b) :T L L   is the undirected incidence function 

with    1 2,    for all T   with    1 2,I    . 



 
Figure 2: The underlying spectroscopic network of the SN of Fig. 1 



Definition 7:  
sub sub

S sub subsub , , ,T T
N L T I   is a subnet-

work of S , , ,N L T I   if subT T ,  subsub TL    , and 

subTI  and 
subT

  are restrictions of I  and   to subT , respectively. 

Definition 8: T T   is a set of unique transitions if T  is 

one of the largest subset of T  for which 
T

I   is injective. 

Definition 9:  Scon , , ,
T T

N L T I  
  is a contraction 

of S , , ,N L T I   if T  is a set of unique transitions. 



 
Figure 3: The contraction graph of the SN of Fig. 1 



Definition 10:  1 2, , , L T     is an oriented path of 

length  from 1  to 1   in S , , ,N L T I   if  

   1 1 2,I     

   2 2 3,I     

 
   1,I       . 



Definition 11:  1 2, , , T      is a path of length  bet-

ween 1  and 1   in S , , ,N L T I   if 

   1 1 2,    

   2 2 3,    

 
   1,      . 



Definition 12: S , , ,N L T I   is connected if there is a 

path between every pair of energy levels. 

Definition 13:  1 2, , , T      is an oriented cycle of 

length  in S , , ,N L T I   if    1,I      and 

 1 2 1, , ,      is an oriented path from 1  to .  

Definition 14:  1 2, , , T      is a cycle of length  in 

S , , ,N L T I   if    1,     and  1 2 1, , ,      is a 

path between 1  and .  



  

  
Figure 4: Examples for (a) a path and (b) an oriented path



  
Figure 5: Examples for (a) a cycle and (b) an oriented cycle 



Simple propositions related to SNs 

Proposition 1: If T   with    1 2,I    , then there is no 

T   such that    2 1,I     . 

Proof: 

Since      2 1 0         for all T  , then  

       1 2 0             , which is impossible. 

 

 



Proposition 2: If T   with    1 2,I    , then 1 2  . 

Proof:  

If 1 2  , then      1 1 0        , which is a 

contradiction because of   0   . 

Proposition 3: If T   and T   are coincident, i.e.,  

     1 2,I I      , then  

       2 1           . 

 



Proposition 4: If   and  are two conservative potential 

functions of  , such that     c       with a c for 

all L , then 

           

   

2 1 2 1

2 1

c c         

   

     

  
 

Since  min Lc      implies  min 0L     , we can 

suppose that  min 0L    . 



Proposition 5: If  1 2, , , T      is an oriented path with 

   1,i i iI      (1 i  ), then  

     

           

   

1 2

2 1 3 2 1

1 1 .

     

           

   





   

      









 



 

 

 



Proposition 6: If  1 2, , , T       is a path with 

   1,i i i     (1 i  ), then there is a  : 1,1     

spectral sign function with  i i    such that 

         1 1 2 2 1 1                    . 

Proposition 7: If  1 2, , , T      is an oriented cycle with 

   1,i i iI      (1 1i   ) and    1,I     , then  

     1 2 0          . 

 



Proof:  

Since  1 2 1, , , T       is an oriented path, then 

           1 2 1 1                     , 

utilizing      1        , that is, 

       1 2 1 0              . 



Proposition 8: If  1 2, , , T       is a cycle with 

 i  (1 1i   ) and    1,    , then there is a 

 : 1,1     function with  i i    such that  

     1 1 2 2 0               (*). 

Proposition 9: If  1 2, ,..., 1, 1      satisfy (*), then 

1 2, ,...,      also satisfy (*).  

Proposition 10: A cycle  1 2, , , T      is oriented iff 

1 2 ...      obeying (*).



Proposition 11: If  1 2, , , T      is a cycle with 

   1,i i i     (1 1i   ) and    1,    , then it 

is not oriented. 

Proof:  

Suppose that  1 2 ... 1, 1          meets (*), i.e., 

       1 2 1 0                 . 

Then, we get a contradiction due to   0i    (1 i  ): 

       1 2 10 0                . 



Proposition 12: If S , , ,N L T I   is a connected graph and 

 0 0    with a 0 L  , then the     values are uniquely 

determined by :T   for all L . 

Proof: 

Since there is a  1 2, , , T      path between 0  and an 

arbitrary L  with 0  , the following relation holds: 

           0 1 1 2 2                       

with proper  1 2, ,..., 1, 1      signs. 



Experimental realizations of SNs 

Definition 15: S , , , ,R L T I    is a(n experimental) reali-

zation of the network S , , ,N L T I   if :T , 

:T  , and :T  are functions, furthermore, 

(a)     is a random variable with zero expectation value 

and     standard deviation, and 

(b)              

for all T  . 



Definition 16:  Scon , , , ,
T T T

R L T I    
  is a con-

traction of the realization S , , , ,R L T I    if T  is a set  

of unique transitions. 

Definition 17: Let  E   be an estimator based on the reali-

zation S , , , ,R L T I    for a L , and  opt   is the es-

timation for     using  E  . The function opt : L   

is an optimal estimation of   if  E   is the best unbiased 



estimator of     for all L , i.e., the expectation value 

of  E   is     and the variance of  E   is minimal.  

Proposition 13: For a given S , , , ,R L T I    realization 

 opt arg min S


  , 

where  S   is the following objective function: 

            2

2

1
up low

T

S


      
 



   . 

(MARVEL procedure; see also (a) and (b) in Sec. „Related studies”) 



Inconsistencies in S , , , ,R L T I    

(a) According to the „source” of the problem: 

– (transcription) errors 

– (measurement) inaccuracies (rel. unc. is less than 10-5) 

(b) Based on the „location” of the problem ( T  ): 

 – error or inaccuracy among the  I   values 

– error or inaccuracy among the     values 

– error or inaccuracy among the     values 



Techniques to treat inconsistencies 

(a) observe the trends of the residuals  

         opt optup low           

for all T  , 

(b) adjust the values of    in a ‟reweighting procedure”, 

(c) use cycle bases to identify incorrect cycles (ECART), 

(c) and seek for further spectroscopic information on the 

possibly incorrect transitions. 



Cycle bases 

Definition 18:   is the cycle space of S , , ,N L T I   if it 

contains all the cycles C T  in S , , ,N L T I  . 

Definition 19: C  and C  are independent if their 

C C  symmetric difference is a non-empty set, that is, 

   \ \C C C C C C        , 

otherwise C and C are called dependent. 

Definition 20: ,C C   are disjoint if C C   . 



Proposition 14: If the non-disjoint cycles ,C C   are in-

dependent, then C C  . 

 
Figure 6: Symmetric difference of two cycles of length 4 obtained 

by leaving the transition 2



Definition 21: B    is a cycle basis of the cycle space   

if there is a set B   with independent cycles such that 

either C  or C X    for each C . The entries of 

B  are called basic cycles. 

Proposition 15: Each cycle space has a cycle basis. 

Definition 22: S , , ,N L T I   is acyclic if  . 

Definition 23:  
S , , ,T

T T
N L T I 

 
  is a spanning tree  

of S , , ,N L T I   if  
S

TN


 is (a) acyclic, (b) connected, and 

(c)   T
L    . 



 

Figure 7: A spanning tree (red edges) of a SN with 7 energy levels 



Proposition 16: If  
S , , ,T

T T
N L T I 

 
  is a spanning tree of 

S , , ,N L T I   and \T T    with    1 2,   , then 

 C P     a so-called fundamental cycle of SN , where 

P T    is a unique path in  
S

TN


 between 1  and 2 . 

Proposition 17: If    , then ,C C    are independent. 

Proposition 18: If  S Scon N N , and SN  is a connected, 

then  : \
T

C T T   
   is a cycle basis of   with 

1
T

T L   . 



 

Figure 8: A fundamental cycle associated with 

red: spanning tree edges; black: non-spanning tree edges; green: au-

xiliary edges denoting the path between 1  and 2  in the spanning tree; 

blue: auxiliary edges denoting the fundamental cycle associated to ) 



ECART algorithm  

(see also (d) in Sec. „Related studies”)  
(a) construct a cycle basis ( B ), 

(b) calculate the discrepancy of each basic cycle B  , 

  , using the spectral sign function  : 1,1     as  

      
    


   

(c) determine the    threshold of each B   as 

    
  


 , 



(d) denote the basic cycles B   as bad if 

     cut-offp     , 

where  cut-offp    is a cut-off parameter associated to 

the cycle  , 

(e) denote the transitions B    as suspicious or 

harmless depending on whether it is included in at least 

one bad basic cycle or not, respectively, and 

(f) check the suspicious transitions. 



 

 

 

Figure 9: Two bad basic cycles, 1 and 2. The spectral signs are de-

termined based on the red and blue directions. The large and nearly 

identical discrepancies are due to the ( value common in 1 and 2 



Minimum Cycle Basis (MCB) 

Definition 24: The total cost of a B   , denoted with 

 tot B   is 
B   , where   is the length of the cycle  . 

Definition 25: B,min  is a minimum cycle basis of   if 

 BB,min tot Barg min    . 

Proposition 19: If  S Scon N N , and SN  is connected, 

B,min  can be built with   2 2
logO T L T L L  complexity. 



Advantages and disadvantages of MCBs 

(a) extremely transparent due to their short cycles, 

(b) short cycles are more sensitive to the errors and the in-

accuracies than longer cycles, 

(c) MCBs require larger computational expense than the 

cycle bases determined with the well-known spanning- 

tree-search techniques. 



Open problems 

Definition 26: Let , , ,
T T

L T I  
  and , , ,

T T
L T I  


 

  

be two contractions of S , , ,N L T I   with their cycle ba-

ses B
  and B

 , respectively. B
  and B

  are congruent 

( B B
   ) if there is a bijection B B:f     such that for 

each B   we have  f
I I

 
 . 



 

 

 

 

 

 

 

 

 

Figure 10: Congruent cycle bases ( B B
   ) 



Problem 1: Let S , , ,
T T

N L T I  
   
   be a contraction of 

S , , ,N L T I   with the cycle basis B
 . Let us ask how to 

find a 
opt opt

S,opt opt, , ,
T T

N L T I  
   optimal contraction with 

 
S B

B B

S,opt arg min
N

N



 

 





 
  

 





 

 , 

where S , , ,
T T

N L T I  
   is a contraction of SN  with the 

cycle basis, B
 , congruent to B

 , and    is the discre-

pancy of B  . 



Problem 2: Let S , , ,N L T I   be a connected network. 

Using a spanning tree/cycle basis of SN , the question is 

how to decide wheather the network 
\ \

, \ , ,
T T

L T I
 

   is 

disconnected for a T  . 

Problem 3: Considering a , , , ,
T T T

L T I    
  contraction 

of S , , , ,R L T I   , it is unclear how to determine one of 

the largest ‟clear” subset of T , denoted with cT , for 

which 
cT

   does not contain outliers.  



Problem 4: Let S , , , ,R L T I    be a realization of SN  

, , ,L T I  . How to give a good estimation for the standard 

deviations     ( T  ) using a cycle basis of SN ? 

Problem 5: Let S , , ,N L T I   be a network with 

 S Scon N N . How can one obtain a cycle basis B,max  of 

SN  such that 

 
B

B

B,max arg max





 
 

  . 

where    is the discrepancy of  . 



 

Thank you for your attention! 
 


