Analysis of spectroscopic networks

Roland Tóbiás

MTA-ELTE Complex Chemical Systems Research Group

Related studies

- (a) T. Furtenbacher, A. G. Császár, and J. Tennyson, *J. Mol. Spectrosc.* **2007**, *245*, 115-125.
- (b) A. G. Császár and T. Furtenbacher, *J. Mol. Spectrosc.* 2011, *266*, 99-103.
- (c) T. Furtenbacher and A. G. Császár, J. Quant. Spectr. Rad. Transfer, 2012, 113, 929-935.
- (d) T. Furtenbacher and A. G. Császár, J. Mol. Struct. 2012, 1009, 123-129.

- (e) T. Furtenbacher, P. Árendás, G. Mellau, and A. G. Császár, *Sci. Rep.* 2014, *4*, 4654.
- (f) A. G. Császár, T. Furtenbacher, and P. Árendás, J. Phys. Chem. A 2016, 120, 8949-8969.
- (g) P. Árendás, T. Furtenbacher, and A. G. Császár, J. Math.
- Chem. 2016, 54, 806-822.
- (h) **R. Tóbiás**, T. **Furtenbacher**, and A. G. **Császár**, *J. Quant. Spectrosc. Rad. Transfer* **2017**, *203*, 557-564.

Fundamental definitions

Definition 1: $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ is a weighted, directed

multigraph if

- (a) L is the set of vertices,
- (b) *T* is the set of edges,
- (c) $I: T \to L \times L$ is the **incidence function** of the edges,

where $L \times L$ is the set of ordered pairs of L, and

(d) $\varsigma: T \to \mathbb{R}^+$ is a weight function over the set *T*.

Definition 2: The quadruple $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ in Def. 1 is a **spectroscopic network** (SN) if

(a) *L* is the set of (rovibronic) energy levels,

(b) *T* is the set of **transitions** among the energy levels,

(c) there is a (conservative) potential function $\mathcal{G}: L \to \mathbb{R}$ such that, for all $\tau \in T$ of incidence $I(\tau) = (\lambda_1, \lambda_2)$,

 $\varsigma(\tau) = \vartheta(\lambda_2) - \vartheta(\lambda_1)$ (**Rydberg–Ritz principle**), and

(d) ς is the function of potential differences.

<u>Definition 3:</u> If $\tau \in T$ with $I(\tau) = (\lambda_1, \lambda_2)$, then λ_1 and λ_2 are the lower and upper levels of τ , respectively. λ_1 and λ_2 will be denoted with $low(\tau)$ and $up(\tau)$, respectively, where low: $T \rightarrow L$ and up: $T \rightarrow L$ are two functions. **Definition 4:** The transitions $\tau' \in T$ and $\tau'' \in T$ are **coinci**dent if $I(\tau') = I(\tau'')$.

Definition 5: The set of all $\tau' \in T$ coincident to $\tau \in T$ is the **coincidence class** of τ .

Figure 1: An example for a SN

Definition 6:
$$\mathcal{N}_{S} = \langle L, T, \mathcal{I}, \varsigma \rangle$$
 is the underlying network
of $N_{S} = \langle L, T, I, \varsigma \rangle$, if

(a) $L \bullet L$ is the set of *L*'s unordered pairs, and (b) $\mathcal{I}: T \to L \bullet L$ is the **undirected incidence function** with $\mathcal{I}(\tau) = \{\lambda_1, \lambda_2\}$ for all $\tau \in T$ with $I(\tau) = (\lambda_1, \lambda_2)$.

Figure 2: The underlying spectroscopic network of the SN of Fig. 1

Definition 7:
$$\operatorname{sub}(N_{S}) = \langle L_{\operatorname{sub}}, T_{\operatorname{sub}}, I |_{T_{\operatorname{sub}}}, \varsigma |_{T_{\operatorname{sub}}} \rangle$$
 is a subnet-
work of $N_{S} = \langle L, T, I, \varsigma \rangle$ if $T_{\operatorname{sub}} \subseteq T$, $L_{\operatorname{sub}} = \bigcup_{\tau \in T_{\operatorname{sub}}} \mathcal{I}(\tau)$, and $I |_{T_{\operatorname{sub}}}$ and $\varsigma |_{T_{\operatorname{sub}}}$ are restrictions of I and ς to T_{sub} , respectively.
Definition 8: $T^{*} \subseteq T$ is a set of unique transitions if T^{*} is one of the largest subset of T for which $I |_{T^{*}}$ is injective.
Definition 9: $\operatorname{con}(N_{S}) = \langle L, T^{*}, I |_{T^{*}}, \varsigma |_{T^{*}} \rangle$ is a contraction of $N_{S} = \langle L, T, I, \varsigma \rangle$ if T^{*} is a set of unique transitions.

$$L = \{\lambda_1, \lambda_2\}$$

$$T^* = \{\tau_1\}$$

$$L \times L = \{(\lambda_1, \lambda_1), (\lambda_1, \lambda_2), (\lambda_2, \lambda_1), (\lambda_2, \lambda_2)\}$$

$$I: T \to L \times L$$

Figure 3: The contraction graph of the SN of Fig. 1

<u>Definition 10:</u> $\{\tau_1, \tau_2, ..., \tau_L\} \subseteq T$ is an **oriented path** of length \mathcal{L} from λ_1 to λ_{L+1} in $N_S = \langle L, T, I, \varsigma \rangle$ if $I(\tau_1) = (\lambda_1, \lambda_2)$ $I(\tau_2) = (\lambda_2, \lambda_3)$ $I(\tau_{\mathcal{L}}) = (\lambda_{\mathcal{L}}, \lambda_{\mathcal{L}+1}).$

Definition 11: $\{\tau_1, \tau_2, ..., \tau_{\mathcal{L}}\} \subseteq T$ is a **path** of length \mathcal{L} between λ_1 and $\lambda_{\mathcal{L}+1}$ in $N_{\mathrm{S}} = \langle L, T, I, \varsigma \rangle$ if $\mathcal{I}(\tau_1) = \{\lambda_1, \lambda_2\}$

$$\mathcal{I}(\tau_2) = \{\lambda_2, \lambda_3\}$$

$$\mathcal{I}(\tau_{\mathcal{L}}) = \{\lambda_{\mathcal{L}}, \lambda_{\mathcal{L}+1}\}.$$

Definition 12: $N_{\rm s} = \langle L, T, I, \varsigma \rangle$ is **connected** if there is a path between every pair of energy levels. Definition 13: $\{\tau_1, \tau_2, \dots, \tau_C\} \subseteq T$ is an **oriented cycle** of length \mathcal{L} in $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ if $I(\tau_{\mathcal{L}}) = (\lambda_{\mathcal{L}}, \lambda_{\rm I})$ and $\{\tau_1, \tau_2, \dots, \tau_{\mathcal{L}-1}\}$ is an oriented path from λ_1 to $\lambda_{\mathcal{L}}$. <u>Definition 14:</u> $\{\tau_1, \tau_2, ..., \tau_L\} \subseteq T$ is a **cycle** of length \mathcal{L} in $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ if $\mathcal{I}(\tau_{\mathcal{L}}) = \{\lambda_1, \lambda_{\mathcal{L}}\}$ and $\{\tau_1, \tau_2, \dots, \tau_{\mathcal{L}-1}\}$ is a path between λ_1 and λ_c .

Figure 4: Examples for (a) a path and (b) an oriented path

Figure 5: Examples for (a) a cycle and (b) an oriented cycle

Simple propositions related to SNs <u>Proposition 1:</u> If $\tau \in T$ with $I(\tau) = (\lambda_1, \lambda_2)$, then there is no $\tau' \in T$ such that $I(\tau') = (\lambda_2, \lambda_1)$.

Proof:

Since
$$\varsigma(\tau) = \vartheta(\lambda_2) - \vartheta(\lambda_1) > 0$$
 for all $\tau \in T$, then
 $\varsigma(\tau') = \vartheta(\lambda_1) - \vartheta(\lambda_2) = -\varsigma(\tau) < 0$, which is impossible.

Proposition 2: If
$$\tau \in T$$
 with $I(\tau) = (\lambda_1, \lambda_2)$, then $\lambda_1 \neq \lambda_2$.
Proof:

If $\lambda_1 = \lambda_2$, then $\varsigma(\tau) = \vartheta(\lambda_1) - \vartheta(\lambda_1) = 0$, which is a contradiction because of $\varsigma(\tau) > 0$.

Proposition 3: If $\tau' \in T$ and $\tau'' \in T$ are coincident, *i.e.*, $I(\tau') = I(\tau'') = (\lambda_1, \lambda_2)$, then $\varsigma(\tau') = \varsigma(\tau'') = \vartheta(\lambda_2) - \vartheta(\lambda_1)$. **Proposition 4:** If \mathcal{P} and \mathcal{P}' are two conservative potential functions of ς , such that $\mathscr{G}'(\lambda) = \mathscr{G}(\lambda) + c$ with a $c \in \mathbb{R}$ for all $\lambda \in L$, then $\varsigma(\tau) = \vartheta(\lambda_2) - \vartheta(\lambda_1) = (\vartheta(\lambda_2) + c) - (\vartheta(\lambda_1) + c)$ $= \mathscr{G}'(\lambda_2) - \mathscr{G}'(\lambda_1)$ Since $c = -\min_{\lambda \in L} \mathcal{G}(\lambda)$ implies $\min_{\lambda \in L} \mathcal{G}'(\lambda) = 0$, we can suppose that $\min_{\lambda \in L} \vartheta(\lambda) = 0$.

Proposition 5: If
$$\{\tau_1, \tau_2, ..., \tau_{\mathcal{L}}\} \subseteq T$$
 is an oriented path with
 $I(\tau_i) = (\lambda_i, \lambda_{i+1}) \ (1 \le i \le \mathcal{L}), \text{ then}$
 $\varsigma(\tau_1) + \varsigma(\tau_2) + ... + \varsigma(\tau_{\mathcal{L}}) =$
 $\vartheta(\lambda_2) - \vartheta(\lambda_1) + \vartheta(\lambda_3) - \vartheta(\lambda_2) + ... + \vartheta(\lambda_{\mathcal{L}+1}) - \vartheta(\lambda_{\mathcal{L}}) =$
 $\vartheta(\lambda_{\mathcal{L}+1}) - \vartheta(\lambda_1).$

<u>Proposition 6:</u> If $\Theta = \{\tau_1, \tau_2, \dots, \tau_L\} \subseteq T$ is a path with $\mathcal{I}(\tau_i) = \{\lambda_i, \lambda_{i+1}\} \ (1 \le i \le \mathcal{L}), \text{ then there is a } \Phi_{\Theta} : \Theta \to \{-1, 1\}$ spectral sign function with $\phi_i = \Phi_{\Theta}(\tau_i)$ such that $\phi_1 \varsigma(\tau_1) + \phi_2 \varsigma(\tau_2) + \ldots + \phi_{\mathcal{L}} \varsigma(\tau_{\mathcal{L}}) = \mathcal{G}(\lambda_{\mathcal{L}+1}) - \mathcal{G}(\lambda_1).$ <u>Proposition 7:</u> If $\{\tau_1, \tau_2, ..., \tau_c\} \subseteq T$ is an oriented cycle with $I(\tau_i) = (\lambda_i, \lambda_{i+1}) (1 \le i \le \mathcal{L} - 1) \text{ and } I(\tau_{\mathcal{L}}) = (\lambda_{\mathcal{L}}, \lambda_1), \text{ then }$ $\zeta(\tau_1) + \zeta(\tau_2) + \ldots + \zeta(\tau_L) = 0.$

Proof:

Since $\{\tau_1, \tau_2, \dots, \tau_{\mathcal{L}-1}\} \subseteq T$ is an oriented path, then $\varsigma(\tau_1) + \varsigma(\tau_2) + \dots + \varsigma(\tau_{\mathcal{L}-1}) = \vartheta(\lambda_{\mathcal{L}}) - \vartheta(\lambda_1) = -\varsigma(\tau_{\mathcal{L}}),$ utilizing $\varsigma(\tau_{\mathcal{L}}) = \vartheta(\lambda_1) - \vartheta(\lambda_{\mathcal{L}}),$ that is, $\varsigma(\tau_1) + \varsigma(\tau_2) + \dots + \varsigma(\tau_{\mathcal{L}-1}) + \varsigma(\tau_{\mathcal{L}}) = 0.$

Proposition 8: If
$$\Theta = \{\tau_1, \tau_2, ..., \tau_{\mathcal{L}}\} \subseteq T$$
 is a cycle with
 $\mathcal{I}(\tau_i) \ (1 \le i \le \mathcal{L} - 1) \text{ and } \mathcal{I}(\tau_{\mathcal{L}}) = \{\lambda_{\mathcal{L}}, \lambda_1\}, \text{ then there is a}$
 $\Phi_{\Theta} : \Theta \rightarrow \{-1, 1\}$ function with $\phi_i = \Phi_{\Theta}(\tau_i)$ such that
 $\phi_1 \varsigma(\tau_1) + \phi_2 \varsigma(\tau_2) + ... + \phi_{\mathcal{L}} \varsigma(\tau_{\mathcal{L}}) = 0$ (*).
Proposition 9: If $\phi_1, \phi_2, ..., \phi_{\mathcal{L}} \in \{1, -1\}$ satisfy (*), then
 $-\phi_1, -\phi_2, ..., -\phi_{\mathcal{L}}$ also satisfy (*).
Proposition 10: A cycle $\{\tau_1, \tau_2, ..., \tau_{\mathcal{L}}\} \subseteq T$ is oriented iff
 $\phi_1 = \phi_2 = ... = \phi_{\mathcal{L}}$ obeying (*).

Proposition 11: If $\{\tau_1, \tau_2, ..., \tau_{\mathcal{L}}\} \subseteq T$ is a cycle with $\mathcal{I}(\tau_i) = \{\lambda_i, \lambda_{i+1}\} \ (1 \le i \le \mathcal{L} - 1) \text{ and } \mathcal{I}(\tau_{\mathcal{L}}) = \{\lambda_{\mathcal{L}}, \lambda_1\}, \text{ then it is not oriented.}$

Proof:

Suppose that $\phi = \phi_1 = \phi_2 = ... = \phi_{\mathcal{L}} \in \{1, -1\}$ meets (*), *i.e.*, $\phi \Big[\varsigma(\tau_1) + \varsigma(\tau_2) + ... + \varsigma(\tau_{\mathcal{L}-1}) + \varsigma(\tau_{\mathcal{L}}) \Big] = 0.$

Then, we get a contradiction due to $\varsigma(\tau_i) > 0$ $(1 \le i \le \mathcal{L})$:

$$0 < \varsigma(\tau_1) + \varsigma(\tau_2) + \ldots + \varsigma(\tau_{\mathcal{L}-1}) = -\varsigma(\tau_{\mathcal{L}}) < 0.$$

Proposition 12: If $N_s = \langle L, T, I, \varsigma \rangle$ is a connected graph and $\mathcal{G}(\lambda_0) = 0$ with a $\lambda_0 \in L$, then the $\mathcal{G}(\lambda)$ values are uniquely determined by $\varsigma: T \to \mathbb{R}$ for all $\lambda \in L$.

Proof:

Since there is a $\{\tau_1, \tau_2, ..., \tau_L\} \subseteq T$ path between λ_0 and an arbitrary $\lambda \in L$ with $\lambda \neq \lambda_0$, the following relation holds:

$$\mathcal{G}(\lambda) - \mathcal{G}(\lambda_0) = \mathcal{G}(\lambda) = \phi_1 \mathcal{G}(\tau_1) + \phi_2 \mathcal{G}(\tau_2) + \ldots + \phi_{\mathcal{L}} \mathcal{G}(\tau_{\mathcal{L}})$$

with proper $\phi_1, \phi_2, \ldots, \phi_{\mathcal{L}} \in \{1, -1\}$ signs.

Experimental realizations of SNs

<u>Definition 15</u>: $R_{\rm s} = \langle L, T, I, \sigma, \delta \rangle$ is a(n experimental) reali-

zation of the network $N_{\rm s} = \langle L, T, I, \varsigma \rangle$ if $\sigma : T \to \mathbb{R}$,

 $\varepsilon: T \to \mathbb{R}$, and $\delta: T \to \mathbb{R}$ are functions, furthermore,

(a) $\varepsilon(\tau)$ is a random variable with zero expectation value and $\delta(\tau)$ standard deviation, and

(b) $\sigma(\tau) = \varsigma(\tau) + \varepsilon(\tau)$

for all $\tau \in T$.

Definition 16: $\operatorname{con}(R_{\mathrm{S}}) = \langle L, T^*, I|_{T^*}, \sigma|_{T^*}, \delta|_{T^*} \rangle$ is a **contraction** of the realization $R_{\mathrm{S}} = \langle L, T, I, \sigma, \delta \rangle$ if T^* is a set

of unique transitions.

Definition 17: Let $E_{g(\lambda)}$ be an estimator based on the realization $R_{\rm S} = \langle L, T, I, \sigma, \delta \rangle$ for a $\lambda \in L$, and $\mathcal{G}_{\rm opt}(\lambda)$ is the estimation for $\mathcal{G}(\lambda)$ using $E_{g(\lambda)}$. The function $\mathcal{G}_{\rm opt} : L \to \mathbb{R}^+$ is an optimal estimation of \mathcal{G} if $E_{g(\lambda)}$ is the best unbiased estimator of $\mathcal{G}(\lambda)$ for all $\lambda \in L$, *i.e.*, the expectation value of $E_{\mathcal{G}(\lambda)}$ is $\mathcal{G}(\lambda)$ and the variance of $E_{\mathcal{G}(\lambda)}$ is minimal. <u>Proposition 13:</u> For a given $R_{s} = \langle L, T, I, \sigma, \delta \rangle$ realization $\mathcal{G}_{opt} = \operatorname*{arg\,min}_{\mathcal{G}} S(\mathcal{G}),$

where $S(\mathcal{G})$ is the following objective function:

$$S(\vartheta) = \sum_{\tau \in T} \frac{1}{\delta^2(\tau)} \Big(\sigma(\tau) - \vartheta(\operatorname{up}(\tau)) + \vartheta(\operatorname{low}(\tau)) \Big)^2.$$

(MARVEL procedure; see also (a) and (b) in Sec. ,,Related studies")

Inconsistencies in $R_{\rm S} = \langle L, T, I, \sigma, \delta \rangle$

(a) According to the ,,source" of the problem:

- (transcription) errors

- (measurement) inaccuracies (rel. unc. is less than 10^{-5})

(b) Based on the ,,location" of the problem ($\tau \in T$):

- error or inaccuracy among the $I(\tau)$ values

– error or inaccuracy among the $\sigma(\tau)$ values

- error or inaccuracy among the $\delta(\tau)$ values

Techniques to treat inconsistencies

(a) observe the trends of the residuals

for

$$\rho(\tau) = \sigma(\tau) - \mathcal{P}_{opt}(up(\tau)) + \mathcal{P}_{opt}(low(\tau))$$

all $\tau \in T$.

(b) adjust the values of δ in a "reweighting procedure",
(c) use cycle bases to identify incorrect cycles (ECART),
(c) and seek for further spectroscopic information on the possibly incorrect transitions.

Cycle bases

Definition 18: C is the cycle space of $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ if it contains all the cycles $C \subseteq T$ in $N_{\rm S} = \langle L, T, I, \varsigma \rangle$. Definition 19: $C' \in C$ and $C'' \in C$ are **independent** if their $C' \Delta C''$ symmetric difference is a non-empty set, that is, $C' \Delta C'' = (C' \setminus C'') \cup (C'' \setminus C') \neq \emptyset$,

otherwise C' and C" are called **dependent**.

<u>Definition 20:</u> $C', C'' \in C$ are **disjoint** if $C' \cap C'' = \emptyset$.

<u>Proposition 14:</u> If the non-disjoint cycles $C', C'' \in C$ are independent, then $C' \Delta C'' \in C$.

Figure 6: Symmetric difference of two cycles of length 4 obtained by leaving the transition τ_2

<u>Definition 21</u>: $C_B \subseteq C$ is a cycle basis of the cycle space Cif there is a set $\mathcal{X} \subset \mathcal{C}_{B}$ with independent cycles such that either $C \in \mathcal{X}$ or $C = \Delta_{\chi \in \mathcal{X}} X$ for each $C \in \mathcal{C}$. The entries of $C_{\rm B}$ are called **basic cycles**. Proposition 15: Each cycle space has a cycle basis. <u>Definition 22:</u> $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ is acyclic if $\mathcal{C} = \emptyset$. <u>Definition 23:</u> $N_{\rm S}^{\|\tilde{T}\|} = \langle L, \tilde{T}, I|_{\tilde{T}}, \varsigma|_{\tilde{T}} \rangle$ is a spanning tree of $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ if $N_{\rm S}^{\|\tilde{T}\|}$ is (a) acyclic, (b) connected, and (c) $\cup_{\tau \in \tilde{T}} \mathcal{I}(\tau) = L.$

Figure 7: A spanning tree (red edges) of a SN with 7 energy levels

<u>Proposition 16:</u> If $N_{\rm S}^{\|\tilde{T}\|} = \langle L, \tilde{T}, I|_{\tilde{T}}, \varsigma|_{\tilde{T}} \rangle$ is a spanning tree of $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ and $\tau \in T \setminus \tilde{T}$ with $\mathcal{I}(\tau) = \{\lambda_1, \lambda_2\}$, then $C_{\tau} = P_{\tau} \cup \{\tau\}$ a so-called **fundamental cycle** of $N_{\rm s}$, where $P_{\tau} \subseteq \tilde{T}$ is a unique path in $N_{S}^{\parallel \tilde{T} \parallel}$ between λ_{1} and λ_{2} . <u>Proposition 17:</u> If $\tau' \neq \tau''$, then $C_{\tau'}, C_{\tau''} \in \mathcal{C}$ are independent. <u>Proposition 18:</u> If $con(N_s) = N_s$, and N_s is a connected, then $C_{\tilde{T}} = \{C_{\tau} \in C : \tau \in T \setminus \tilde{T}\}$ is a cycle basis of C with $\left|\mathcal{C}_{\tilde{\tau}}\right| = \left|T\right| - \left|L\right| + 1.$

Figure 8: A fundamental cycle associated with τ

(red: spanning tree edges; black: non-spanning tree edges; green: auxiliary edges denoting the path between λ_1 and λ_2 in the spanning tree; blue: auxiliary edges denoting the fundamental cycle associated to τ)

ECART algorithm (see also (d) in Sec. ,,Related studies") (a) construct a cycle basis ($C_{\rm B}$), (b) calculate the **discrepancy** of each basic cycle $\chi \in C_{\rm B}$, $\mathcal{D}(\chi)$, using the spectral sign function $\Phi_{\chi}: \chi \to \{-1, 1\}$ as $\mathcal{D}(\chi) = \left| \sum_{\tau \in \chi} \Phi_{\chi}(\tau) \sigma(\tau) \right|$

(c) determine the $\mathcal{T}(\chi)$ threshold of each $\chi \in C_B$ as

$$\mathcal{T}(\chi) = \sum_{\tau \in \chi} \delta(\tau),$$

(d) denote the basic cycles $\chi \in C_B$ as **bad** if $\mathcal{D}(\chi) - \mathcal{T}(\chi) \ge p_{\text{cut-off}}(\chi),$

where $p_{\text{cut-off}}(\chi) \in \mathbb{R}^+$ is a cut-off parameter associated to the cycle χ ,

(e) denote the transitions $\tau \in \bigcup_{\chi \in C_B} \chi$ as **suspicious** or **harmless** depending on whether it is included in at least one bad basic cycle or not, respectively, and (f) check the suspicious transitions.

Figure 9: Two bad basic cycles, χ_1 and χ_2 . The spectral signs are determined based on the red and blue directions. The large and nearly identical discrepancies are due to the $\sigma(\tau_1)$ value common in χ_1 and χ_2 .

Minimum Cycle Basis (MCB)

<u>Definition 24</u>: The total cost of a $C_B \subseteq C$, denoted with $\kappa_{\text{tot}}(\mathcal{C}_{\text{B}})$ is $\sum_{\chi \in \mathcal{C}_{\text{B}}} |\chi|$, where $|\chi|$ is the length of the cycle χ . <u>Definition 25:</u> $C_{B,min}$ is a **minimum cycle basis** of C if $C_{\rm B,min} = \arg \min_{C_{\rm B}} \kappa_{\rm tot} (C_{\rm B}).$ <u>Proposition 19</u>: If $con(N_s) = N_s$, and N_s is connected, $C_{B,\min}$ can be built with $O(|T|^2 |L| + |T||L|^2 \log(|L|))$ complexity.

Advantages and disadvantages of MCBs

- (a) extremely transparent due to their short cycles,
- (b) short cycles are more sensitive to the errors and the inaccuracies than longer cycles,
- (c) MCBs require larger computational expense than the cycle bases determined with the well-known spanning-tree-search techniques.

Open problems

Definition 26: Let $\langle L, T^*, I |_{T^*}, \varsigma |_{T^*} \rangle$ and $\langle L, T'^*, I |_{T'^*}, \varsigma |_{T'^*} \rangle$ be two contractions of $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ with their cycle bases $\mathcal{C}_{\rm B}^*$ and $\mathcal{C}_{\rm B}'^*$, respectively. $\mathcal{C}_{\rm B}^*$ and $\mathcal{C}_{\rm B}'^*$ are **congruent** $(\mathcal{C}_{\rm B}^* \simeq \mathcal{C}_{\rm B}'^*)$ if there is a bijection $f : \mathcal{C}_{\rm B}^* \leftrightarrow \mathcal{C}_{\rm B}'^*$ such that for each $\chi \in \mathcal{C}_{\rm B}'^*$ we have $I |_{\chi} = I |_{f(\chi)}$.

Figure 10: Congruent cycle bases ($C_B^* \simeq C_B'^*$)

Problem 1: Let
$$\tilde{N}_{\rm S}^* = \langle L, \tilde{T}^*, I |_{\tilde{T}^*}, \varsigma |_{\tilde{T}^*} \rangle$$
 be a contraction of
 $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ with the cycle basis $\tilde{\mathcal{C}}_{\rm B}^*$. Let us ask how to
find a $N_{\rm S,opt}^* = \langle L, T_{\rm opt}^*, I |_{T_{\rm opt}^*}, \varsigma |_{T_{\rm opt}^*} \rangle$ optimal contraction with
 $N_{\rm S,opt}^* = \arg\min_{\substack{N_{\rm S}^* \\ \mathcal{C}_{\rm B}^* \simeq \tilde{\mathcal{C}}_{\rm B}^*}} \left(\sum_{\chi \in \mathcal{C}_{\rm B}^*} \mathcal{D}(\chi)\right),$

where $N_{\rm S}^* = \langle L, T^*, I|_{T^*}, \varsigma|_{T^*} \rangle$ is a contraction of $N_{\rm S}$ with the cycle basis, $C_{\rm B}^*$, congruent to $\tilde{C}_{\rm B}^*$, and $\mathcal{D}(\chi)$ is the discrepancy of $\chi \in C_{\rm B}^*$.

<u>**Problem 2:**</u> Let $N_{\rm S} = \langle L, T, I, \varsigma \rangle$ be a connected network. Using a spanning tree/cycle basis of N_s , the question is how to decide wheather the network $\langle L, T \setminus \tau, I |_{T \setminus \tau}, \varsigma |_{T \setminus \tau} \rangle$ is **disconnected** for a $\tau \in T$. <u>Problem 3:</u> Considering a $\langle L, T^*, I|_{T^*}, \sigma|_{T^*}, \delta|_{T^*} \rangle$ contraction of $R_{\rm s} = \langle L, T, I, \sigma, \delta \rangle$, it is unclear how to determine one of the largest "clear" subset of T^* , denoted with T_c^* , for which $\sigma|_{T^*}$ does not contain outliers.

Problem 4: Let $R_{\rm s} = \langle L, T, I, \sigma, \delta \rangle$ be a realization of $N_{\rm s} = \langle L, T, I, \varsigma \rangle$. How to give a good estimation for the standard deviations $\delta(\tau)$ ($\tau \in T$) using a cycle basis of $N_{\rm s}$? Problem 5: Let $N_{\rm s} = \langle L, T, I, \varsigma \rangle$ be a network with $\operatorname{con}(N_{\rm s}) = N_{\rm s}$. How can one obtain a cycle basis $C_{\rm B,max}$ of $N_{\rm s}$ such that

$$C_{\mathrm{B,max}} = \operatorname*{arg\,max}_{\mathcal{C}_{\mathrm{B}}} \sum_{\chi \in \mathcal{C}_{\mathrm{B}}} \mathcal{D}(\chi).$$

where $\mathcal{D}(\chi)$ is the discrepancy of χ .

Thank you for your attention!