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Fundamental definitions

Definition 1: Ng = <L,T v ,g> 1s a weighted, directed

multigraph if

(a) L 1s the set of vertices,

(b) T 1s the set of edges,

(c) I:T — LxL 1s the incidence function of the edges,

where L x L 1s the set of ordered pairs of L, and

(d) ¢:T — R" is a weight function over the set 7.



Definition 2: The quadruple N = <L,T v ,g> in Def. 1 1s a

spectroscopic network (SN) 1f

(a) L 1s the set of (rovibronic) energy levels,

(b) T 1s the set of transitions among the energy levels,

(c) there 1s a (conservative) potential function $:L — R
such that, for all 7 € T of incidence I(7)=(4,,4,),

s(7)=9(4,)—3(4,) (Rydberg—Ritz principle), and

(d) ¢ 1s the function of potential differences.



Definition 3: If 7 € T with I(7)=(4,,4, ), then 4, and 4,

are the lower and upper levels of z, respectively. 4, and 4,

will be denoted with low (7) and up(7), respectively,

where low: T'— L and up: T — L are two functions.
Definition 4: The transitions 7' € T and 7" € T are coinci-

dentif /(z')=1(z").

Definition 5: The set of all ' € T coincident to 7 € T is the

coincidence class of 7.
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Figure 1: An example for a SN



Definition 6: N = <L,T A ,g> 1s the underlying network
of Ng=(L,T,I,¢), if
(a) Le L 1s the set of L’s unordered pairs, and

(b) Z :T — Le L 1s the undirected incidence function

with Z(7)={4,,4,} forall e T with I(7)=(4,,4,).
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Figure 2: The underlying spectroscopic network of the SN of Fig. 1
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Definition 7: sub(Ng ) = <L i , > 1S a subnet-

work of Ny =(L,T,1,5)if T, =T, Ly = User,, Z(7), and
I

roandg p are restrictions of 7 and ¢ to 7, , respectively.

sub?

Definition 8: T° < T is a set of unique transitions if 7" is

one of the largest subset of T for which / ‘ -+ 18 Injective.

Definition 9: con(Ng )= <L,T*,I

56 T*> 1S a contraction

of Ny = <L,T v ,g> if 77 is a set of unique transitions.
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Figure 3: The contraction graph of the SN of Fig. 1



Definition 10: {7,,7,,...,7, } = T is an oriented path of

length £ from 4, to A.,, in Ng = <L,T,[,g> if
I(z,)=(4.4,)

I(7,)=(4,4)

1(2,)=(Aesdes).



Definition 11: {71,72,...,15} — T 1s a path of length £ bet-

ween A, and A, 1n Ny = <L,T,],g> if
I(z) = A Ay

Z(7,)={A, 4}

I(Tﬁ) = {/IE,/IEH}.



Definition 12: Ng = <L,T v ,g> 1s connected 1f there 1s a

path between every pair of energy levels.

Definition 13: {71,2'2,. : .,rﬁ} — T 1s an oriented cycle of
length £ in Ng = <L,T,],g> if](rﬁ) = (Zﬁ,ﬂq) and
{2'1,2'2,...,2'5_1} 1s an oriented path from A, to 4.

Definition 14: {71,2'2,...,15} — T 1s a cycle of length £ in

Ng :<L,T,],g> ifI(rﬁ) :{ﬂq,/lﬁ} and {rl,rz,...,rﬁ_l} 1S a
path between 4, and 4.
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Figure 4: Examples for (a) a path and (b) an oriented path
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Figure 5: Examples for (a) a cycle and (b) an oriented cycle




Simple propositions related to SNs

Proposition 1: If 7 €T with [ (r) =(4,, 4, ), then there 1s no

7' eT such that I(7')=(4,,4,).
Proof:

Since ¢(7)=9(4,)-3(4,)>0 forall 7 €T, then
s(7')=9(4)-3A,)=—¢(7r) <0, which is impossible.



Proposition 2: If 7 € T with 7(7)=(4,,4,), then 4, # A,.

Prootf:

If , = A,, then ¢(7)=8(4)—9(4,) =0, which is a

contradiction because of ¢(7)> 0.

Proposition 3: If 7' € T and " € T are coincident, i.c.,

I(7)=1(7")=(4,4,), then
5(7')=¢(z")=9(4)-9(4)




Proposition 4: If ¢ and ¢ are two conservative potential

functions of ¢, such that §'(4)=9(1)+c witha ceR for

all A € L, then
c(7)=9(4)-9(4)=(9(4)+c)—(H(4)+c)

= (4)-9(4)
Since ¢ =—min,_, $(4) implies min,_, ¥ (1)=0, we can

suppose that min ,_, 9(/1) = 0.



Proposition 5: If {rl,rz,. . .,Z'L} c T 1s an oriented path with

I(7;)=(4,4, ) (1<i< L), then

s(7))+¢(zy)+...+¢(7,) =

19(/12)—19(21)+9(/13)—9(/12)+...+19(2£+1)—19(/1£)=

‘9(/1&1)_ ‘9(/11)



Proposition 6: If @ = {rl,rz,...,rﬁ} c T 1s a path with

Z(7,)={4, A} 1<i< L), then thereisa @, :0 — {-11}

spectral sign function with ¢, = @, (7, ) such that
¢1g(2'1)+¢2g(2'2)+...+¢£g(2'£) = ‘9(/1&1)_‘9(11)-

Proposition 7: If {rl,rz,. . .,Z'L} c T 1s an oriented cycle with

I(rl.) :(/Ii,/l.

1+1

) 1<i<L-1)and I(rﬁ):(ﬁﬁ,ﬂq), then

s(7)+¢(z,)+...+¢(7.)=0.



Proof:

Since {2'1,1'2,. . .,Tﬁ_l} c T 1s an oriented path, then

s(7))+¢(zy)+...+¢(z,,)=3(A)-%(4)=—¢(7,),
utilizing ¢ (7, )=9(4,)—9(4,), that is,

¢(7)+¢(zy)+...+¢(70y)+5(7.)=0.



Proposition 8: If & = {rl,rz,...,rﬁ} c T 1s a cycle with
I(r,)(1<i<L-1)and Z(7,)={A.,4,}, then thereis a
@, :0 — {-L1} function with ¢, = @, (z,) such that

hs(7)+ s (r2)+. + e (7.) =0 (%),
Proposition 9: If ¢,,¢,,...,4, € {1,—1} satisfy (*), then
@, —@,,...,— P, also satisty (*).

Proposition 10: A cycle {71,2'2,. . .,rﬁ} c T 1s oriented 1ff

¢ =@, =...= ¢, obeying (*).




Proposition 11: If{rl,q,...,rﬁ} c T 1s a cycle with
I(Ti):{/li,/lm} (1<i<L-1)and I(rﬁ):{/lﬁ,/ll}, then 1t

1S not oriented.

Proof:
Suppose that ¢ = ¢, = ¢, =...= ¢, € {1,—1} meets (*), i.e.,

Y, g(rl)+g(fz)+...+g(rﬁ_1)+g(r£)]:O,

Then, we get a contradiction due to ¢(7,)>0 (1<i< L):

0<g(z)+¢(7,)+...+¢(7,)=—¢(7.)<O.



Proposition 12: If N = <L,T v ,g> 1s a connected graph and
3(A,)=0 with a A, € L, then the (1) values are uniquely
determined by ¢: 7 — R forall A € L.

Proot:

Since there is a {7,,7,,...,7, } = T path between A, and an

arbitrary A € L with 4 # A, the following relation holds:
HA)=H2A)=9(1)=ds(7,)+ds(7,)+...+P.5(7,)
with proper ¢,,4,,....4, € {1,—1} signs.



Experimental realizations of SNs

Definition 15: Ry = <L,T I[,0,0 > 1s a(n experimental) reali-

zation of the network N = <L,T,],g> ifo:7T >R,

g:T —> R, and 0:7 — R are functions, furthermore,

() 5(2‘) 1s a random variable with zero expectation value
and o (2') standard deviation, and

(b) G(T) = g(r) -+ g(r)

forall 7 eT.



Definition 16: con(Ry) = <L,T*,] o

- ,0‘ T*> 1S a con-

T’

traction of the realization R = <L,T 1,0,0 > if 77" is a set

of unique transitions.

Definition 17: Let E 9(2) be an estimator based on the reali-

zation Ry = <L,T,],a,5> foraAel,and 3 (/1) 1S the es-

)

timation for 9(1) using E, . The function 3, : L > R"

1s an optimal estimation of ¢ if £ 9(2) 1s the best unbiased



estimator of 9(1) for all A € L, i.e., the expectation value

of E 5(4) is $(4) and the variance of E o) is minimal.

Proposition 13: For a given R = <L,T J1,0,0 > realization

i = arg;ninS(S),
where § (9) 1s the following objective function:
2

5(9):2521(7)(0(7)-9(@(7))+9(1ow(f))) |

rel

(MARVEL procedure; see also (a) and (b) 1n Sec. ,,Related studies™)



Inconsistencies in R, = <L,T 1, 0,0 >

(a) According to the ,,source” of the problem:

— (transcription) errors

— (measurement) inaccuracies (rel. unc. is less than 10™)
(b) Based on the ,,location” of the problem (7 € T'):

— error or inaccuracy among the / (r) values
— error or Inaccuracy among the 0(2') values

— error or Inaccuracy among the o (T) values



Techniques to treat inconsistencies

(a) observe the trends of the residuals

p(7) =0 (7) = o (up(7)) + I (low (7))

forall zeT,
(b) adjust the values of 0 1n a “reweighting procedure”,

(c) use cycle bases to 1dentify incorrect cycles (ECART),

(¢) and seek for further spectroscopic information on the

possibly incorrect transitions.



Cycle bases
Defiition 18: C 1s the cycle space of Ny = <L,T,],g> if 1t

contains all the cycles C < 7T in N = <L,T,],g>.

Definition 19: C" € C and C" € C are independent if their

C'AC" symmetric difference is a non-empty set, that is,
C'AC" = (C’ \ C”)U(C” \ C’) + D,
otherwise C' and C" are called dependent.

Definition 20: C',C" € C are disjoint if C'"C"=O.




Proposition 14: If the non-disjoint cycles C',C" € C are in-

dependent, then C'AC" € C.

3
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Figure 6: Symmetric difference of two cycles of length 4 obtained

by leaving the transition 7,



Definition 21: Cg < C 1s a cycle basis of the cycle space C

if there is a set X < Cg with independent cycles such that
either C e X or C = A,.+ X for each C € C. The entries of
Cg are called basic cycles.

Proposition 15: Each cycle space has a cycle basis.

Definition 22: N = <L,T,],g> is acyclic if C =O.

Definition 23: N1 = <L T.1.

#5G| > 1S a spanning tree

of Ny = <L,T v ,g> if NET lis (a) acyclic, (b) connected, and
(C) urefI(r) =L.
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Figure 7: A spanning tree (red edges) of a SN with 7 energy levels



Proposition 16: If Ng 7] <L T,1|. > 1s a spanning tree of

7257
Ny=(L,T,I,¢)and r e T\T with Z(7)={A,,4,}, then

C, = P. u{r} aso-called fundamental cycle of N, where
P. T is a unique path in Ngf I'between A, and A,.

Proposition 17: If 7" # ¢", then C_.,C_, € C are independent.

Proposition 18: If con( Ny ) = Ny, and Ny is a connected,

then C; = {CT eCre T\f} 1s a cycle basis of C with

\Cf\=\T\—\L\+1-
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Figure 8: A fundamental cycle associated with t

(red: spanning tree edges; black: non-spanning tree edges; green: au-

xiliary edges denoting the path between A, and A, in the spanning tree;

blue: auxiliary edges denoting the fundamental cycle associated to t)



ECART algorithm
(see also (d) 1n Sec. ,,Related studies™)

(a) construct a cycle basis (Cg),

(b) calculate the discrepancy of each basic cycle y € Cs,

D( x), using the spectral sign function @, : y —{-1,1} as

D(x)=2,., @ (7)o(r)

(c) determine the 7 ( y) threshold of each y € Cs as

T(x)=2.,.,9(z),



(d) denote the basic cycles y € Cg as bad if
D(x)-T (1) paer (7);

where peorr () € R is a cut-off parameter associated to

the cycle y,
() denote the transitions 7 € U ¢, ¥ as suspicious or

harmless depending on whether it 1s included 1n at least
one bad basic cycle or not, respectively, and

(f) check the suspicious transitions.
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Figure 9: Two bad basic cycles, 7; and 3,. The spectral signs are de-
termined based on the red and blue directions. The large and nearly

identical discrepancies are due to the o(7;) value common in y; and p,.



Minimum Cycle Basis (MCB)

Definition 24: The total cost of a Cs < C, denoted with
Kot (CB) 18 ZZECB

Definition 25: Cgmin 1S @ minimum cycle basis of C if

7|, where ‘ ;(‘ 1s the length of the cycle y.

Co.min = argming, K (Cs ).

Proposition 19: If con(Ng )= N, and N is connected,

Camin can be built with 0(\T\2 L|+|7||Z| log(‘LD) complexity.



Advantages and disadvantages of MCBs

(a) extremely transparent due to their short cycles,

(b) short cycles are more sensitive to the errors and the 1n-
accuracies than longer cycles,

(c) MCBs require larger computational expense than the
cycle bases determined with the well-known spanning-

tree-search techniques.



Open problems

Definition 26: Let <L,T*,]

. yand (L.T".1

N

be two contractions of Ny = <L,T v ,g> with their cycle ba-

N N

ses C,, and C/,, respectively. C, and C;; are congruent
(C; =C})) if there is a bijection f :C, <> C;, such that for

each y € C, we have I‘Z = ]‘f(z).
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Problem 1: Let N :< T

PN T> be a contraction of

Ng = <L,T v ,g> with the cycle basis CE. Let us ask how to

finda N, = <L T, 1 I > optimal contraction with
N5 opt = argmin Z D( )
il

where Ng :< ,

Y N T*> 1 a contraction of Ny with the
cycle basis, Cg, congruent to éﬁ, and D( ;() 1s the discre-

pancy of y € Cz.



Problem 2: Let N = <L,T v ,g> be a connected network.

Using a spanning tree/cycle basis of N, the question 1s

how to decide wheather the network <L,T \7,1 T\T> 1S

T\zr’ S
disconnected forareT.

Problem 3: Considering a <L,T v o

T* ,G‘T* . T*> contraction

of Ry = <L,T A,0,0 >, 1t 1s unclear how to determine one of

the largest “clear” subset of 7", denoted with 7., for

which J‘ - does not contain outliers.



Problem 4: Let R, = <L,T [,0,0 > be a realization of N =

<L,T v ,g}. How to give a good estimation for the standard

deviations §(7) (z € T') using a cycle basis of Ng?

Problem 5: Let N = <L,T v ,g> be a network with
con(Ng )= Ny. How can one obtain a cycle basis Cy . of

Ny such that

Ch = D(y).
B,max arggnaX Z (Z )

5 xeCq

where D( ;() 1s the discrepancy of y.



Thank you for your attention!



