

hidrogén égése 30 reakciólépés földgáz égése 300 reakciólépés benzin égése 3000 reakciólépés Diesel-olaj égése 15000 reakciólépés $ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Egy vazlatos 11-lépéses hidrogén égési mechanizmus: 1 $H_2 + O_2 \rightarrow .H + .HO_2$ $k_1(T, p)$ 2 $.OH + H_2 \rightarrow .H + H_2O$ $k_2(T, p)$ 3 $.H + O_2 \rightarrow .OH + :O$ $k_3(T, p)$ 4 $:O + H_2 \rightarrow .OH + .H$ $k_4(T, p)$ 5 $.H + O_2 + M \rightarrow .HO_2 + M$ $k_5(T, p)$ 6 $.H \rightarrow fal$ $k_6(T, p)$ 7 $:O \rightarrow fal$ $k_7(T, p)$ 8 $.OH \rightarrow fal$ $k_8(T, p)$ 9 $.HO_2 + H_2 \rightarrow .H + H_2O_2$ $k_9(T, p)$ 10 $2 .HO_2 \rightarrow H_2O_2 + O_2$ $k_{10}(T, p)$ 11 $H_2O_2 \rightarrow 2 .OH$ $k_{11}(T, p)$ k(T, p) hőmérsékletfüggés megadása: 3-paraméteres Arrhenius-egyenlet nyomásfüggés megadása: további akár 7 paraméter	hi fö be Di	drogén Idgáz é enzin é esel-ol	régése 30 égése 300 gése 3000 laj égése 15000	reakciólépés reakciólépés reakciólépés reakciólépés	
	Egy vazi: k(T, p)	atos 11 1 2 3 4 5 6 7 8 9 10 11 hõmé nyom	-lépéses hidrogén égési m $H_2 + O_2 \rightarrow .H + .HO_2$ $.OH + H_2 \rightarrow .H + H_2O$ $.H + O_2 \rightarrow .OH + :O$ $:O + H_2 \rightarrow .OH + .H$ $.H + O_2 + M \rightarrow .HO_2 + M$ $.H \rightarrow fal$ $:O \rightarrow fal$ $.OH \rightarrow fal$ $.HO_2 + H_2 \rightarrow .H + H_2O_2$ $2 .HO_2 \rightarrow H_2O_2 + O_2$ $H_2O_2 \rightarrow 2 .OH$ érsékletfüggés megadása: további	lechanizmus: $k_1(T, p)$ $k_2(T, p)$ $k_3(T, p)$ $k_4(T, p)$ $k_5(T, p)$ $k_6(T, p)$ $k_7(T, p)$ $k_8(T, p)$ $k_9(T, p)$ $k_{10}(T, p)$ $k_{11}(T, p)$ 3-paraméteres Arrhenius-egyenlet akár 7 paraméter	

Sebességi együtthatók bizonytalansága

 $f_{j} \text{ bizonytalansági szorzótényezőt ad meg minden gázkinetikai adatgyűjtemény}$ $f_{j} = \log_{10} \left(\frac{k_{j}^{0}}{k_{j}^{\min}} \right) = \log_{10} \left(\frac{k_{j}^{\max}}{k_{j}^{0}} \right)$ $k_{j}^{0} \quad j\text{-edik reakció sebességi együtthatójának ajánlott értéke}$ $k_{j}^{\min} \quad k_{j}\text{,lehetséges" legkisebb értéke}$ $k_{j}^{\max} \quad k_{j}\text{,lehetséges" legnagyobb értéke}$ $\Rightarrow [k_{j}^{\min}, k_{j}^{\max}] \quad \text{a sebességi együttható lehetséges tartománya}$ Tételezzük fel, hogy ln k^{\min} és ln k^{\max} 3 σ -val tér el ln k^{0} -tól! (D.L. Baulch javaslata) $\Rightarrow \sigma^{2}(\ln k_{j}) = ((f_{j} \ln 10)/3)^{2}$ $\mathcal{K} \text{ reakciókinetikai Laboratórium, Kémiai Intézet, Eötvős Loránd Tudományegyetem (ELTE), Budapest 14$

Lokális és globális b (sztöchiometrikus, la	izonytalanságanalízis al mináris metán láng)	apján kapható sz	zórások összehasonlítása
	modell-eredmény	lokális bizonytalans	globális (Monte Carlo) áganalízisből a szórás
lángsebesség	38,1 cm/s	4,6 cm/s	6,2 cm/s
max. T	2224,2 K	2,8 K	1,7 K
max. <i>w</i> _H	2,14x10 ⁻⁴	14,7%	12,6%
max. wo	1,74x10 ⁻³	13,3%	10,4%
max. w _{oH}	5,27x10 ⁻³	3,6%	4,0%
max. w _{CH}	8,07x10 ⁻⁷	46,3%	49,2%
max. W _{CH2}	2,54x10⁻⁵	23,8%	24,0%
K Reakciókinetikai Lab	oratórium, Kémiai Intézet, Eötvös	Loránd Tudományegye	etem (ELTE), Budapest 22

Lehetséges szimulációs eredményel

Monte Carlo analízis szerint az elérhető legkisebb és legnagyobb modell eredmények (sztöchiometrikus, lamináris metán láng)

	modell-eredmény	minimális elérhető érték a	maximális adott mechanizmussal
lángsebesség	38,1 cm/s	21,3 cm/s	61,6 cm/s
max. T	2224,2 K	2217,4 K	2228,6 K
max. <i>w</i> _H	2,14x10 ⁻⁴	63,1%	144,4%
max. w_0	1,74x10 ⁻³	66,9%	136,1%
max. w _{OH}	5,27x10 ⁻³	86,4%	114,8%
max. W _{CH}	8,07x10 ⁻⁷	15,5%	474,6%
max. w _{CH2}	2,54x10 ⁻⁵	37,9%	219,5%
A mért lángsebe A modell eredm	esség énve:	$38,1 \pm 0,5 \text{ cm/s}$	
névleges eredr	iény:	38,1 cm/s	
megkapható ere	edmények:	21,3 cm/s - 61,6 cm/	's
K Reakciókinetikai La	boratórium, Kémiai Intézet, Eč	otvös Loránd Tudományegyete	m (ELTE), Budapest 23

2. lépés: fontos paraméterek kiválasztása

K Reak

Lokális érzékenység analízissel minden egyes indirekt mérési adat körülményénél vizsgáltuk a következő reakciókinetikai paraméterek fontosságát: Arrhenius-paraméterek (külön az alacsony és magasnyomású határérték) harmadiktest ütközési paraméterek.

reakció	fontos paraméterek
H+O ₂ =O+OH	A, n, E
$H+O_2(+M)=HO_2(+M)$	alacsony nyomású A, <i>n</i> ütközési param. Ar-ra, H ₂ -re
O+H ₂ =H+OH	A, n, E
$OH+H_2=H_2O+H$	A, n, E
$HO_2 + HO_2 = H_2O_2 + O_2$	A, n, E
$OH+OH(+M) = H_2O_2(+M)$	alacsony nyomású A, n, E
$H_2O_2+H=H_2+HO_2$	A, n, E
$H+HO_2=H_2+O_2$	A, n, E
etikai Laboratórium, Kémiai Intézet, Eöt	vös Loránd Tudományegyetem (ELTE), Budapest

STATES DE ROR

8 vizsgált elemi reakcióhoz m	rest additok gy	ujitese					
direkt mérési adatot:							
reakció	mérések száma	méréssorozatok száma					
R1	745	9					
R2 (N ₂ hígítógáz)	40	4					
R2 (Ar hígítógáz)	154	6					
R3	338	10					
R4	181	6					
R5	72	4					
R6 (Ar hígítógáz)	113	6					
R7	-	-					
R8	28	1					
Összes indirekt adatpont:1635 adatpont 143 méréssorozatbólÖsszes direkt adatpont:1671 adatpont 46 méréssorozatból							
Az optimalizálásnál felhasznált összes mérés: 3306 adatpont 189 méréssorozatból							
K Reakciókinetikai Laboratórium, Kémiai Intézet, Eötvös Loránd Tudományegyetem (ELTE), Budapest 41							

	paraméterbecslési stratégia										
Egys: nume fokoz	zerre több tucat paramo erikusan problémás: atosan növeljük a becs	éter becsl sült param	ése t étere	öbb e: ek és a	zer m a felha	érési aszná	adatp It ada	ont ali tok sz	apján ámát.		_
	kisérlet adatpontok száma H+O2=O+OH H+O2=O+OH O+H2=H+OH O+H2=H+H2O O+H2=H+H2O HO2+H=H2+HO2 HO2+H=H2+HO2 HO2+H=H2+O2										
	Herzler et al. (2009ª) Fujimoto and Suzuki (1967) Zhang et. al. (2012ª) Naumann et. al. (2011ª) Naumann et. al. (2011 ^a)	9 9 7 19 26	0 0 0 0	0 0 0 0							

	paraméterbecslési stratégia										
Egys nume fokoz	zerre több tucat paramé erikusan problémás: atosan növeljük a becs	eter becsl ült param	ése t étere	öbb e ek és a	zer m a felha	érési aszná	adatp It ada	ont al tok sz	apján ámát.		
	kisérlet	adatpontok száma	H+02=0+0H	LPH+O2(+M)=HO2(+M)	0+H2=H+OH	0H+H2=H+H20	H2O2+H=H2+HO2	HO2+H=2OH	HO2+H=H2+O2	HO2+OH<=>H2O+O2	
	Herzler et al. (2009ª)	9	0	0							
	Fujimoto and Suzuki (1967)	9	0	0							
	Zhang et. al. (2012 ^a)	7	0	0							
	Naumann et. al. (2011ª)	19	0	0							
	Naumann et. al. (2011 ^b)	26	0	0							
	Petersen et al. (2003a)	9	0		0						
	Cheng and Oppenheim (1984 ^a)	58	0		0						
	Petersen et al. (2003b)	24	0		0						
	Petersen et al. (2003°)	4	0		0						
	Petersen et al. (1996a)	16	0	0	0						
	Petersen et al. (1996b)	6	0	0	0						
	Slack (1977)	12	0	0	0						
	Bhaskaran et al. (1973)	14	0	0	0						
	Wang et al. (2003 ^a)	12	0	0	0						
	Naumann et. al. (2011°)	13	0	0	0						

paraméterbecslési stratégia								
	experiment	number of data points	Н+О2=О+ОН	LPH+O2(+M)=HO2(+M)	0+H2=H+OH	0H+H2=H+H2O		
1	Herzler et al. (2009ª) Fujimoto and Suzuki (1967) Zhang et. al. (2012ª) Naumann et. al. (2011ª)	9 9 7 19	0 0 0 0	0 0 0				
2	Naumann et. al. (2011°) Petersen et al. (2003°) Cheng and Oppenheim (1984°) Petersen et al. (2003°) Petersen et al. (1996°) Petersen et al. (1996°) Slack (1977) Bhaskaran et al. (1973) Wang et al. (2003°) Naumann et. al. (2011°)	26 9 58 24 4 16 6 12 12 12 14 12 13	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	· · ·		
3	Chaumeix et al. (2007 ^a) Chaumeix et al. (2007 ^b) Chaumeix et al. (2007 ^b) Cohen et. al. (1967) Cheng and Oppenheim (1984 ^b)	5 7 5 21 56	0 0 0 0	0	0 0 0 0	0 0 0 0		
	Naumann et. al. (2011ª)	19	0	0	0	0		

	Petersen et al. (2003a)	9	0		0				
	Cheng and Oppenheim (1984 ^a)	58	0		0				
	Petersen et al. (2003b)	24	0		0				
	Petersen et al. (2003c)	4	0		0				
2	Petersen et al. (1996a)	16	0	0	0				
	Petersen et al. (1996b)	6	0	0	0				
	Slack (1977)	12	0	0	0				
	Bhaskaran et al. (1973)	14	0	0	0				
	Wang et al. (2003 ^a)	12	0	0	0				
	Naumann et. al. (2011°)	13	0	0	0				
	Chaumeix et al. (2007a)	5	0		0	0			
	Chaumeix et al. (2007b)	7	0		0	0	1		
	Chaumeix et al. (2007°)	5	0		0	0	1		
3	Cohen et. al. (1967)	21	0		0	0	1		
	Cheng and Oppenheim (1984b)	56	0	0	0	0	1		
	Naumann et. al. (2011 ^d)	19	0	0	0	0	1		
	Naumann et. al. (2011e)	19	0	0	0	0			
	Zhang et. al. (2012b)	10	0	0			0		
4	Wang et al. (2003b)	10	0	0			0		
	Wang et al. (2003°)	21	0	0			0		
	Naumann et. al. (2011 ^f)	9	0	0	0		0		
	Wang et al. (2003 ^d)	12	0	0			0	0	
	Naumann et. al. (20119)	10	0	0			0	0	
	Petersen et al. (1996c)	8	0	0			0	0	
	Herzler et al. (2009b)	9	0	0			0	0	
5	Petersen et al. (1996d)	3	0	0		0	0	0	
	Zhang et. al. (2012°)	8	0	0			0	0	
	Herzler et al. (2009°)	12	0	0			0	0	
	Naumann et. al. (2011 ^h)	16	0	0			0	0	
	Petersen et al. (1996e)	14	0		0				0
6	Petersen et al. (1996 ^f)	7	0	0	0				0
	Schott and Kinsey (1958)	17	0		0	0			0
0	Petersen et al. (19969)	17	0	0	0				0 46
	Naumann et. al. (2011 ⁱ)	18	0	0	0	0			0
	Naumann et. al. (2011)	13	0	0	0	0	0	0	0

Köszönetnyilvántás	
Köszönet a hasznos javaslatokért:	
Tóth János (BME), Zádor Judit (Sandia Labs., USA), Mike J. Pilling (Univ. Leeds, UK), Henry J. Curran (NUI Galway, Ireland	(k
Köszönet a pénzügyi támogatásért:	
ERA Chemistry (NN100523)	
TÁMOP 4.2.1/B-09/1/KMR-2010-0003	
COST CM0901 Detailed Chemical Models for Cleaner Combustion	
OTKA T68256	
OTKA K84054	
K Reakciókinetikai Laboratórium, Kémiai Intézet, Eötvös Loránd Tudományegyetem (ELTE), Budapest	54

