
MISCELLANEOUS RESULTS ON SUPERSOLVABLE GROUPS

K. CORRÁDI, P. Z. HERMANN, L. HÉTHELYI, AND E. HORVÁTH

Abstract. The paper contains two theorems generalizing the theorems of
Huppert concerning the characterization of supersolvable and p-supersolvable
groups, respectively. The first of these gives a new approach to prove Hup-
pert’s first named result. The second one has numerous applications in the
paper. The notion of balanced pairs is introduced for non-conjugate maximal
subgroups of a finite group. By means of them some new deep results are
proved that ensure supersolvability of a finite group.

1. Introduction

We recall Huppert’s characterizations for (p-)supersolvable groups.

(i) Let p be some prime. A finite group is p-supersolvable iff it is p-solvable and
the index of any maximal subgroup is either p or coprime to p.

(ii) A finite group is supersolvable iff all maximal subgroups of it have prime
index.

(See in [10, 9.2 – 9.5 Satz ], pp. 717-718.) Among others it immediately follows that
the class (formation) of finite supersolvable groups is saturated, i.e. the supersolv-
ability of G/Φ(G) is equivalent to the supersolvability of G itself. Result (ii) turned
out to be of fundamental importance and it inspired a long series of further achieve-
ments. Concentrating to various characterizations of finite supersolvable groups by
means of the index of maximal subgroups or the existence of cyclic supplements to
maximal subgroups we mention [7], [12] and [15] from the past; cf. also [16] (or [6,
Thm. 2.2], p 483). Concerning more recent developments we refer to the articles
[2], [4],[5], [8], [14] and [17] from the great number of contributions in this special
area.

Notation and terminology. In the paper G will always denote a finite group,
π(G) stands for the set of primes dividing |G|, the order of G. We set π := {pi|1 ≤
i ≤ n}, such that the sequence {pi}n

1 is strictly decreasing. For each k, 1 ≤ k ≤ n let
σk = {pi|1 ≤ i ≤ k}. We shall say that G has a distinguished Sylow tower if for all
k, 1 ≤ k ≤ n− 1, there are normal Hall σk-subgroups Gk in G. E.g. supersolvable
groups always have distinguished Sylow-towers. We choose the notation p1 = r and
pn = s. Let R and S always denote a Sylow r-subgroup and a Sylow s-subgroup of
G, respectively.
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2. Preparatory results

Lemma 2.1. Let H be a Hall σ-subgroup of the finite group G, and let L be a
normal subgroup of G containing H. If H has a distinguished Sylow tower, then
G = LNG(H).

Proof. Using the condition imposed on H one may prove using induction on |σ| that
any two Hall σ-subgroups of L that have distinguished Sylow tower are conjugate
in G. Making use of this, one may finish the proof in the usual way. �

Lemma 2.2. Let p ∈ π be a prime and let σ be a subset of π containing p. Let
M be a σ-supersolvable subgroup of G of index p. If P ∈ Sylp(G), then the group
N = NG(P ) is σ-supersolvable.

Proof. We use induction on the order of G. Since G = MN , we get that |N :
N ∩ M | = |G : M | = p. If N 6= G then the assertion follows by induction. So we
may assume that P is normal in G. If |Z(P ) ∩M | = 1 then G/Z(P ) ' M and we
are done. Let |P | = pa, we may assume that a > 1. Then M ∩ P and M ∩ Z(P )
are nontrivial normal subgroups of M . Let L be a minimal normal subgroup of M
contained in M ∩ Z(P ). Then |L| = p, since M is σ-supersolvable and p ∈ σ. On
the other hand L is normal in G. Set G = G/L. Then G is σ-supersolvable by
induction. Thus G is also σ-supersolvable. �

As an application of the preceding lemma we prove

Theorem 2.3. A finite group G is supersolvable iff the following condition α)
holds:

α) For every prime p ∈ π the group G has a maximal subgroup Mp such that
(i) |G : Mp| = p,
(ii) Mp is p-supersolvable.

Proof. The necessity is obvious. To prove the sufficiency we proceed by induction
on |G|. Choose q ∈ π different from p. Then |Mp : Mp ∩ Mq| = q and Mp ∩ Mq

is q-supersolvable. Thus Mp satisfies condition α). Hence by induction Mp is
supersolvable. As s is the smallest prime dividing |G|, we obtain by |G : Ms| = s
that Ms is normal in G. We also have that R ∈ Sylr(G) is contained in Ms. Since
Ms is supersolvable, R is characteristic in Ms, and hence R is normal in G. Let us
choose in Lemma 2.2 σ to be equal to π, let M := Mr, and let p := r. Then we get
that G = NG(R) is supersolvable. �

The following result will be used in the proof of a theorem in the next section

Lemma 2.4. Let p ∈ π be a given prime and P ∈ Sylp(G). Assume that
(i) P / G,
(ii) Φ(P ) = 1,
(iii) P contains a unique minimal normal subgroup of G.

If G contains a maximal subgroup M of index p, then M is a p′-subgroup.

Proof. Assume that |P | = pa, a ≥ 2. Then P ∩M is a nontrivial normal subgroup
of G. Thus P ∩M must contain the unique minimal normal subgroup of G. Let H
be a Zassenhaus-complement to P in G. By the Theorem of Maschke, we get an
H-invariant complement N to P ∩M in P . Also N is normal in G, contradicting
(iii). �
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3. A generalization of Huppert’s fundamental theorem

Let k be an integer. Let σ be a nonempty subset of π and let Hσ be the set of all
Hall σ-subgroups of G. Define the set Hk by Hk = {Hσ | σ ⊆ π, |σ| = k}. A maximal
subgroup M will be called k-sentinel if for some H ∈ Hσ ∈ Hk, NG(H) ≤ M . In
this section we will prove the following generalization of Huppert’s fundamental
theorem :

Theorem 3.1. Let G be a finite group and let k be an integer satisfying 1 ≤ k ≤ n.
Assume that

(i) G has a Hall σk-subgroup with a distinguished Sylow tower;
(ii) for all σ ⊆ π with |σ| = k, Hσ 6= ∅;
(iii) every k-sentinel subgroup M of G has prime index in G.

Then G is supersolvable.

Remark 3.2. Observe that in the case k = 1 (i) and (ii) are automatically satisfied
by Sylow’s theorem. So in this case (iii) is the only requirement, which is in fact a
weaker condition than Huppert’s original one.

Proof. (of Theorem 3.1): The proof is by induction on |G| and k. Let K ∈ Hσk

having a distinguished Sylow tower (guaranteed by (i)). We prove that K is normal
in G. Otherwise there would be a maximal subgroup M containing NG(K). By
(iii) M is of prime index p in G. Here p = p`, where k + 1 ≤ ` ≤ n. Let
C = CoreG(M), then K ≤ C as G/C is a permutation group of degree p`. By
Lemma 2.1 G = CNG(K). This leads to the contradiction G = M . Thus K has to
be normal in G. Hence R ∈ Sylr(G) is also normal in G. Let G = G/R. Then G is
supersolvable by induction. Note that in the case k = 1 G satisfies the conditions
with k = 1, and in the cases k ≥ 2 it satisfies the conditions with k− 1 in the place
of k. In particular, G is a solvable group. Since the conditions of the theorem are
inherited to factor groups, we have that G has a unique minimal normal subgroup
N . Since R is normal in G, N ≤ R. Let L be a Hall r′-subgroup of G. As G ' L, L
is supersolvable. Let τ = σk+1\{p1} and let F be a Hall τ -subgroup of G contained
in L. Then F cannot be normal in G, otherwise it would contain the minimal
normal subgroup, which is an r-group. Thus L ≤ NG(F ) < G. Let us choose a
maximal subgroup M in G containing NG(F ). By assumption M is of prime index
r in NG(R). By Lemma 2.4 if R were elementary abelian, then M would be an
r′-group, and hence |R| = r, and thus G would be supersolvable. Thus we may
assume that Φ(R) 6= 1. Then N ≤ Φ(R); our aim is to show |N | = r. Since R ∩M
is normal in M and R ∩M is maximal in R, R ∩M is normal in G. If Φ(R ∩M)
is not 1 then by induction G/Φ(R ∩M) and thus M/Φ(R ∩M) and M/Φ(M) are
also supersolvable. Then every maximal subgroup of M is of prime index, thus by
induction M is supersolvable. Using Lemma 2.2 for p = r we have that G is also
supersolvable. Thus Φ(M ∩R) = 1. As G̃ = G/Φ(R) is supersolvable, its maximal
subgroups have prime index. Let R̃ be the image of R in G̃. Then R̃ is the direct
sum of L-invariant one-dimensional subspaces R̃i i = 1, ..., t. Let Ri be the inverse
image of R̃i in G and Qi = 〈Rj |j 6= i〉. Then Qi is of index r in R. Then QiL is a
maximal subgroup of G of index r. As R∩QiL = Qi we may assume by the above
that Φ(Qi) = 1, i.e. all Qi are elementary abelian. Since Φ(R) 6= 1 we have that
t ≤ 2. Thus |R : Φ(R)| = r2. Let a and b be two elements with a ∈ R1\Φ(R) and
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b ∈ R2\Φ(R), respectively. Then ar, br ∈ Φ(R) ≤ Z(R) implies by R = 〈a, b〉 that
R′ = 〈[a, b]〉 has order r, therefore R′ = N . �

Remark 3.3. The method of the above proof gives a conceptual proof for Huppert’s
original result. The main steps are the following: By induction on |G| we have that
R is normal and G has a unique minimal normal subgroup N , since the conditions
are inherited to epimorphic images. Now Φ(R) 6= 1. For a maximal subgroup M
of index r we may suppose that Φ(R ∩ M) = 1. In the end we have that R′ is a
normal subgroup of order r, thus since G/R′ is supersolvable, and we get that G is
also supersolvable.

We shall show that in the case k = n − 1 (similarly to the case k = 1) the
condition (i) in Theorem 3.1 can be dropped. To do so we need

Theorem 3.4. Let G be a finite p-solvable group, H ∈ Hallp′(G). If for every
maximal subgroup A of G satisfying NG(H) ≤ A, |G : A| = p also holds, then G is
p-supersolvable.

Proof. The proof is by contradiction. Let G be a minimal counterexample. Then
Op′(G) = 1. Since the condition is inherited to epimorphic images, G has a unique
minimal normal subgroup N which is an elementary abelian p-group. As |N | 6= p,
H cannot be a maximal subgroup containing NG(H).
Case 1: N 6≤ Φ(G). Then there is a maximal subgroup M of G with N 6≤ M . Thus
G = MN and M ∩ N = 1. Since G/N ' M M is p-supersolvable by induction.
Then M ′ is p-nilpotent, thus Op′(M ′) ∈ Hallp′(M ′).
Case 1/a: Let Op′(M ′) 6= 1. Then let H ∈ Hallp′(G) contained in M . Then
Op′(M ′) = M∩NOp′(M ′) = H∩NOp′(M ′). Since NOp′(M ′) is a normal subgroup
of G and Op′(G) = 1, thus NG(H) ≤ NG(Op′(M ′)) = M . By assumption |G : M | =
p, so |N | = p, and we have that G is p-supersolvable.
Case 1/b: Let Op′(M ′) = 1. Let P ∈ Sylp(G). Observe that P ∩ M 6= 1, as
P ∩ M = 1 would imply that M = H. Since P = N(M ∩ P ), M ∩ P ∈ Sylp(M)
and M ′ = Op(M ′) ≤ M ∩ P . So M ∩ P is normal in G and N 6≤ M ∩ P , which is
a contradiction. Hence Case 1/b cannot hold.
Case 2: In this case N ≤ Φ(G). Let G = G/N . Then G is p-supersolvable by
induction, and so is G/Φ(G). Hence by Huppert’s theorem G is also p-supersolvable.

�

From this we obtain

Theorem 3.5. Let G be a finite group. Suppose that for every prime p ∈ π, G
has a Hall p′-subgroup Gp′ . Assume further that every maximal subgroup M of
G satisfying NG(Gp′) ≤ M for some p ∈ π has prime index in G. Then G is a
supersolvable group.

Proof. The existence of Hall p′-subgroups yields solvability by P. Hall’s criterion,
[9]. Thus, since the conditions of Theorem 3.1 are satisfied for every p ∈ π, G is
p-supersolvable for every p ∈ π. Hence G is supersolvable. �

We conclude the section with the following special result

Theorem 3.6. Let G be a finite group. Assume that the Sylow p-subgroups of G
are all abelian, with distinct invariants. Then G is supersolvable.
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Proof. We will construct a chief series between Φ(R) and G such that all chief
factors have prime order. Since Φ(R) ≤ Φ(G) will be satisfied, by 3.1 the super-
solvability of G will follow. We observe first that since S has distinct invariants, G
has a normal s-complement. See 2.7 Satz, p. 419. in [10]. Repeating this argument,
we have that G has a distinguished Sylow tower. In particular R is normal in G.
Thus Φ(R) ≤ Φ(G). Let now R have invariants (rn1 , ..., rnm) n1 > n2 > ... > nm.
Let further ai i = 1, ...,m be basis elements with |ai| = ni i = 1, ...,m. Let us
define the characteristic subgroups Ri i = 1, ..,m in R as follows: R0 = Φ(R),
Ri = Φ(R)Ωnm+1−i(R) i = 0, ...,m. It is easy to see that the subgroups Ri are
normal in G satisfying |Ri+1 : Ri| = r i = 0, ..,m − 1. Since by induction we may
suppose that G/R is supersolvable, one may simply complete the subgroups Ri to
a chief series of the desired type. �

We mention the following consequence:

Theorem 3.7. Let G be a finite group. Assume that the Sylow subgroups of G
are all abelian and they have distinct invariants. If for any pair (p, q) of distinct
primes from π p 6≡ 1 (mod q) holds, then G is an abelian group.

Proof. The result is a consequence of 3.6 and a result of Rédei [13]. �

4. Balance in finite groups

Our first result is

Theorem 4.1. Let G be a finite group and let H and K be maximal subgroups of
G. Assume that the following conditions are satisfied:

(i) H and K are non-conjugate supersolvable groups,
(ii) |G : H| and |G : K| are prime powers.

Then G is a solvable group.

Proof. We prove by induction on |G|. The assumptions are obviously hereditary to
factor groups. Therefore it is enough to find a proper solvable normal subgroup.
Let |G : H| = pa and |G : K| = qb and p ≥ q. Note, that p = r can be assumed.
Namely for r > p we have that R is normal in H and K hence also in G and so we
are done. We may also assume that p 6= q. If p = q = r then either R ∩H 6= 1 or
R ∩K 6= 1. Otherwise H and K would be Hall r′-subgroups having distinguished
Sylow towers. Just like in the proof of Lemma 2.1 we have that H and K are
conjugate, contradicting assumption (i). Say R∩H 6= 1. Then choosing R suitably
R ∩ H ∈ Sylr(H) and this implies R ∩ H C G and so we are done. Thus we may
assume that p = r > q. By Burnside’s paqb-theorem, [1] we may directly assume
that |π| ≥ 3.
We will prove the rest of the theorem in several steps:

Step 1: We may assume that H ∈ Hallr′(G) and q is the maximal prime in π\{p}.
We argue by contradiction. If p = r and R ∩H 6= 1 then we have seen above that
R ∩ H C H can be assumed, and this implies R ∩ H C G. Thus we may assume
that H ∈ Hallr′(G). Let t be the maximal prime in π\{p}. Suppose t 6= q. Since
(|G : K|, |G : H|) = 1, G = HK. Thus |G : H| = |K : K ∩H|. From this we have
that |G : H ∩ K| = |G : K||K : K ∩ H| = |G : K||G : H| = paqb.Since t 6= q we
may choose T ∈ Sylt(G) contained in H∩K.The supersolvability of H implies that
T is normal in H. Then TG = THK = TK ≤ K. Hence TG is a solvable normal
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subgroup in G. Thus we may assume that t = q.

Step 2: Let σ = {r, q}. We can assume that the Hall σ′-subgroups of G are abelian.
Let Q ∈ Sylq(G) be contained in H, then Q is normal in H. We want to show
that H ′ ≤ Q. Assume H ′ 6≤ Q. Then there is a prime u ∈ π, with p = r 6= u 6= q
dividing |H ′|. Since H is supersolvable, H ′ is nilpotent. Let U ∈ Sylu(G) be
contained in H ∩ K. Let U0 be the unique Sylow u-subgroup of H ′. Then
U0 6= 1 is a proper normal subgroup of H. We have that U0 ≤ U . Then
N = UG

0 = UHK
0 = UK

0 ≤ UK ≤ K is a solvable normal subgroup of G and
we are done. Thus we may assume that H ′ ≤ Q. Let L be a Zassenhaus comple-
ment to Q in H. Then L ' H/Q is abelian and L ∈ Hallσ′(G). Then by a result
of Wielandt [18] all Hall σ′-subgroups of G are abelian, and we are done.

Step 3: Conclusion of the proof.
Let L ∈ Hallσ′(G) contained in H ∩ K. Since H and K are both supersolvable,
NH(L) = CH(L) and NK(L) = CK(L). We will prove that NG(L) = CG(L).
Let x ∈ NG(L) be fixed. Since G = HK, x = yz, where y ∈ H and z ∈ K.
Thus Ly = Lz−1

and so L and Ly are Hall σ′-subgroups of H ∩ K. Since L is
abelian, the cited result of Wielandt implies that Ly = Lw for suitable w ∈ H ∩K.
Hence yw−1 ∈ NH(L) = CH(L) and z−1w−1 ∈ NK(L) = CK(L). Thus x =
yz = yw−1(z−1w−1)−1 ∈ CG(L) and we have that L ≤ Z(NG(L)). By the same
argument as in Burside’s transfer theorem it follows that G has a normal Hall σ-
subgroup. Since |σ| = 2 the Hall σ- subgroup is also solvable. Thus we get again a
solvable normal subgroup and we are done. �

Before formulating the next result, we introduce the following notation. For any
prime p ∈ π = π(G), let µp be the set defined by µp = {u ∈ π|u > p.} In particular
µr = ∅.

Theorem 4.2. Let G be a finite group and let H and K be non-conjugate super-
solvable subgroups of G of prime indices |G : H| = p, |G : K| = q, with p ≥ q.
Then G has a normal, supersolvable Hall µp-subgroup D such that G = G/D is
supersolvable. G is supersolvable iff the following condition β) holds:
β) For every maximal subgroup M of G which contains the normalizer of some Hall
u′-subgroup of G for suitable prime u ∈ µp, |G : M | = u.

Proof. By Theorem 4.1 G is solvable. Both H and K contain supersolvable normal
Hall µp-subgroups D1, D2, being Hall µp-subgroups of G, as well. Since these
contain distinguished Sylow towers, these subgroups are conjugate in G. Since H
and K are not conjugate, we get that D1 = D2 = D is normal in G. We want to
prove that G = G/D is supersolvable. Taking G instead of G, we may assume that
p = r and µp = ∅. If q < p = r then let R ∈ Sylr(K). Then R ∈ Sylr(G). Since
K ≤ NG(R), |G : K| = q and |G : NG(R)| ≡ 1 mod q, R has to be normal in G.
Now by Lemma 2.2 applied to the supersolvable subgroup H of index r, we have
that G is supersolvable. If q = p = r, we note that H and K cannot be at the same
time Hall r′-subgroups of G, since they are not conjugate. Let R ∈ Sylr(G), then
say H ∩R 6= 1. We may assume that R∩H is normal in H and since this subgroup
is of index r in R, also R is normal in G. Applying Lemma 2.2 for H again we have
that G is supersolvable.
So in any case we have that G/D is supersolvable. Assume β). Since G is solvable,
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every maximal subgroup is of prime power index. Let u ∈ µp. Then G is also u-
solvable. By condition β) and Theorem 3.4 G is u-supersolvable. So every maximal
subgroup of u-power index is already of index u in G. Let u ∈ π be a prime but
u 6∈ µp. If M is a maximal subgroup of G of u-power index in G then D ≤ M

and M = M/D is a maximal subgroup of G = G/D. Since G is supersolvable,
|G : M | = u, and hence |G : M | = u. Thus every maximal subgroup in G has prime
index, and by Huppert’s theorem we obtain that G is supersolvable. �

We will need the following

Definition 4.3. Let G be a finite group, let H and K be non-conjugate maximal
subgroups of G. We say that the pair (H,K) is balanced, if H ∩ K is a maximal
subgroup both in H and K. We say that (H,K) is balanced with respect to H, if
H ∩K is a maximal subgroup of H.

Lemma 4.4. Let G be a finite solvable group, let A and B be maximal subgroups of
G such that A is a supersolvable group and the pair (A,B) is balanced with respect
to A. Then |G : B| is a prime number and for every x ∈ G the pair (A,Bx) is
balanced with respect to A.

Proof. Let us fix x ∈ G. Then |B| = |Bx| and Bx is a maximal subgroup of G.
Since the pair (A,B) is balanced with respect to A, A and B are not conjugate in
G. Thus A and Bx are not conjugate in G, either. Since G is solvable,by a result
of Ore [10, II. Satz 3.9], G = AB = ABx. Hence |A : A ∩ Bx| = |G : Bx| = |G :
B| = |A : A ∩ B|. Since A is supersolvable and (A,B) is balanced with respect to
A, |A : A ∩ B| must be a prime. Thus A ∩ Bx is also maximal in A. So the pair
(A,Bx) is balanced with respect to A, too. �

Theorem 4.5. Let G be a finite group that contains a balanced pair (H,K) of
maximal subgroups such that both H and K are supersolvable groups and both of
them contain the normalizer of a Sylow-complement in G, say NG(U) ≤ H and
NG(V ) ≤ K, where U ∈ Hallp′(G) and V ∈ Hallq′(G) for some primes p and
q with p ≥ q. Assume that whenever M is an arbitrary maximal subgroup of G
that contains the normalizer of a Hall u′-subgroup for some u ∈ µp, then for some
YM ∈ {H,K} the pair (YM ,M) is balanced with respect to YM . Then G is a
supersolvable group.

Proof. By our conditions H and K are non-conjugate maximal subgroups of G.
They are both supersolvable and both are of prime power index in G. Thus by
Theorem 4.1 G is a solvable group. By Lemma 4.4 we have that |G : H| = p and
|G : K| = q. Let now M be an arbitrary maximal subgroup of G that contains the
normalizer of a Hall u′-subgroup of G for some u ∈ µp. Since by assumption YM

and M are not conjugate, by the above theorem of Ore, G = YMM . Since the pair
(YM ,M) is balanced with respect to YM , we have that |G : M | = |YM : M∩YM | = u.
Thus by 4.2 G is a supersolvable group. �

For the next result we will need the following

Definition 4.6. Let G be a finite group, let H, K and L be given maximal subgroups
of G. The ordered triple (H,K,L) will be called regular if the following conditions
are satisfied:

(i) H and K are supersolvable groups and the group L is solvable.
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(ii) Every pair (X, Y ) with {X, Y } ⊆ {H,K,L} is either balanced or X and Y
are conjugate in G.

(iii) The pair (H,K) is balanced.
(iv) The index |G : L| is a prime.

Remark 4.7. If G is a supersolvable group, then every maximal subgroup of G
is a supersolvable group of prime index. If H and K are non-conjugate maximal
subgroups of G then the pair (H,K) is balanced. Thus for each choice of maximal
subgroups H,K and L, if they are not all conjugate in G, then the triple (H,K,L)
is regular if and only if with a suitable choice of the notation some permuted triple
of (H,K,L) is regular.

First we prove

Lemma 4.8. If the finite group G has a regular triple (H,K,L) then G is solvable.

Proof. Consider first the case when L is conjugate to H or to K. We may assume
that H and L are conjugate. Then |G : H| = |G : L| = t, where t is a prime. Since
the pair (H,K) is balanced, H and K are not conjugate and H ∩K is a maximal
subgroup of H and also of K. Since H and K are supersolvable, |H : H ∩K| and
|K : H ∩ K| are prime numbers. These imply that |G : K| = |G : H| |H:H∩K|

|K:H∩K| is a
prime. Hence G is solvable by Theorem 4.1. Thus we may assume that for any pair
(X, Y ) with {X, Y } ⊆ {H,K,L}, the pair (X, Y ) is balanced. Let C = CoreG(L).
Then C is a solvable normal subgroup of G. If C 6= 1 and C 6≤ H ∩ K ∩ L, then
the solvability of G follows directly. Assume that C ⊆ H ∩K ∩ L. Let G = G/C.
Denote by H, K and L the images of H,K and L, respectively. Then (H,K,L) is a
regular triple of G. So we may assume by induction that G is solvable, thus G is also
solvable. Thus we may assume that C = 1. This in turn implies that |G : L| = r
and that |G| 6≡ 0 mod r2. Denote by p the greatest prime dividing |H|, and let q
be the greatest prime dividing |K|. Assume that p ≥ q. Let P ∈ Sylp(H) and let
Q ∈ Sylq(K). Then by the supersolvability of H and K the group H ⊆ NG(P ) and
K ⊆ NG(Q). We want to prove that in both cases we may assume that equality
holds. Since C = 1, it follows for H if p 6= r, and for K if q < r. So p = r can
be assumed. Let R ∈ Sylr(G), then recall G = RL, |R| = r = |G : L|, L ∩ R = 1.
If R is a normal subgroup of G then G/R ' L, thus G is solvable. So we may
assume that H = NG(P ) and K = NG(Q). Thus P ∈ Sylp(G) and Q ∈ Sylq(G).
Since (H,K) is a balanced pair, H and K are not conjugate in G. Thus p > q. We
distinguish between Case (i) r > p and Case (ii) r = p.
(i) If r > p then both |H| and |K| are divisors of |L|. Since |G : K| = |G : L||L|/|K|,
|G : L| = r and p divides |G : K|, we have that p divides |L|/|K|, hence also
|L : K ∩ L|. Since the pair (K, L) is balanced, K ∩ L is a maximal subgroup of L.
Solvability of L gives that |L : K ∩L| is a power of p. Then L = P0(K ∩L), where
P0 ∈ Sylp(L) and P0 ∩K ∩ L = 1. Then |G : K ∩ L| = |G : L||L : K ∩ L| = r|P0|.
Since neither p nor r divides |K|, we have that K = K ∩ L, a contradiction.
(ii) If r = p then (|G : H|, |G : L|) = 1, thus G = HL, H = R(H ∩ L). We
show that H is a Frobenius group (with kernel R and complement H ∩ L). For let
D = L ∩ CG(R); then DG = DRL = DL ≤ L yields D = 1. It follows that H ∩ L
is cyclic. It is a maximal subgroup in the solvable group L, so |L : H ∩ L| = tm is
a prime power. Similarly H ∩K is maximal in H, therefore it has prime index in
H. In fact, as r does not divide |K|, |H : H ∩K| = r, hence |H ∩K| = |H ∩L|. It
follows that H∩K = (H∩L)y for some y ∈ H. We also have that |K| divides |L|, so
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|K : K∩H| = t. As R C G implies solvability of G, we can assume that H = NG(R).
Recalling G = HL, we obtain that tm = |L : H ∩ L| = |G : H| = |G : NG(R)| ≡ 1
(mod r).

Let τ = {r, t}. Since |G : H ∩ L| = rtm, and H ∩ L is cyclic, H ∩ L contains a
unique Hall τ ′-subgroup T , that is a Hall τ ′-subgroup of G as well.

We can assume that t 6= q. For otherwise every prime in τ ′ is smaller than q hence
NG(T ) = CG(T ). Then by Bunside’s transfer theorem (e.g. [10, 2.6 Hauptsatz ],
p. 419.) there is a normal Hall τ -subgroup A of G. Since |τ | = 2, A is solvable.
Now A has a characteristic subgroup N of prime power order. Since CoreG(L) = 1,
N = R. But then G = RL gives the solvability of G.

Let y ∈ H with H∩L = (H∩K)y−1
= H∩Ky−1

. Let K1 = Ky−1
and Q1 = Qy−1

.
Then K1 = NG(Q1). As K1 and L are non-conjugate maximal subgroups of G,
K1 6≤ L. Thus K1 > L ∩ K1 ≥ L ∩ H. Since t = |K : H ∩ K| = |K1 : H ∩ K1| =
|K1 : H ∩ L|,it follows that L ∩K1 = L ∩H. Since Q1 ≤ T ≤ L ∩H = L ∩K1, Q1

is a characteristic subgroup of T and hence NG(T ) ≤ NG(Q1) = K1. Since H ∩ L
is cyclic, H ∩L ≤ NG(T ) ≤ K1 we have either NG(T ) = K1 or NG(T ) = H ∩L. If
NG(T ) = H ∩ L, the latter being cyclic T ≤ Z(NG(T )) gives a nontrivial solvable
normal subgroup, i.e. solvability of G; so we may assume that NG(T ) = K1. As
K1/T is a t-group, and since |K1 : H ∩L| = t, H ∩L is normal in K1. Since H ∩L
is cyclic, every subgroup U ≤ H ∩ L is normal in K1. This implies that if for an
element x ∈ G T x 6= T , i.e. x ∈ G\K1, then T ∩ T x = 1, otherwise T ∩ T x would
be normal in K1 and in Kx

1 , thus also in G.
Let S ∈ Sylt(G) be contained in L. Since T is a Hall t′-subgroup of L and

NL(T ) = L ∩ NG(T ) = L ∩ K1 = L ∩ H shows that T ≤ Z(NL(T )), so S C L.
We want to prove that T = H ∩ L. Otherwise, since (|L : H ∩ L|, |L : S|) = 1,
L = S(H ∩ L). Let U = S ∩ (H ∩ L) = S ∩H, then U 6= 1 and U ∈ Sylt(H ∩ L).
Since NS(U) > U and H ∩L is maximal in L, U would be normal in L. So U = 1,
T = H ∩L and |L : T | = tm. Thus L is a Frobenius group with complement T . To
exclude this possibility we need a combinatorial result of K. Corrádi, [3] see also
[11, Problem 13.13].

Lemma 4.9. Ley A be a finite set and let B1, B2, ..., Bm given subsets of A with
(i) |Bi| = r, 1 ≤ i ≤ m
(ii) |Bi ∩Bj | ≤ k, if i 6= j.

Then |A| ≥ mr2

r+k(m−1) .

(Conclusion of the proof of Theorem 4.8) Let R = 〈z〉. Let us define the set
A = {T x|x ∈ G}, Bi = {Twzi−1 |w ∈ L}, 1 ≤ i ≤ r.} Observe that |A| = |G :
K| = r|L|/|K| = rtm−1, |Bi| = |L : NL(T )| = |L : L ∩K1| = |L : L ∩H| = tm for
1 ≤ i ≤ r. Since the elements of Bi are all maximal subgroups in Lzi−1

, and any two
of them generate Lzi−1

, |Bi∩Bj | ≤ 1 if i 6= j. Hence we deduce: rtm−1 ≥ rt2m

tm+(r−1) .
Thus tm ≤ tm(t− 1) ≤ r − 1. This contradicts to tm ≡ 1 mod r. �

Definition 4.10. Let G be a finite group, let σ ⊆ π = π(G). Let Hσ = {H ∈
Hallσ(G)}. Let σ′ = π\σ. As before µp = {u ∈ π|u > p}.

We conclude with our main result in section 4

Theorem 4.11. Let G be a finite group, let (H,K,L) be a regular triple in G.
Let p be the greatest prime divisor of |G : H||G : K|. Assume that for every
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fixed u ∈ µp Hu′ 6= ∅ and for some Z ∈ Hu′ for every maximal subgroup M of
G containing NG(Z), there exists an element XM ∈ {H,K} such that the pair
(M,XM ) is balanced with respect to XM . Then G is supersolvable.

Proof. G is solvable by 4.8. By Ore’s theorem, for every pair U, V of non-conjugate
maximal subgroups, G = UV . If U and V are both supersolvable, then |G : U |
and |G : V | are both prime numbers. This is the case for the pair (H,K). We
may assume that |G : H| = p and |G : K| = q for primes p, q with p ≥ q.Fix
a prime u ∈ µp. Then Hu′ 6= ∅. Since G is solvable the elements of Hu′ are all
conjugate. By assumption, every maximal subgroup M of G that contains the
normalizer of an element of Hu′ determines a subgroup XM ∈ {H,K} such that
the pair (M,XM ) is balanced with respect to XM . Since G is solvable and XM is
supersolvable, |G : M | = |XM : M ∩XM | is prime. This is by our choice u. By 4.2
G is supersolvable. �

We finish this section by giving a simple group G that satisfies the conditions of
4.8 except for the condition (ii) in 4.6 for which µp = ∅ for the prime p in 4.11.

Example. Let G = A5. Let P,Q, S be Sylow subgroups belonging to primes 5, 3, 2.
respectively, let H = NG(P ),K = NG(Q), L = NG(S). Then the triple (H,K,L)
satisfies (i),(iii) and (iv) in the Definition 4.7, and the maximal prime divisor of
|G : H||G : K| is 5, so µ5 = ∅. Note that |H| = 10, |K| = 6, |L| = 12. Neither
H,K,L can be abelian, because they are maximal subgroups, and every finite group
having an abelian maximal subgroup is solvable. So H and K are dihedral and
thus they are supersolvable. The pair (H,K) is balanced, since H ∩ K = 1 would
imply G = HK and from this for every x ∈ G, G = HKx. But this is impossible
because the involutions of G are all conjugate, hence there would be an x ∈ G with
|H ∩Kx| = 2. But then |G| = |H||K|/|H ∩Kx| = 30, a contradiction.

5. Further results

We shall need the following

Definition 5.1. Let G be a finite group, p ∈ π(G) and P ∈ Sylp(G). We shall say
that G has a canonical chain that belongs to the pair (p, P ), if there are subgroups
Mp,i (0 ≤ i ≤ np) in G satisfying

(i) G = Mp,np

(ii) |Mp,i+1 : Mp,i| = p, 0 ≤ i ≤ np − 1
(iii) P ∩Mp.0 ≤ Φ(P ).

One may observe that the existence of a canonical chain is independent of the
choice of P . As (iii) implies that for any Sylow p-subgroup P ∗ in G, Mp,0 ∩ P ∗ ≤
Φ(P ∗) since G = Mp,0P , and so P can be conjugated to P ∗ by some element in
Mp,0. So we can speak about a canonical chain belonging to the prime p.

First we prove

Theorem 5.2. For the supersolvability of a finite group G the existence of a canon-
ical chain for every prime p ∈ π(G) is necessary and sufficient.

Proof. We need only show that the condition is sufficient. Assume that for every
prime p ∈ π(G) the group G has a canonical chain belonging to p. Let s be the
smallest prime in π(G), and let Ms,i (0 ≤ i ≤ ns) be the members of a canonical
chain belonging to the prime s (with respect to S ∈ Syls(G)). By our choice
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Ms,i C Ms,i+1 holds for all i (0 ≤ i ≤ ns − 1). Therefore Os(G) ≤ Ms,0. By
a result of Tate (see [[10] IV, 4.7 Satz]), since Os(G) ∩ S ≤ Φ(S), Os(G) has a
normal s-complement, that is also a normal s-complement Hs′ in Ms,0. We have
that Hs′ ∈ Halls′(G) and Hs′ = Os(G) C G. Let now p ∈ π(G)\{s} be given,
and let the subgroups Mp,i (0 ≤ i ≤ np) be the members of the canonical chain
of G belonging to the prime p. Define the subgroups M∗

p,i by M∗
p,i = Hs′ ∩ Mp,i

for all i, 0 ≤ i ≤ np. These subgroups form a canonical chain of Hs′ belonging to
the prime p. Since p ∈ π(G)\{s} may be arbitrary, we get by induction that Hs′

is supersolvable. Let now r be the maximal prime in π(G) and let R ∈ Sylr(G)
that lies in Hs′ . The supersolvability of Hs′ implies that R is characteristic in Hs′ .
Since Hs′ C G, R C G also holds.

We distinguish between two cases.
Case (i): Φ(R) = 1. Consider the canonical chain in G belonging to the prime

r; let its members be Mr,i, 0 ≤ i ≤ nr. Set H = Mr,nr−1. Then |G : H| = r and
defining for every prime p 6= r the chain M∗∗

p,i = H∩Mp,i, where {Mp,i | 0 ≤ i ≤ np}
is a canonical chain of G belonging to p, we obtain a canonical chain of H for every
prime p ∈ π(H). It follows by induction that H is supersolvable. Now R is normal
in G, |G : H| = r and the supersolvability of NG(R) by 2.2 implies that G itself is
supersolvable.

Case (ii): Φ(R) 6= 1. Set G = G/Φ(R). Then G is supersolvable by induction.
Hence G/Φ(G) is also supersolvable. By Huppert’s theorem the supersolvability of
G follows. �

Remark 5.3. We may deduce Theorem 2.3 also from Theorem 5.2.

As a consequence we have the following

Theorem 5.4. Let G be a finite p-solvable group. G is p-supersolvable iff
(i) G′ is p-nilpotent, and
(ii) G has a canonical chain that belongs to the prime p.

Proof. We need only show that the conditions are sufficient. It can be assumed that
Op′(G) = 1. Hence by (i) G′ ≤ P ∈ Sylp(G). Thus P C G and G/P is abelian. So
G is q-supersolvable for every prime q ∈ π(G)\{p}, and for every such prime q the
group G has a canonical chain belonging to the prime q. Since the existence of a
canonical chain for the prime p is assumed in (ii), all requirements of Theorem 5.2
are satisfied, hence G is supersolvable. �

Remark 5.5. It is easy to see that condition (ii) alone is not sufficient for the p-
supersolvability of G. On the other hand it turns out to be sufficient when the Sylow
p-subgroup of G is weakly regular. We also observe that one can prove Theorem 5.4
following the pattern of the proof of Theorem 5.2.

Definition 5.6. Let P be a finite p-group. A series Pi (0 ≤ i ≤ n) in P will be
called a canonical chain of P , if

(i) P0 < P1 < ... < Pn = P ,
(ii) |Pi+1 : Pi| = p, 0 ≤ i ≤ n− 1,
(iii) P0 ≤ Φ(P ).

The next result will be used later.

Theorem 5.7. Let G be a finite group that has a Sylow system S such that each
element P ∈ S has a canonical chain. If for each P ∈ S the chain Pi (0 ≤ i ≤ np)
satisfies PiQ = QPi for all 0 ≤ i ≤ npi and for every Q ∈ S, then G is supersolvable.
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Proof. Let p ∈ π(G) be fixed and let P ∈ S be a Sylow p-subgroup of G. Define
Mp,i := (

∏
Q∈S\{P} Q)Pi for all 0 ≤ i ≤ np. One can see that Mp,i (0 ≤ i ≤ np) is

a canonical chain of G belonging to the prime p. Since in G such chains exist for
all primes p ∈ π(G), 5.2 yields the supersolvability of G. �

Remark 5.8. One observes at once that in a supersolvable group there are Sylow-
systems which satisfy the condition in Thereom 5.7. So this result in fact, is a
characterization of supersolvability.

The main result of this section is the following

Theorem 5.9. Let G be a finite group that has a Sylow system S such that for
every P ∈ S, P has a collection AP of cyclic subgroups A satisfying

(i) P = 〈A|A ∈ AP 〉, and

(ii) AQ = QA for all A ∈ AP and for all Q ∈ S.

Then G is supersolvable.

Remark 5.10. Theorem 5.9 is a characterization result again.

Proof. Let q be the minimal prime of π(G), and let Q ∈ S be a Sylow q-subgroup of
G. Fix an A ∈ AQ. Then Hq′ =

∏
P∈S\{Q} P is a Hall q′-subgroup of G satisfying

AHq′ = Hq′A. So in particular, A is a Sylow q-subgroup of AHq′ belonging to
the minimal prime of π(AHq′). Since A is cyclic, Hq′ is a normal q-complement of
AHq′ . Hence A ≤ NG(Hq′) holds. Since A ∈ AQ was arbitrary, Hq′ is a normal q-
complement of G. Now Hq′ and S− = S\{Q} satisfy the conditions of the theorem,
so by induction we have that Hq′ is supersolvable. This implies that G has a Sylow
tower. It follows that for every prime p, the p-length of G is lp(G) = 1. This implies
by a result of Huppert, (see [10], 6.11 Satz b), p.694), that for every pair P,R ∈ S
Φ(P )R = RΦ(P ) holds. Now fix P ∈ S, and set nP = |P : Φ(P )|. Choose elements
Ai ∈ AP (1 ≤ i ≤ nP ) satisfying P = 〈Ai|1 ≤ i ≤ nP 〉. Define the subgroups Pp,i

(0 ≤ i ≤ nP ) as Pp,0 = Φ(P ) and Pp,i = Φ(P )A1...Ai for all 1 ≤ i ≤ nP . These
subgroups form a canonical chain in P . Since for each 0 ≤ i ≤ nP and for all R ∈ S,
Pp,iR = RPp,i holds, the conditions of 5.7 are satisfied for each prime p in π(G).
Thus the supersolvability follows. �

Remark 5.11. 5.9 generalizes a result in [5].
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