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Abstract. Motivated by the known results in the continuous
case, in this paper we define the partial Cauchy data set for the
discrete Schrödinger operator on a finite subset of the grid, and
we prove reconstruction theorem for the potential. Our methods
are applicable in some more general situation, we give a potential
reconstruction theorem in the case of the hexagonal lattice as an
example.

1. Introduction: continuous and discrete inverse
problems

We consider the problem of reconstruction of a real valued poten-
tial from the partial Cauchy data set of a discrete version of the time
independent Schrödinger equation. The motivation of the classical con-
tinuous problem is the inverse problem of electrical impedance tomog-
raphy: we want to determine the electrical conductivity of a body by
measurements of voltage and current on the boundary of the body.
This is the classical Calderón problem [5]: let Ω ⊂ Rd, d ≥ 2 be a
bounded domain with appropriate smooth boundary, and let ν be the
unit outward normal vector to ∂Ω. The electrical conductivity is a
bounded and positive function γ on Ω, and we have for the electrical
potential f ∈ H1(Ω)

div (γ grad f) = 0 on Ω(1.1)

f |∂Ω = f0,(1.2)

Key words and phrases: discrete Schödinger operator, Dirichlet-to-Neumann
map, partial Cauchy data, potential reconstruction.
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where f0 ∈ H1/2(∂Ω) is a boundary voltage potential. If this Dirichlet
problem has a unique solution, then we can define the Dirichlet-to-
Neumann map by the formula

(1.3) Λγ(f) := γ
∂f

∂ν

∣∣∣∣
∂Ω

.

Then the inverse problem is to reconstruct the conductivity γ from Λγ.
In the continuous setting we can transform this problem to an inverse
Dirichlet-to-Neumann problem for the time independent Schrödinger
equation:

−∆f + qf = 0 on Ω(1.4)

f |∂Ω = f0,(1.5)

f0 ∈ H1/2(∂Ω). If the solution for this problem is unique, then the
Dirichlet-to-Neumann map is

Λq(f) :=
∂f

∂ν

∣∣∣∣
∂Ω

.

The question is the uniqueness of q by the knowledge of Λq. The
connection between the two problems above is the transformation q :=

−4
√
γ

√
γ

. At first Sylvester and Uhlmann proved in [15] that if d ≥ 3,

q1, q2 ∈ C(Ω) and Λq1 = Λq2 , then q1 ≡ q2 (with suitable assumptions
for the boundary of Ω). Nowadays there are a lot of generalizations
of this result, e.g. the case of partial boundary measurements, when
we measure f and ∂f

∂ν
only on an open subset Γ of ∂Ω. This model

is motivated e.g. by the medical applications of electrical impedance
tomography. In this area there are a lot of open questions, and we
know results only in some restricted cases. For example, in [9] Isakov
proved uniqueness under the assumptions that d = 3 and ∂Ω \ Γ is a
part of a plane or a sphere. In [7] Imanuvilov and Uhlmann proved
uniqueness theorem for a cylindrical domain in 3 dimension in the
partial measurement case.

Another possible generalization of the classical inverse D-to-N prob-
lem is related to the non unique solvability of problem (1.4)-(1.5).

In this more general situation following [8], let Ω ⊂ Rd, and let

Cq :=

{(
f |∂Ω ,

∂f

∂ν

∣∣∣∣
∂Ω

)
| f ∈ H1(Ω), (1.4) holds on Ω

}
which is the Cauchy data set for a bounded, real valued potential q.
The question is the unique identification of q from Cq.

Related to the partial measurements problem, if we measure f and
∂f
∂ν

only on an open subset Γ of ∂Ω, we give the partial Cauchy data
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problem. Let ∅ 6= Γ ⊂ ∂Ω be open, and let Γ0 := ∂Ω \Γ. Let us define
the partial Cauchy data set

Cq :=

{(
f |Γ ,

∂f

∂ν

∣∣∣∣
Γ

)
| f ∈ H1(Ω), f |Γ0

= 0, (1.4) holds on Ω

}
.

In [8] the authors proved that if d = 2, q1, q2 ∈ C2+α(Ω) for some α > 0
are complex valued potentials and Cq1 = Cq2 , then q1 ≡ q2. If d ≥ 3,
we do not know this type of results in the literature. A great survey in
the topic is [12] written by Kenig and Salo.

The discrete version of these inverse problems are interesting them-
selves. The discrete version of the Calderón problem is related to re-
sistor networks, where we have to determine the conductivities for an
electrical network from the knowledge of the electrical potential and
current in some nodes. The mathematical model for this is a weighted
graph and a function defined on the vertices, where the weights of the
edges are related to the conductivity of the edges, and the function is
the electrical potential. The set of the nodes where we can measure
the potential form the so called boundary nodes, the other vertices are
the interior nodes. In the boundary nodes we can define the discrete
version of normal derivative in some sense which is related to the cur-
rent. In the interior nodes we know that Kirchoff’s law is true which
gives us a difference equation system, and we get the discrete version
of (1.1)-(1.2) and (1.3).

The solvability of this problem depends heavily on the structure
of the graph: in their magnificient article [6] Curtis, Ingerman and
Morrow proved the reconstruction of the weights in the case of circular
planar graphs.

In [4] the authors investigated the discretization of inverse conduc-
tivity problem to an inverse problem of resistor networks on circular
planar graphs, in [3] the authors performed a similar procedure also in
the case of partial measurements, but only in the case of circular net-
work discretization. In [2] Chung and Berenstein proved uniqueness for
the conductivities if the network satisfies some monotonicity condition.

In the discrete case there is no nice connection between the inverse
conductivity and inverse Schrödinger problem, but the structure of a
graph is very important in this latter case too. There are some results
for inverse scattering problem for Schrödinger operators on Zd, d ≥ 2
[11] and on hexagonal lattice [1]. In [13] the author investigated inverse
Dirichlet-to-Neumann problems for the discrete Schrödinger operator
on Zd.
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In what follows we prove a reconstruction theorem for the discrete
version of some partial Cauchy data problem in the case of the multi-
dimensional square lattice.

2. Definition of the discrete problem and the main
theorem

We formulate the discrete inverse D-to-N problem following the no-
tations of [2]: consider a finite set V ⊂ Zd in the d-dimensional grid
Zd. We suppose d ≥ 2. Denote S the set of points y ∈ V for which
all neighbors of y are in V and let ∂S = V \ S. Here, as usual, two
points x = (xi)

d
i=1 and y = (yi)

d
i=1 of the grid Zd are connected if∑d

i=1 |xi − yi| = 1. We call points of S inner points and those of ∂S
boundary points. In this paper we suppose that S is nonempty and
that all boundary points are connected with some points of S. We
delete the edges between points of ∂S. The remaining edges (x, y)
are endowed with some positive weight w(x, y), thus we get the graph
G(V,E). Note that we do not suppose that this graph is connected: in
our proofs below we work with subgraphs of the original graph, which
are not necessarily connected even though G is connected.

Denote by x ∼ y the fact that (x, y) is an edge. Let N (x) = {y ∈
V |x ∼ y} be the set of neigbors of x, deg(x) = |N (x)| be the degree of
the node x and dw(x) =

∑
y∈N (x) w(x, y) be the weight of x. Consider

the weighted discrete Schrödinger equation

(2.1) ∆f(x) = q(x)f(x), x ∈ S
where f : V → R, q : S → R and the discrete Laplacian is

∆f(x) =
∑

y∈N (x)

w(x, y)

dw(x)
(f(y)− f(x)).

Thus, the Schrödinger equation (2.1) has the expanded form

(2.2) (1 + q(x))dw(x)f(x) =
∑

y∈N (x)

w(x, y)f(y), x ∈ S.

The discrete version of the outward normal derivative at the boundary
points is

∂f(z) =
∑

y∈N (z)

w(y, z)

dw(z)
(f(z)− f(y)).

If we consider the equation (2.2) with a given boundary condition f |∂S,
and we assume that this equation has a unique solution, then Λq :

f |∂S →
∂f
∂ν

∣∣
∂S

is the discrete D-to-N map. The inverse problem is the
question of uniqueness of q from the knowledge of Λq. In [13] Morioka
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proved uniqueness for q if we know the D-to-N map to all energies in
the case of S ⊂ Zd is a finite set.

For rectangular domains in two dimensions Oberlin proved recon-
struction algorithm in [14], Isozaki and Morioka generalized this result
for d ≥ 2 dimensions in [10]. Motivated by [8], in the following we
prove a theorem in a more general situation.

If f(z) is known for some z ∈ ∂S, then the same amount of informa-
tion as in ∂f(z) is contained in

∂̃f(z) =
∑

y∈N (z)

w(y, z)f(y).

We say that the node x ∈ V is in the k-th level, x ∈ V (k) if
∑d

i=1 xi =
k. We use analogously the notations S(k) and (∂S)(k). To simplify
notation we suppose that the nodes are between the (nonempty) levels
−1 and m + 1. For a boundary point z ∈ (∂S)(k) denote N↓(z) and
N↑(z) the set of neighbors of z in V (k − 1) and V (k + 1) respectively.
Consider the set

Z = {z ∈ ∂S| N↑(z) = ∅ and z − e1 6∈ S}
where e1 = (1, 0, . . . , 0). That is, for all neighbors y of z ∈ Z we have
y1 = z1 and there are no neighbors one level up. Obviously, all points
of Z are in levels ≥ 1 (an example for a graph in Z2 is on Figure 1).

In what follows we suppose that f |Z = 0 and we do not measure ∂̃f
on Z. Remark that Z is a nonempty subset of the boundary; e.g. for the
points y of smallest first coordinate of S(m) the points y+e2, . . . , y+ed
belong to Z. Typically for large dimensions Z can be a quite large part
of the boundary. For example if S = {x = (xi)

d
i=1|xi = 1, . . . , n} is the

d-dimensional cube, then |Z|/|∂S| = (d−1)/(2d), which is close to 1/2
if d is large.
We will consider the partial discrete Cauchy data

C(q) = {(f |∂S\Z , ∂̃f |∂S\Z)| f : V → R, f |Z = 0, (2.2) holds in S}.
The main result of the present paper is that these partial Cauchy data
are sufficient for the unique reconstruction of the operator:

Theorem 2.1. Under the above assumptions, if C(q1) = C(q2) then
q1 = q2.

Moreover, we provide an explicit method of reconstruction of the po-
tential q from C(q), inductively upward from S(0) to S(m), see formula
(3.5) below.

The tools of the proof of theorem 2.1 are applicable for some special
subgraphs of the square lattice, specially the same proof will be good
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x1

x2

−1st level
0th level

7th level

...

× × ×
× × ×
× ×

× × ×
× × × × ×

× ×
× ×

× ×
× ×
× ×

• • •
• • • • •

• • • •
•
• • •
• •

• •
• •

Figure 1. Az example for a graph embedded in Z2 with
its levels: the boundary nodes are labeled with ×, the
interior nodes with •. For this graph m = 6, and the
nodes of set Z are in circles.

for the hexagonal lattice too (this graph can be embedded in Z2 as
described in [1]).

Theorem 2.2. Let us consider the hexagonal lattice graph H instead
of Z2, and the definitions above with V ⊂ H. Then under the above
assumptions, if C(q1) = C(q2) then q1 = q2.

3. Proofs

The following Lemma is the key tool in all of the later statements.
We exploit the sorting of the points of the k− 1-th level in diminishing
order of the first coordinate.

Lemma 3.1. Let 0 ≤ k ≤ m+1 and Ṽk−1 = {y ∈ V (k−1)| y ∼ y+e1},˜̃
V k−1 = V (k − 1) \ Ṽk−1. Then there is a disjoint decomposition

(3.1) Ṽk−1 = Y1 ∪ Y2 ∪ . . . ,

such that

(3.2) N↓(y + e1) ⊂ {y} ∪ Yi−1 ∪
˜̃
V k−1, y ∈ Yi, i ≥ 1

and for i = 1 we set Y0 = ∅.
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Proof. Let s = max{y1| y ∈ Ṽk−1} and Yi = {y ∈ Ṽk−1| y1 = s− i+1}.
This is a decomposition satisfying (3.2). Indeed, if y ∈ Y1 then any
neighbor x ∈ N↓(y+e1) other than y satisfies x1 = s+1, hence N↓(y+

e1) ⊂ {y} ∪ ˜̃V k−1. Similarly, for y ∈ Yi any neighbor x ∈ N↓(y + e1)

other than y satisfies x1 = s− i+2, consequently x ∈ Yi−1∪
˜̃
V k−1. The

lemma is proved. �

Lemma 3.2. Let −1 ≤ k ≤ m+ 1 be fixed and suppose that
a) f = 0 in all boundary points z of level ≥ k for which z + e1 6∈ S,

b) ∂̃f = 0 in all boundary points z of level ≥ k+1 for which z−e1 ∈ S,
c) the differential equation (2.2) holds in all inner points of level ≥ k+1.
Then f = 0 in all points of level ≥ k.

Proof. We prove that f = 0 in the levels≥ k by backward induction on
k. For k = m+1 this follows from a). If we know for some k ≤ k1 ≤ m
that f is zero in the levels ≥ k1 + 1, apply the decomposition (3.1)

with k1 + 1 instead of k. In the points z ∈ ˜̃V k1 we have z + e1 6∈ S,
hence by a) f | ˜̃

V k1

= 0. Now let y ∈ Yi. If y+ e1 ∈ S then the equation

(2.2) holds in the point y + e1, thus, by the induction hypothesis and
by (3.2)

0 =
∑

x∈N↓(y+e1)

f(x)w(x, y + e1)(3.3)

=f(y)w(y, y + e1) +
∑

x∈Yi−1, x∼y+e1

f(x)w(x, y + e1).

If y + e1 6∈ S then y must be in S, hence the same conclusion (3.3)
follows from b). Now by an inner induction on i ≥ 1 (3.3) gives that
f |Yi = 0. That is, f = 0 in the levels ≥ k1 for every k ≤ k1 ≤ m hence
in levels ≥ k. �

The next lemma clarifies how to reconstruct q|S0 from the partial
Cauchy data set C(q). For this goal we show that we can prescribe

a function f from the values f and ∂̃f on ∂S \ Z which fulfills the
differential equation (2.2), and from the values of f we can compute
q|S0 .

Lemma 3.3. Suppose that f : V → R satisfies the following assump-
tions:
a) f = 0 in all boundary points z of level ≥ 0; in particular f |Z = 0,

b) ∂̃f = 0 in all boundary points z of level ≥ 2 for which z − e1 ∈ S,

c) ∂̃f(y − e1) = (−1)y1 for all y ∈ S(0),
d) f = 0 in the points z ∈ V (−1) for which z + e1 6∈ S,
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e) the differential equation (2.2) holds in all of S.
Then
i) there exists exactly one function f with the above assumptions,
ii) f vanishes nowhere in S(0),

iii) q|S0 can be uniquely reconstructed from the data (f |∂S\Z , ∂̃f |∂S\Z).

Note that in the assumptions a)-d) we prescribe f only in some

boundary nodes of ∂S \ Z and ∂̃f in some nodes of ∂S \ Z, since

{z | z ∈ (∂S)(k), k ≥ 2, z − e1 ∈ S} ⊂ ∂S \ Z
and also S(0)−e1 ⊂ ∂S \Z. The major sets of lemma 3.3 for our graph
example is on Figure 2.

x1

x2

−1st level
levels ≥ 0

levels ≥ 2

× × ×
× × ×
× ×

× × ×
× × × × ×

× ×
× ×

× ×
× ×
× ×

• • •
• • • • •

• • • •
•
• • •
• •

• •
• •

z1

w1

z2

z3

w2

Figure 2. The major sets from lemma 3.3 for the graph

example above. The nodes of S(0) are in circles, Ṽ−1 =

{z1, z2, z3}, ˜̃V −1 = {w1, w2}.

Proof. By Lemma 3.2 f = 0 in all levels ≥ 1. Let s = min{y1| y ∈
S(0)}, Yi,0 = {y ∈ S(0)| y1 = s+ i−1}, i ≥ 1 and Y0,0 = ∅. If y ∈ S(0),
then y − e1 ∈ (∂S)(−1), and for x ∼ y − e1, x 6= y we have x ∈ S(0)
and x1 = y1 − 1, hence for y ∈ Yi,0 we get N↑(y − e1) ⊂ {y} ∪ Yi−1,0.
Consequently, using c) we obtain for y ∈ Yi,0 that

(−1)s+i−1 = ∂̃f(y − e1)(3.4)

= w(y, y − e1)f(y) +
∑

x∈Yi−1,0, x∼y−e1

w(x, y − e1)f(x).
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This formula shows by induction on i that f is uniquely defined in
y ∈ Yi,0 and, moreover, that signf(y) = (−1)s+i−1. Thus, f is nowhere
zero in S(0). From d) we know that f | ˜̃

V −1
= 0, we show that f is

uniquely determined also on Ṽ−1. Consider the decomposition of Ṽ−1

given in Lemma 3.1 for k = 0. From Lemma 3.1 and from e) we obtain
that if z ∈ Yi, then

(1 + q(z + e1))dw(z + e1)f(z + e1) =
∑

x∈N (z+e1)

w(x, z + e1)f(x)(3.5)

= w(z, z + e1)f(z) +
∑

x∈Yi−1, x∼z+e1

w(x, z + e1)f(x)

since f ≡ 0 in all levels ≥ 1 and on
˜̃
V −1. This shows by induction on i

that f is uniquely defined in Yi (if i = 1, then Y0 = ∅ and the sum for
Y0 is empty). We get that the assumptions a)-e) determine a unique f :
V → R with the prescribed properties, that is, statements i) and ii) are

proved. Finally suppose that we know the vector (f |∂S\Z , ∂̃f |∂S\Z) ∈
C(q) which corresponds to this f . We have seen above that from these
data f is uniquely determined in levels ≥ 0 (on the −1st level we
know f from the data), and we can compute f on S(0) without the
knowledge of q by induction using (3.4). Moreover, f is nowhere zero
in S(0). Then we can express q(z + e1) from (3.5) for every z ∈ Yi,
since every y ∈ S(0) has the form y = z + e1 for some z ∈ Yi. Thus,
the property iii) is also verified. �

Since q is known in S(0), we can reduce the ”width” of the graph,
i.e. the value of m by deleting the level −1. More precisely we delete
the following sets A, B and C:

A = V (−1), B = {z ∈ (∂S)(1)| N↑(z) = ∅},
C = {y ∈ S(0)| N (y) ∩ S(1) = ∅}.

The points S(0) \ C will be boundary points in the reduced graph.
Thus the reduced node sets are V ′ = V \ (A ∪ B ∪ C), S ′ = S \ S(0),
∂(S ′) = (∂S ∪ S(0)) \ (A ∪ B ∪ C) and Z ′ = Z \ B. Let q′ = q|S′ .
In what follows we show how to obtain the Cauchy data C ′(q′) of the
reduced graph from C(q).

Lemma 3.4. a) If f : V → R satisfies (2.2) on S and vanishes on Z
then f |V ′ satisfies (2.2) on S ′ and vanishes on Z ′.
b) Conversely, if f : V ′ → R satisfies (2.2) on S ′ and vanishes on Z ′

then f has an extension to V with the properties listed in a).

c) To every element X(f) = (f |∂S\Z , ∂̃f |∂S\Z) of C(q) we can construct
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an element X ′(f ′) ∈ C ′(q′) such that f |V ′ = f ′. In this way every
element of C ′(q′) can be constructed.

Proof. The statement a) is straightforward since all neighbors of S ′

are in V ′ and Z ′ ⊂ Z. To verify b) define f = 0 on B; this implies f = 0
on Z. Let f be arbitrary on C, it will not influence the fulfillment of
(2.2) in S ′. In A = V (−1) we apply again the decomposition of Lemma

3.1 with k = 0. Define f = 0 on
˜̃
V −1. By induction on i we see that

for any z ∈ Yi the value f(z) can be uniquely obtained from

(1 + q(z + e1))dw(z + e1)f(z + e1) = w(z, z + e1)f(z)

+
∑

x∈Yi−1, x∼z+e1

w(x, z + e1)f(x) +
∑

x∈N↑(z+e1)

w(x, z + e1)f(x), z ∈ Yi.

In this way the equation (2.2) holds in the points z + e1, z ∈ Yi.
Since every points of S(0) have such a representation, the statement
b) is verified. To see c) we determine first the values of f in S(0) as
in the proof of Lemma 3.3. Indeed, let again s = min{y1| y ∈ S(0)},
Yi,0 = {y ∈ S(0)| y1 = s+ i−1}, i ≥ 1 and Y0,0 = ∅. Then by induction
on i from the formula

∂̃f(y−e1) = w(y, y−e1)f(y)+
∑

x∈Yi−1,0, x∼y−e1

w(x, y−e1)f(x), y ∈ Yi,0

we can express f(y) for any y ∈ Yi,0 and finally for any y ∈ S(0). In
the new boundary points y ∈ S(0) \ C we can compute

∂̃newf(y) = (1+q(y))dw(y)f(y)−
∑

z∈B, y∼z

w(z, y)f(z)−
∑

z∈N↓(y)

w(z, y)f(z)

since the equation (2.2) holds in y and q(y) is reconstructed from C(q)
by Lemma 3.3. The boundary points ∂S ∩ ∂(S ′) have neighbors only
in S and no inner points remained in V (0). Thus we have to modify

∂̃f only in those points z ∈ (∂S)(1) which have neighbors in S(0) and
S(2), too, namely

∂̃newf(z) = ∂̃oldf(z)−
∑

z′∈N↓(z)

w(z, z′)f(z′).

In those points of ∂(S ′) which were not considered above the values of
f and ∂f are the same as in Xf . Thus from the knowledge of C(q)
we constructed an element X ′(f ′) ∈ C ′(q′) such that f ′ = f |V ′ . As we
have seen in b), in this way we obtain all elements of C ′(q′). �
Proof of Theorem 2.1 We use induction on m, the width of the
graph. If m = 0, Lemma 3.3 gives q on S. For larger m we apply
the reduction of the width described above, the construction of the
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Cauchy data for the reduced graph is given in Lemma 3.4. By induction
hypothesis, q can be obtained in S ′ = S \ S(0) and by Lemma 3.3 q is
determined in S(0). The theorem is proved. �
Proof of Theorem 2.2 In the proofs above we use only the properties
of the multi-dimensional square lattice that the node set of the graph
can be decomposed into disjoint subsets V (k) such that edges are only
between V (k) and V (k ± 1), Lemma 3.1 is true for an arbitrary finite
subgraph of the lattice, and if x is some node of Zd, then x±e1 ∈ Zd too.
In particular every subgraph of Zd given by deleting arbitrary edges not
parallel with e1 is convenient and the proofs above remain true. We
can see that the hexagonal lattice forms such a graph embedded in Z2,
see the figures 1 and 2 in [1], so with the lemmas above prove Theorem
2.2 as Theorem 2.1 too. �
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