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When the author of this article begun to examine the paper model of the geometric con-
struction called the “Spidron-nest”, first he was surprised and then doubts were overcom-
ing his first astonishment. The author’s doubts were stimulated by the disbeliefs in the 
remarkable geometric properties of the construction, discovered and named by Dániel 
Erdély, that can be observed during the deformation of the model. In this paper, we will 
describe the history and the result of these initial doubts regarding the Spidron System. 
Particularly, we analyze what are the admissible motions of the Spidron System without 
describing all its interesting mathematical features. We show that the motions of the “ab-
stract” Spidron-nest can be described with rigorous mathematical tools. For this examina-
tion, we used the computer algebra system Maple that supplied us with both precise sym-
bolic and numerical computations as well as the software provided valuable visual im-
ages for our work. Prior to our detailed analysis of the Spidron System we illustrate why 
mathematicians must be careful while investigating an unknown geometric construction. 
 
First, let us begin with a seemingly irrelevant problem: 
 

How many real solutions does the equation ( )x
x

16
1log

16
1

=





   have? This problem does 

not seem to be difficult at first sight. 

The functions 
x

y 





=
16
1  and  ( )xy

16
1log=  are inverses of each other, therefore, their 

graphs are mirror images with respect to the y = x line. Thus, the graphs intersect on the y 
= x line and because of the monotony of the functions the equation has only one solution 
that can be found only by approximation. 

                                                 
1 http://www.szinhaz.hu/edan/spidronh/ 
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Figure 1 

Without solving the original equation we can approximate the root of 
x

x 





=
16
1 with Ma-

ple providing the (approximate) solution x ≈ 0.3642498896... 

 

Those readers who find the explanations above appropriate we recommend to try to solve 

the same equation using 1x
2

=  and 1x
4

= . What is the error in the solution2?  

It is accurate to state that the functions on both sides of the equations are inverses and 
their graphs have an intersection on the line y=x. However, monotony of the graphs does 
not imply that there is no additional intersection. We illustrate this with another example 
that is more convincing. 

Let us graph the function xay =  and its inverse xy alog=  in the same coordinate sys-
tem together with their tangent lines at the point of intersection (y0;x0) with the y=x line.  

In Figure 2 
8
1

=a and in Figure 3 
32
1

=a . 

     
  Figure 2       Figure 3 

                                                 
2 This very interesting question is due to the Japanese mathematician SHARAGIN [3], who warned his read-
ers to caution by nice exercises like this. 
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(On the left side of the equation the 
derivative of the exp function occurs.) 

It can be observed that in the case of the exponential function with
8
1

=a the slope of the 

tangent line is less than 45° while it is greater than 45° for its inverse. Thus, for example, 
when x < x0 the tangent line of the logarithm function lies above the tangent line of the 
exponential function, and the logarithm function itself lies above this tangent line. Hence 
it cannot intersect the exponential function on this interval. 

On the other hand, if 
32
1

=a , then the logarithm function lies below the exponential func-

tion in the neighborhood of x0 for x < x0, since the slope of the tangent line of the loga-
rithm function is less than (the absolute value of) 45°. At the same time, there must be an 
intersection, since the exponential function does and the logarithm function does not in-
tersect the y axis. In addition, the mirror image to the y=x line of this point of intersection 
must be a point of intersection as well.  Thus we see that, when 0<a<1, there are exactly 
three solutions if a is close enough to 0 and there is exactly one solution if a is close 
enough to 1. This result shows that a monotone function and its inverse may intersect not 
only on the y = x line, but also at other locations, contradicting our naïve expectation.  

Let us find the value of the parameter a separating the two solutions. Obviously, this  
must occur where the tangent line of the two functions at (y0 ; x0) coincides. In other 
words, where the tangent line is perpendicular to the line y = x (its slope is –1). From this 
condition we obtain a system of equations in variables a and x: 







−=

=

1)ln(aa
ax

x

x

  

From this, a bit unusual, system of equations x and a – with multiple substitutions – can 
be easily determined: 

1ln −=ax      1ln −=xa      
e

a x 1
=      

e
x 1

=      
e

a e 11

=      065988.01
≈=






= −e

e

e
e

a  

Thus, we obtain that if 11
<=






≤ −e

e

e
e

a , then the equation xa a
x log=  has one real 

root, while in the case e
e

e
e

a −=





<<

10  , including 0625.0
16
1

==a , the equation has 

three real roots. 

We note, in addition, that the solution 0625.0
16
1

==a  is so close to the limiting case 

considered above, that graphing the functions does not yield any hint for solving our 
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problem. For example, according to the description above, the equation ( )x
x

15
1log

15
1

=





   

has only one root, since 0666.0
15
106598.0 ≈<≈−ee . 

We can only get a reasonable conjecture concerning the number of roots if we plot the 
difference of the two functions by some suitable graphical software. Figure 4 shows the 

graph of the function 









−






= xy

x

16
1log

16
1100 . It can be seen that on the given interval 

(0,2; 0,52) the value of the functions in the two sides of our original equation differs only 
by 0,001.   

 
Figure 4 

Mathematics can easily be mystified if mathematicians pretend to be magicians by pre-
senting a statement (whether true or false) like the magicians take a rabbit from a stove-
pipe-hat to the great amazement of the audience. Here is a “magician style” statement 
which was spread in algebraists circles3:  

 

The value of 163eπ  is an integer, which equals exactly 262537412640768744. This 
statement is fairly surprising since both the base and the exponent contains transcendental 
number.  

Is this statement true? How can anyone suspect such a relation? How can we prove the 
validity of this statement?  

It would be a difficult task to check some complicated “proof ”. To disprove, it is enough 
to calculate its value to a certain precision. It would be difficult to do this calculation “by 
hand” (as one can easily check by Maple), since the fractional part is zero to 10-digit pre-
cision and only after this we get digits differing from zero. Writing the statement in the 

form ( ) 2
ln 262537412640768744

163
 

= π 
 would also result in difficulties, since the right 

side of the equation is 163 to 20-digit precision (!!). However, Maple can provide an even 
higher precision, and in this way it turns out that the number in question is not an integer.  
                                                 
3  http://www.shef.ac.uk/puremath/theorems/nearint.html  



 5

It is even easier to find examples in geometry showing that solutions that “look right” 
differ from that are proven to be “right”. Let us construct an “open” bipyramid from ten 
equilateral triangles with unit edge length. The “openness” of this bipyramid only de-
pends on the distance between the opposite apexes. We can choose this distance equal to 
the distance between the free vertices of the base of the pyramids. Then we can glue two 
copies of these bipyramids to a polyhedron with 20 equilateral triangles (one may per-
ceive it as an irregular icosahedron.). 

   
Figure 5     Figure 6 

Using a paper model of this polyhedron we can find that it is “movable”. Is it really a 
“movable” polyhedron? It seems to be so. But is this really true? 

To decide the question let us place this construction suitably into a three-dimensional co-
ordinate system. Denote by x half the distance between vertex 1 and 2 (vertex 2 happens 
to be hidden in Figure 7 and by y half the distance between vertex 3 and 4 (that are free).  
Then write y as a function of x. 

 
Figure 7 
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With the details omitted, we obtain 2

2

1y f (x) 1 x sin 5arcsin
2 1 x

  
= = −    −  

. 

 
Figure 8 

We have plotted the function on the interval [ ]00, x , where 0f (x ) 0= , from which we 

obtain 0
50 10 5x 0.5257

10
−

= ≈   

To find the coordinates for the vertices of the really existing polyhedron with regular tri-
angular faces, we must solve the f (x) x=  equation. The approximate solution of this 
equation can be easily calculated with Maple, to a suitably high precision, yielding 
x 0.327267...≈   

If the polyhedron is movable, then the following condition must be fulfilled: the height of 
the polyhedron (the distance 1–2) must be equal to the distance between the free vertices 
(3 and 4) while continuously moving throughout a certain interval. In other words, if 

1 1y f (x )=  is satisfied then 1 1x f (y )=  must also be satisfied. This amounts to saying that 
f(x) and its inverse must coincide on this interval. 

The inverse of f(x) (on the interval in question) is the function 4x 5 8x 5f (x)
4x 10

− + +
=

−
. 

It can be easily observed from the graphs (see Figure 9 that f (x)  and f (x)  have exactly 
three points of intersection – similarly to our first example. Again, using Maple the roots 
of the equation f (x) f (x)=  within the interval in question can also be traced. 

 

 
Figure 9 
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From the previous examples, it is not surprising that monotone functions and their in-
verses may have three points of intersection. Figure 10 shows that the polyhedron de-
scribed above is not “movable”. However, there are two additional “stable” variants of 
this polyhedron (these are congruent with each other).  This corresponds to the fact that  
the function f(x) and its inverse have in fact three points of intersection on the interval in 
question. This result has first been proved by M. Goldberg in 1978 [1].  The correspond-
ing (x,y) pairs of coordinates are:  (0.071185256… , 0.492373… ) and its inverse, as well 
as (0.327267375, 0.327267375). The number 0.327267375 is at the same time the (ap-
proximated) root of the equation x=f(x). 

It is not necessary to find the inverse of f(x) to be able to calculate the numerical ap-
proximation of the equation x=f(x). These values are equal to the roots of the function 

( )( )g(x) x f f x= − : 

 
Figure 10 

If we construct our polyhedron, instead of equilateral triangles, from isosceles triangles 
whose base is greater or less than their lateral sides by 3%, we only get one single “sta-
ble” polyhedron. This polyhedron would only be movable if the function g(x) took – on at 
least one certain interval – constantly zero value. This condition, however, is impossible. 

 

Paper models of another kind of polyhedron, whose vertices coincide with the vertices of 
a regular icosahedron, are easily movable as well. Eight faces of this polyhedron are 
regular triangles and the other twelve faces are obtuse “golden” triangles with lateral 

sides of unit length and base of length 1 5
2

+
τ =  (where τ  is the golden ratio).  

 
Figure 11 
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Let A, B and C three vertices that determine a regular triangular face of the polyhedron, 
as in Figure 11. To simplify computation we choose the side length of the ABC triangle 2. 
We place this polyhedron into a 3-dimensional coordinate system in a position such that 
each of the three points is lying on a coordinate-plane; thus their coordinates are: 

[ ]
[ ]
[ ]

A y, x,0

B 0, y, x

C x,0, y

=

=

=

 

Expressing the distance of the points in coordinates, we obtain a single relation between x 

and y, namely, the function  
2x 8 3xy f (x)

2
+ −

= =  . This function – as expected – satis-

fies the condition 1 5f (1)
2

+
= = τ  (giving the coordinates of a regular icosahedron). In 

addition, 1 5 1 5f ( 1) f
2 2

 − + +
τ − = = = τ  

 
 is also satisfied, moreover, between the two 

stable states, the value of f (x) − τ  differs from 0 with no more than 0.015. That is, this 
difference is less than 1%. Thus, due to this difference, the polyhedron given with these 
faces is not movable in mathematical sense, but has two stable states.  

 
Figure 12 

We note that several seemingly movable polyhedra are known ([2], p. 224). However, it 
is very difficult to construct a polyhedron such that is really movable and this can be 
proved in fact by mathematical tools [2], p. 246. In fact, the author does not know the ex-
istence of any polyhedron whose movability is proved other than the concave polyhedron 
described in [2], p. 246; it has 9 vertices, 14 faces and 21 edges. László Csirmaz [4] has 
given a proof of the movability of this polyhedron; the discovery of the polyhedron is due 
to Klaus Steffen. 

It was Cauchy who first proved in 1813 that every convex polyhedron is rigid. Cauchy’s 
theorem is formulated as follows: “If two convex polyhedron structures are the same and 
their corresponding faces are congruent, then they are either congruent in an orienta-
tion- preserving way or mirror congruent (with respect to a plane)”.  This theorem states 
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more than just the immovability of polyhedra; convex polyhedra with the same (combina-
torial) structure and congruent faces cannot even behave like our examples above, 
namely, cannot exist in several not congruent variants. The proof of Cauchy’s theorem is 
rather long ([2], p. 228; [5], Exercise 58). 

We hope that our argumentation above helped to show why it is important to doubt or at 
least to be cautious when investigating the movement of the “spidron-nest”.  

The “spidron-nest” is a regular hexagon folded up with a special procedure. Such a nest 
consists of six congruent arms, where each arm is a connected sequence of base-figures. 
This sequence may consist of arbitrary number of elements, however, it is sufficient to 
compute (or draw) a few of its starting elements. Define the depth of the spidron (nest, or 
arm) to be n if the spidron-arm consists of n connected base-figures. 

  
 Figure 13      Figure 14 

 

The base-figure contains an isosceles triangle with vertex angle 120° (ABD triangle) and 
a matching equilateral triangle (ACD triangle) such that they together form a right trian-
gle, provided they are in the same plane.  

 

  
Figure 15      Figure 16 
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Later on we shall use the term spidron ring, which is, so to say, a “spidron-nest of depth 
1”:  it consists of six congruent base-forms.  

Observe that performing a suitable deformation (i.e. that is possible along the common 
sides of the adjacent triangles) the “edge” of the nest forms a skew hexagon such that all 
of its (equal) sides incline at the same angle to a certain plane – in fact, to the plane de-
termined by their midpoints.  We call this plane the plane of the spidron-nest (in the lim-
iting case the spidron-nest is a two-dimensional object – it is the planar spidron-nest). In 
addition, we observe that the orthogonal projection of the regular skew hexagon onto this 
plane is a regular hexagon as well.  

We obtain a regular skew hexagon if we only require of a closed broken line consisting 
of six line segments that its sides as well as the angles of its adjacent sides be equal. Ob-
viously, this spatial hexagon does not form a regular planar hexagon. We define a spatial 
regular hexagonal surface to be a figure consisting of six isosceles triangles such that 
their bases form a regular skew hexagon and they have their vertices in common forming 
the center of the whole figure. This spatial hexagonal surface may be movable along its 
adjacent edges. However, if we require that it remain to be a spatial regular hexagonal  
surface, then it will be rigid. For, if its edges incline at a greater angle to the plane of the 
hexagon, then they get closer to the center, and hence the lateral sides of the constituent 
isosceles triangles must also decrease. This spatial regular hexagonal surface is a cen-
trally symmetric figure, and so is the spidron-nest, as we shall see later. 

   
 Figure 17    Figure 18    Figure 19 

 

We demand that the edge of the spidron-nest must be a regular (either skew or planar) 
hexagon.  

We shall prove that if the (outer) edge of the spidron-nest (which at the same time is the 
edge of the first spidron ring as well) is a regular skew hexagon, then its interior edge is 
also a regular skew hexagon. This provides the possibility to form the spidron-nest as a 
sequence of nested spidron rings. It should be mentioned that the interior edges of the 
spidron ring form smaller angles with the plane of the spidron-nest than its outer edges. 
Therefore, we cannot state that, in general, the spidron-nest of infinite depth is a self-
similar object. However, we can state this for its planar variant. 

For the description of the motions of a spidron-nest, it is sufficient to investigate only the 
motions of one of its base elements, since by using appropriate parameters we can build a 
spidron-arm of such elements, and by applying consecutive congruent transformations, 
the whole spidron-nest as well. 
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Let us place the spidron-nest into a 3-dimensional coordinate system in a position such 
that its plane coincides with the xy-plane and so does its center with the origin.  

A line segment in the edge of the spidron-nest can be described by three parameters: 
d  :   the length of the line segment; 

 α :    the direction angle of the position vector pointing to the midpoint of the edge; 
β :    the angle of the edge with the xy-plane. 

The corresponding commands in a Maple procedure are as follows: 
V:= proc(d,alpha,beta)  
    local F,A,c,V; 
       c:=d*cos(beta)*sqrt(3)/2: 
       F:=[c*cos(alpha),c*sin(alpha),0]: 
       A:=[d*sin(alpha)*cos(beta)/2, 
           d*cos(alpha)*cos(beta)/2, 
           d*sin(beta)/2]: 
       V:=[F+A,F-A]: 
    end proc: 

The orthogonal projection of the edge onto the xy-plane is ( )d cos β , thus the distance of 

its midpoint from the origin is ( ) 3c d cos
2

= β . Using these expressions we can deter-

mine the coordinates of the midpoint and of one endpoint of the edge. These coordinates 
can be obtained as the output of the Maple procedure above. 

The spidron-nest is uniquely determined by an outer spidron ring which, in turn, is 
uniquely determined by the skew hexagon described above (the outer edge of this ring) . 
This skew hexagon can be described by two parameters: d, the length of its edge, and f, 
the angle formed by the xy-plane and by the edge.  

Let us place the edge AB of the base-figure into a 3-dimensional coordinate system with 
its midpoint located on the x-axis. Then determine the segment CD using the procedure 
above and temporarily taken a, b as indeterminate parameters. Then the vertices of the 
base-figure can be given as follows:  

                    
 := A 






, ,

1
2 d ( )cos f 3

1
2 d ( )cos f 1

2 d ( )sin f  

                    
 := B 






, ,

1
2 d ( )cos f 3 −

1
2 d ( )cos f −

1
2 d ( )sin f  

                    

C −  + 
1
6 d 3 ( )sin a ( )cos b 1

2 d ( )cos b ( )cos a ,

 := 

 + 
1
6 d 3 ( )cos a ( )cos b 1

2 d ( )cos b ( )sin a 1
6 d 3 ( )sin b, 



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D  + 
1
6 d 3 ( )sin a ( )cos b 1

2 d ( )cos b ( )cos a ,

 := 

−  + 
1
6 d 3 ( )cos a ( )cos b 1

2 d ( )cos b ( )sin a −
1
6 d 3 ( )sin b, 




 

We want to express a and b as a function of f under the condition that the length of the 

line segments BD, DC, CA and DA be equal to 3d
3

 alike. The condition 3CD d
3

=  is 

an identity that is valid for all (a, b) values, as a consequence of our equations above. The 
transformation that transforms the line segment AB to CD takes A to C and B to D; ac-
cordingly, AC=BD must be satisfied. It can be easily seen from the Maple results. Thus 
we obtained a system of equations in two variables, where a and b are the unknowns and 
f is taken as an independent parameter: 

 := e1  −  +  − 
3
4 ( )cos b 2 2 ( )cos b ( )cos a ( )cos f 3

9
4 ( )cos f 2 1

2 3 ( )sin b ( )sin f  

e2 3
4 ( )cos b 2 3 ( )sin a ( )cos b ( )cos f ( )cos b ( )cos a ( )cos f 3

9
4 ( )cos f 2 −  −  +  := 

1
2 3 ( )sin b ( )sin f + 

 

Nevertheless, we had to pick the solutions provided by Maple that satisfied the desired 
geometric properties. Moreover, in some cases we had to “help” Maple in performing 
some trigonometric simplifications that the geometric content made possible, but that are 
not permitted otherwise. Thus we obtained the following expressions for a and b, as func-
tions of f :  

 
( )( ) ( ) ( )

( ) ( )

2 2

2

3 1 2cos(f ) 3cos f sin f 1 4cos(f ) 3cos f
a(f ) arccos

4cos f 2 4cos(f ) 3cos f

 − + − − + −
 =
 − + 

 

 
( ) ( )
( ) ( )

2

2

1 4cos f 3cos f
b(f ) arctan

2 4cos f 3cos f

 − + −
 =
 − + 

 

Since we applied computer and manual computations alike, we could not be sure that our 
results described in fact the motions of the spidron. Thus we had to check that the equali-
ties e1=0 and e2=0 were fulfilled in all cases, independently of f. This investigation 
yielded a certain trigonometric expression for which we had to check that it was identi-
cally zero, for all values of f ; we present it here, to scare the reader: 

3 ( )cos f 2 1 2 ( )cos f 2 2 2 ( )cos f 2 12 ( )cos f 3 9 ( )cos f 4 1 4 ( )cos f −  +  −  +  + 







−  −  +  + 

 −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3
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−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 − 

1
 −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 3 −  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 3 + 

( )cos f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3

−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f ( ) −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 2


 ( ) 




( )/1 2

( )cos f 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 4 2 2 ( )cos f 2 12 ( )cos f 3 9 ( )cos f 4 1 −  +  − 







 − 

4 ( )cos f  −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3 +  + 

−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 − 

1
 −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 3 −  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 3 + 

( )cos f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3

−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f ( ) −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 2


 ( ) 




( )/1 2

( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3 2 2 ( )cos f 2 12 ( )cos f 3 9 ( )cos f 4 1 −  +  − 







 + 

4 ( )cos f  −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3 +  + 

−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 − 

1
 −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 3 −  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f 3 + 

( )cos f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3

−  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f ( ) −  + 2 4 ( )cos f 3 ( )cos f 2 ( )cos f 2


 ( ) 




( )/1 2

( )cos f 3 1
 −  + 2 4 ( )cos f 3 ( )cos f 2  −  + 2 4 ( )cos f 3 ( )cos f 2 − 

1
 −  + 2 4 ( )cos f 3 ( )cos f 2 3 −  +  − 1 4 ( )cos f 3 ( )cos f 2 ( )sin f
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We successfully arrived at a result that also required the cooperative efforts of the soft-
ware and of the doubting user.  

Now, we can be assured that the spidron-nest is movable and its motion can be described 
by the functions a( f ) and b( f ) given above. 

Although the domain of these two functions is wider than described, the values with ac-

tual geometric meaning occur within the interval 1 fβ = 0,
3
π 

  
. For, if f

3
π

= , then the 

triangles ABD and ACD are both perpendicular to the xy-plane; thus, higher values would 
provide a self-intersecting surface, which cannot be realized physically. 

 
Figure 20 

To realize a spidron-arm or a spidron-nest, knowing the values of the key parameters, is 
an easy task now. 

We obtain the first base-figure starting with the 1 1 1d d , 0 f= α = β =  values. From the 
input data of the k-th base-figure of a spidron-arm one obtains the input data for the 
(k+1)-th base-figure using the following recursive formulas: 

( )
( )

k
k 1

k 1 k k

k 1 k

d 3d
3

a

b

+

+

+

=

α = α + β

β = β

 

However, the graph of the functions ( )a f  and ( )b f  does not offer opportunity for a 
more thorough investigation of the properties of the spidron-nest. 
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Figure 21 

At most, we can observe that as the angle of the edges of the outermost ring with the xy-
plane increases, the projection of the interior hexagon of the first spidron ring onto the xy-
plane turns with respect to that of the outer hexagon to a greater extent as well; in the 
case of f = 60° the degree of this turning is just 60°. The degree of turning is continu-
ously decreases to 30° corresponding to the planar case. Similarly, the angle of edges to 
the xy- plane is gradually decreasing as well, although this decrease is slow. Accordingly, 
the interior – and, smaller and smaller – rings of the spidron-nest are approaching the xy-
plane.  

Will actually the rings reach the xy-plane? 

To answer this question we must prove that the sequence given by the following recur-
sive formulas  

( ) ( )

1

k 1 k

f 0 f
3

b k 2,3,...+

π β = ≤ ≤ 
 

β = β =
 

tends to zero, that is, lim 0=nβ , that means that the vertical lines in our Figure 22 below 
are accumulating at the origin.  

This problem is not obvious, for if we would define this sequence through the function 
y f=  instead of ( )y b f= , then it were a constant sequence. However, our function  

( )b f  converges just to the function y f=  around the origin: ( )
f 0
lim b (f ) 1

+→
′ =   
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Figure 22 

It is easily proven either by hand or by Maple that the function ( )b f  is continuous on the 

0,
3
π 

  
 interval in question. Moreover, on this interval the inequality ( )b f f<  is also 

satisfied.  

In more generality: if the function y b(f )=  is continuous and everywhere on this interval 
its value satisfies the relation 0 b(f ) f< < , then every similarly defined recursive se-
quence converges to zero. For, if the limit of the sequence would be a number h greater 
than zero: 0 < h, then, due to continuity, the function at h took just the value h, contra-
dicting our conditions.  

Of course, the tools of mathematics do not provide a good intuitive picture about the 
“speed” of convergence of this sequence. Thus, we don’t know when the nest of the spa-
tial spidron becomes more and more similar to a planar spidron-nest. 

This remarkable website: 
http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html illustrates 
the size of the Universe. To our present knowledge, the size of the Universe is 2310  meter 
and the size of the smallest known physical object, a quark, is 1610−  meter. 

Let us imagine a “Universe-sized” spatial spidron-nest whose one outer edge is, say, 2310  

meter. Since the interior edge of each spidron ring is 3
3

 times smaller than the outer 

one, we get a quark-sized spidron ring in some 170 steps. Well, using Maple it is easy to 
show that the angle of its edge to the plane of the spidron is still more than 6°. Of course, 
this is merely playing with the forms (or with the notions) and is not to be taken too seri-
ous.   

Practically, a model of the spidron-nest consists of merely 5-6 rings with holes in their 
center. It is only worthy even to draw a maximum of 8-9 rings. 
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If we want to have a spidron-nest with continuous surface we can patch the “hole” inside 
with a spatial regular hexagon. The resulting object is rigid in mathematical sense, as the 
regular hexagon is immovable in its center. This object consists of a finite number of tri-
angles.   

 
Figure 23 

The object in Figure 23 is a polyhedron with 6*7+3=45 faces build from three spidron-
nests and six triangles patching the hole in the center of the spidron. Moreover, it con-
tains three mutually neighboring faces of a cube as well. One obtains a cube by joining 
up a “right-handed” and a “left-handed” variant of it.  

We note, too, that it is senseless to ask whether a spidron-nest, containing a spiral-like 
broken line, twists left or right. At the most, we can only relate to each other two joining 
spidron-nests as they are of the same or opposite orientation.   

Inventing further structures build from spidron rings and nests, delighting the eyes and 
stirring the fantasy is, nevertheless, the task of the discoverer of the Spidron, and not of a 
geometer who may sometimes seem to be too scrupulous. 

In addition, it would be quite challenging, in mathematical sense, to understand the prop-
erties of an “infinitely deep” spidron-nest. The mathematical description of such a 
spidron requires the description of a spidron-ring which, except the first ring, has both 
inner and outer neighbors. Yet, this mathematical challenge is beyond the scope of this 
paper. 
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