Put 24 noncongruent squares into the least-area-rectangle. (The square
sides must be whole numbers.) Here is my 71x71 soulution, and I have another one for 70x72. The optimal would be 70x71. Could you find it, or could you prove
that the 70x72 is the best? http://www.math.bme.hu/~hujter/24.gif
The mistery of Fibonacci numbers in a triangle: http://www.math.bme.hu/~hujter/Fibonacci_Triangle.gif
Some "Carneval" linguistics and mathematics in Magyar: http://www.math.bme.hu/~hujter/farsang.pdf
OPTIMIZATION course supplements in Magyar: http://www.math.bme.hu/~hujter/ok.htm