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Precoloring extension. I. Interval graphs
Miklós Biró, Mihály Hujter, Zsolt Tuza
Abstract. This paper is the �rst article in a series devoted to the study

of the following general problem on vertex colorings of graphs. Suppose that
some vertices of a graph G are assigned to some colors. Can this �precoloring�
be extended to a proper coloring of G with at most k colors (for some given
k)? This question was motivated by practical problems in scheduling and VLSI
theory. Here we investigate its complexity status for interval graphs and for
graphs with a bounded treewidth.
1. Introduction.
We consider �nite undirected graphs G = (V;E) with vertex set V and edge

set E. The clique number or maximum clique size and the chromatic number of
G are denoted by !(G) and �(G), respectively. For any vertex subset W � V ,
GW denotes the subgraph induced by W . By de�nition, for a given integer
k � 2, a (proper) k-coloring is a function f : V ! f1; 2; : : : ; kg such that
uv 2 E implies f(u) 6= f(v).
The problem we raise and investigate in this paper is called the PRE-

COLORING EXTENSION problem, or PrExt in short. PrExt is more gen-
eral than the usual CHROMATIC NUMBER problem and less general than
LIST-COLORING [21]. (The latter has been studied extensively for line graphs
[5,9,13,15].) PrExt can be formulated as follows:

Instance. An integer k � 2, a graph G = (V;E) with jV j � k, a vertex subset
W � V , and a proper k-coloring of GW .
Question. Can this k-coloring be extended to a proper k-coloring of the whole
graph G?

Because of their theoretical and practical importance, in this introductory
paper we focus on interval graphs. (A graph G = (V;E) is an interval graph
if its vertices can be represented by open real intervals in such a way that two
vertices are adjacent if and only if the corresponding intervals intersect each
other.) It is well-known that the chromatic number of an interval graph can be
determined in O(jV j+ jEj) time. It will turn out that PrExt is much harder.
In order to indicate the di¢ culties, �rst let us consider an example. Let

k � 2 be any �xed integer, and let n � 2k be an arbitrary multiple of k. We
de�ne a graph G = (V;E) on the vertex set V = f1; 2; : : : ; ng as follows: Let
uv 2 E if and only if u; v 2 f1; 2; : : : ; ng and 0 < ju � vj < k. Observe that G
is an interval graph with �(G) = !(G) = k. (An interval representation can be
given as follows: For any i 2 f1; 2; : : : ; ng, let ai = i and bi = i+ k. Now ij 2 E
if and only if i; j 2 f1; 2; : : : ; ng and (ai; bi) \ (aj ; bj) 6= ;). On the other hand,
assigning color 1 to vertices 1 and n, we obtain a precoloring which cannot be
extended to a proper k-coloring of G. This example also shows that the answer
to PrExt may depend on each edge of the graph since by deleting any edge, the
precoloring becomes extendible.
Our paper is organized as follows. At the end of the Introduction we give

the basic notions related to PrExt. The applications of PrExt in scheduling
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and VLSI theory are described in Sections 2 and 3, respectively. In Section 4,
we prove that PrExt is polynomially solvable on interval graphs when every
color is used at most once in the precoloring. On the other hand, the problem
becomes NP-complete when we allow the colors to be used twice, as shown in
Section 5. Finally, if the number k of colors is �xed, then PrExt is polynomially
solvable. This fact is proved in a much more general form, for graphs of bounded
treewidth, in Section 6.
We note that PrExt is closely related to many interesting concepts of combi-

natorics, including partial Latin squares, integer-valued multicommodity �ows,
bipartite matching, perfect graphs, etc. These connections will be discussed in
our forthcoming papers [10�12].
Basic notions. For an instance of PrExt we say that the number k is the
color bound, and G is a precolored or a partially k -colored graph. The vertices
of W and V �W are called precolored and precolorless, respectively. If G is
completely colored, i.e., W = V , the answer to PrExt is �yes�needing no proof.
More generally, the same is true if the number of di¤erent colors assigned to the
precolored vertices is at most k � jV �W j. Given a precoloring ' on W , the
precolored classes are the sets Ci = fx 2 W : '(x) = ig, i = 1; 2; : : : ; k. Given
a nonnegative integer d, the subproblem d-PrExt is de�ned as the problem in
which the instances of PrExt are restricted to those partially k-colored graphs
where the size of each color class is at most d. Note that 0-PrExt is the usual
chromatic number problem, i.e., �Is �(G) � k?�.

2. PrExt and scheduling
The following scheduling problem arose in �real life�at MALÉV, the Hun-

garian Airlines. Suppose we have n jobs, J1; J2; : : : ; Jn. For each job Ji, an
open interval (ai; bi) is �xed where 0 � ai < bi are integers. Job Ji must
be processed in this time interval. In addition, we have k identical machines,
M1;M2; : : : ;Mk. (Here k � 2 is a �xed integer.) The jobs are partitioned into
two classes: For i = 1; 2; : : : ;m, some machine Mj is already assigned to job
Ji, and for i = m+ 1;m+ 2; : : : ; n, we have to assign some machine Mj to job
Ji. Any machine can process at most one job at any time. Here an appropri-
ate assignment means a feasible scheduling. From the many possibilities (their
number is bounded above by kn�m), we have to choose an appropriate one, or
we have to prove that it does not exist.
In the case of this practical problem of MALÉV, the machines are airplanes

of a given type. The typical value of k is �ve, and the time horizon is one week;
the integers ai and bi mean speci�c hours of the week. The jobs J1; J2; : : : ; Jm
correspond to the time intervals of the required maintenances of the planes.
Typically, each plane requires maintenance once or twice a week; hence m is
usually between 5 and 10. It is important to note that for each maintenance
time interval, the speci�c airplane to be checked and/or repaired in that time
interval is �xed. The maintenance process is done according to some prescribed
plan.
The jobs Jm+1; Jm+2; : : : ; Jn correspond to the time intervals of �ights de-

termined by the seasonal schedule being valid on the week in question. These
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time intervals include not only the hours when the plane is in the air but also
the hours the plane has to spend at the airports. Each �ight starts at Bu-
dapest Airport, and this airport is the terminal, too. There is only one degree
of freedom: each �ight can be performed by any of the planes M1;M2; : : : ;Mk.
Certainly, in each hour each plane can perform at most one �ight. Typically,
the number of �ights is around 50 a week for each type of airplanes.
This scheduling problem is actually PrExt for interval graphs. The vertices

are the jobs J1; J2; : : : ; Jn. To color a vertex means the assignment of some
plane to the corresponding time interval. The precolored vertices are those
which correspond to the maintenance intervals, and the precolorless vertices are
those which correspond to the �ights. Two vertices are nonadjacent if and only
if the corresponding intervals are disjoint. (This means that the only restriction
for assigning the same plane to two distinct �ights, or to a �ight and to a
maintenance time interval, is that that the corresponding intervals must not
overlap.)

3. PrExt and VLSI theory
The strong connections between graph theory and the theory of Very-Large-

Scale-Integration (VLSI) technology have been known from the very beginning
of the latter. We refer the reader to [16].
Using the terminology and notation of [16], we present a model of a special

layout problem in VLSI theory. This is called �multiterminal net channel routing
in the knock-knee layout mode�.
The uniform grid of the plane is the set of lines fx = i : i is integerg and

fy = j : j is integerg. A k-track channel is a horizontal strip of the uniform
grid delimited by the lines y = 0 and y = k + 1. These two delimiter lines are
called shores. The k lines of the form fy = jg, j = 1; 2; : : : ; k, are the tracks of
the channel. The number k is called the capacity of the channel. A grid point
on either shore is called a terminal. The channel is considered as an in�nite
graph with grid points as vertices and the segments of length one as edges.
A (multiterminal) net is a pair of (not simultaneously empty) sequences of

terminals on the upper and lower shores, respectively. A net is denoted by
N = ((s1; s2; : : : ; sp); (t1; t2; : : : ; tq)) with s1 < s2 < : : : < sp, t1 < t2 < : : : < tq,
p + q > 0. Such a net is represented by a horizontal spoked segment from
min(s1; t1) to max(sp; tq), with a down-directed spoke for each si and an up-
directed spoke for each tj . An example can be seen in Fig. 1.
An instance of the channel routing problem is a collection of nets no two of

which share a terminal. A layout is a one-to-one assignment of pairwise edge-
disjoint connected subgraphs w1; w2; : : : ; wn of the channel to the nets such that
each wi has a vertex at each terminal of the corresponding net.
In the discussion below we restrict our considerations to such layouts where

no wi has edges in more than one track; therefore each wi can be viewed as a
spoked segment put on one of the tracks, and the vertical spokes connect the
horizontal segments with the terminals. In this sense each layout is actually a
proper k-coloring of the interval graph determined by the intervals corresponding
to the horizontal parts of the spoked segments. In the case of many practical
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problems, for some nets the container tracks are prescribed. This leads to PrExt
on interval graphs.
In another special case studied by Bisztray and Frank [4], no track is pre-

scribed, but only one speci�ed segment of each track is allowed to be used in the
layout. Let [cj ; dj ] denote the allowed segment corresponding to the jth track
where 0 < cj < dj are given integers, j = 1; 2; : : : ; k. Now we adjoin 2k further
intervals to the interval representation of the interval graph whose vertices are
the allowed segments. Let D = maxfdj : j = 1; 2; : : : ; kg and de�ne the addi-
tional intervals as [0; cj) and (dj ; D + 1], j = 1; 2; : : : ; k. If the jth intervals in
both sequences are precolored with color j, then we gain a partially k-colored
graph where any extension corresponds to some feasible layout and vice versa.
Therefore the layout problem at hand is a particular case of 2-PrExt on interval
graphs. We will study this problem in Section 5.
At the end of this section we show an unexpected application of PrExt to

circuit testing. Its idea is due to [6] (see also [14]). When a circuit board
is constructed, connections are made on the reverse side of the circuit board
joining certain nodes into nets which are electronically common. Fig. 2 shows
the picture of the reverse side of such a circuit board.
If the solder was carelessly applied, it is possible that some extraneous con-

nections were made. Hence we should test every pair of nets for such shorts;
however, there is a faster method. Let V denote the set of nets, and de�ne a
graph G = (V;E) where E consists of those pairs of nets which are, in some
sense, close to each other. (Those pairs of nets which are some distance apart
on the board need not be tested because of the physical impossibility of such
extraneous connections.) The crucial idea is this: if G is properly k-colored
(where k is a small integer, e.g. 5), then constructing for each color class a yoke
of wires which contact simultaneously all nets in that color class, only (k2) tests
will reveal any short present. However, if some subset of the net set must be
contacted with the same yoke of wires (because of some physical reasons), we
obtain an instance of PrExt to solve before designing the tests.

4. 1-PrExt for interval graphs
The objective of this section is to prove the following result.

Theorem 4.1. 1-PrExt is polynomially solvable on interval graphs.
Proof. We use the following equivalent de�nition of interval graphs: A (�nite)
graphG = (V;E), V = f1; 2; : : : ; ng, is an interval graph if there are nonnegative
integers ai < bi, i = 1; 2; : : : ; n, such that ij 2 E holds if and only if the
open intervals (ai; bi) and (aj ; bj) intersect. Without loss of generality, for an
appropriate order of vertices we may assume that 0 � ai < bi = i, i = 1; 2; : : : ; n.
Such an order and such numbers ai and bi can be found in polynomial time from
the original representation of the interval graph.
Let G = (f1; 2; : : : ; ng; E) be an interval graph given by the sequence a1 = 0,

a2, : : :, an such that ai < i, i = 1; 2; : : : ; n, and suppose that W � f1; 2; : : : ; ng
is the set of its precolored vertices (distinct vertices are assigned to distinct
colors). Denote by k the color bound of 1-PrExt on G. The case k < !(G) is
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easy because in this case !(G) can be computed in linear time and the answer
for 1-PrExt is trivially �no�. Therefore, without loss of generality we can assume
that k � !(G).
We construct an acyclic directed graph D = DG;W;k on the slightly larger

vertex set f0; 1; : : : ; n; n + 1g as follows. There will be three types of arcs:
original, auxiliary, and modi�ed. The original arcs will be of the form

�!
aii,

i 2 f1; 2; : : : ; ng �W . Hence, these arcs are in one-to-one correspondence with
the intervals representing the precolorless vertices of G. The auxiliary arcs will
be of the form

����!
(i� 1)i , i = 1; 2; : : : ; n+1. Finally, the modi�ed arcs are of the

form
������!
ai(m+ 1) , i 2W .

Now we assign a nonnegative integer capacity to each arc. The original and
the modi�ed arcs all get capacity equal to one. The capacity of an auxiliary
arc

����!
(i� 1)i, i = 1; 2; : : : ; n, will be de�ned as k � jfaj : aj < i � jgj, and the

capacity of
�����!
n(n+ 1), will be k � jW j.

We show that there exists a �ow of value k from 0 to n+1 in D if and only
if the precoloring can be extended to a proper k-coloring f of G. Suppose �rst
that the precoloring ' can be extended to some f : V ! f1; 2; : : : ; kg. If color i
does not occur in the precoloring, then we set Vi = f�1(i). Otherwise, if say the
vertex corresponding to (aj ; j) has color i in W , then we de�ne Vi as the set of
those vertices in f�1(i) which correspond to the intervals whose right endpoints
are at most j. It is easy to see that the union of the set of arcs corresponding
to the vertices of the Vi and the set of the auxiliary arcs admits a �ow of value
k from 0 to n+ 1 in D.
In order to prove the converse statement, suppose that there is a �ow F of

value k. Since the capacity of each arc is an integer, we may assume that F
has an integer value on each arc. Let D0 be the directed graph obtained from
D by replacing each auxiliary arc

����!
(i� 1)i, (i = 1; 2; : : : ; n+ 1) of capacity c by

c distinct arcs from i � 1 to i. The existence of F in D implies the existence
of k arc-disjoint paths P1; P2; : : : ; Pk from 0 to n+ 1 in D0. Obviously, each Pi
contains at most one modi�ed arc. Without loss of generality, we may assume
that the color of a vertex w 2W is i if and only if the modi�ed arc corresponding
to w belongs to Pi. (Every modi�ed arc belongs to some Pi because the arc�����!
n(n+ 1), has capacity k � jW j.)
Let us return to the interval representation of G, adding as many unit in-

tervals (i � 1; i) to it as the capacity of
����!
(i� 1)i is in D, i = 1; 2; : : : ; n. In this

interval structure S, the number of intervals containing any non-integer point
between 0 and n is equal to k. Every arc of D0, other than

�����!
n(n+ 1), corresponds

to an interval of S. Therefore each Pi corresponds to a sequence of consecutive
intervals in S, the �rst one starting at 0; denote their convex hull by Hi. We
delete the intervals of every Pi from S, and adjoin the Hi as new intervals. The
interval structure obtained will be denoted by S0.
The intersection graph G0 of S0 has !(G0) = k and therefore �(G0) = k;

moreover, a proper k-coloring f 0 of G0 can be found in polynomial time. Since
the Hi are intersecting, they get distinct colors. We assume that f 0(Hi) = i.
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For v 2 V , let f(v) = i if and only if either Pi contains the (original or modi�ed)
arc corresponding to v, or the interval representing v in S0 is disjoint from Hi
and gets color i in f 0. Observe that f is a proper k-coloring with the required
properties.
Since the �ow F can be found (or its non-existence can be proved) in poly-

nomial time, the theorem follows. �

5. 2-PrExt for interval graphs
We have already seen some instances of 2-PrExt for interval graphs (namely,

the graph given in the Introduction and the instances of the problem of [4] as
de�ned in Section 3).
The main objective of this section is to prove the following result.

Theorem 5.1. 2-PrExt on interval graphs is NP-complete.
Proof. We construct instances of 2-PrExt from an arbitrary instance of the
chromatic number problem on circular-arc graphs. By de�nition, circular-arc
graphs are the intersection graphs of closed arcs of a circle (cf. [8]). Note that
each interval graph is a circular-arc graph (but not conversely, e.g., every chord-
less cycle is a circular-arc graph). In the present context the most important
fact is that for unbounded k, the question �Is �(G) � k?� is NP-complete on
circular-arc graphs [7].
Let us consider an arbitrary circular-arc graph G = (V;E) (together with its

arc-representation) and an arbitrary integer k. Without loss of generality we can
assume that V = f1; 2; : : : ; ng, and the arcs are some paths of the cycle-graph
C = (f1; 2; : : : ;mg; f12; 23; 34; : : : ; (m�1)m;m1g) wherem is a su¢ ciently large
integer. We can also assume that these arcs all contain at least 2 and at most
m� 1 vertices of C. Then the set of those arcs which contain the edge m1 of C
corresponds to a clique in G. We can assume that the vertices of this clique are
1; 2; : : : ; t (for some t � !(G)). Recall that each i � t is represented by a path
Pi in C.
We construct a new graph G0 from G as follows. Split each Pi (1 � i � t)

into two shorter paths P 0i and P
00
i by deleting its edge m1. In this way we obtain

an interval graph represented by n+ t intervals as subpaths of C � fm1g. Now
we precolor each pair of vertices corresponding to P 0i and P

00
i , i = 1; 2; : : : ; t,

with color i. The other vertices of G0 remain precolorless. Therefore we obtain
an instance of 2-PrExt with color bound k. Observe that this precoloring of G0

can be extended to a proper k-coloring if and only if �(G) � k.
It was proved by Tucker [20] that circular-arc graphs can be recognized in

polynomial time, and an arc- representation can also be found in polynomial
time. Moreover, it is obvious that G0 can be obtained from G in linear time.
Thus the NP-completeness of 2-PrExt follows. �
We have to emphasize that the color bound may vary in the above theorem.

If the color bound is �xed (or equivalently, bounded), we can prove the following
result.

Theorem 5.2. If the color bound is �xed, PrExt on circular-arc graphs is
polynomially solvable.
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This theorem follows from the results of the next section.

6. Graphs with a bounded treewidth
The concept of treewidth is introduced in [17] through �tree decomposi-

tions�of graphs. (Some alternative de�nitions can be found in [1].) Given a
graph G = (V;E), a tree decomposition of G is a pair (fXi : i 2 Ig; T = (I; F ))
where T is a tree (with vertex set I and edge set F ), each Xi is a subset of V ,S
i2I Xi = V , each edge of G is contained in some Xi, and if p; q; r 2 I and q lies

on the path from p to r in T then Xp \Xr � Xq. The treewidth of G, denoted
by w(G), is the smallest integer w for which there exists a tree decomposition
of G such that jXij � w + 1 for all i 2 I. Note that for every v 2 V , the
subgraph Tv induced by fi 2 I : v 2 Xig in T is a non-empty subtree of T and,
for u; v 2 V , Tu \ Tv is a subtree of T as well (non-empty whenever uv 2 E).
In this section our aim is to investigate PrExt for graphs G with w(G) � w

for some �xed w. First of all, we note that there are lots of well-studied classes
of graphs with a bounded treewidth. They include graphs with a bounded
bandwidth, graphs with a bounded cutwidth, outerplanar graphs, the so-called k-
outerplanar graphs, graphs with a bounded genus and bounded disk dimension,
and chordal graphs with a bounded maximum clique size. (A graph is chordal
if it contains no induced cycle of length greater than three.)
It is a hard problem to characterize graphs with a given treewidth. It has

been done, however, for w(G) small. The class of graphs G with w(G) � 1
and w(G) � 2 coincides with the class of forests and of series-parallel graphs,
respectively [19]. Further interesting examples, for w(G) = 3, are the Halin
graphs. (A plane graph G is called a Halin graph if its dual has a dominating
vertex; or equivalently, G is the union of a forest F and a cycle C that contains
all leaves of F in the appropriate order [3]. A Halin graph is shown in Fig. 3.)
The main result of this section is

Theorem 6.1. For graphs with bounded treewidth, PrExt is polynomially solv-
able if the color bound is �xed.

Without restrictions on the color bound, at the moment we do not know the
complexity status of PrExt for graphs with bounded treewidth.

Problem 6.2. Is PrExt polynomially solvable on graphs of bounded treewidth,
for an arbitrary color bound?

For trees (i.e., for w(G) = 1) this is indeed the case, as shown in [11].
We prove Theorem 6.1 in a sightly more general form, for �topological in-

tersection graphs� of graphs with a bounded treewidth. First let us recall a
de�nition introduced by Sche er.

De�nition. [18] Let H be a �xed graph. A graph G = (V;E) is an intersection
graph of H if the vertices v 2 V can be assigned to connected subgraphs Hv of
H in such a way that two vertices u; v 2 V are adjacent if and only if Hu and
Hv share a vertex.

A subdivision H 0 of a graph H is obtained when the edges of H are replaced
by internally disjoint paths of arbitrary lengths. (An edge uv of H corresponds
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to an u�v path in H 0.) Note that a graph H is said to be a topological subgraph
of a graph H 0 if a subdivision of H is isomorphic to a subgraph of H 0.
We now introduce the following concept.

De�nition. A graph G = (V;E) is a topological intersection graph of a graph
H if G is an intersection graph of some subdivision of H.

In this way, interval graphs and circular-arc graphs can be described as the
topological intersection graphs of a single edge K2 and a triangle K3, respec-
tively. Moreover, every chordal graph can represented as the intersection graph
of subtrees of a tree. Recalling that the members of those classes can be recog-
nized in polynomial time, we raise the following problem.

Problem 6.3. Let H be an arbitrary �xed graph. Is there a polynomial
algorithm testing whether a given graph G = (V;E) is a topological intersection
graph of H?

The following observation is simple but useful.

Proposition 6.4. Every graph is a topological intersection graph of itself.
Proof. Let H = (V;E) be any graph. Let H 0 be the subdivision of H in which
each edge e = uv 2 E is replaced by a path Pe = uev of length two (i.e., the
vertex set of H 0 is V [E). For v 2 V , let Hv be the star with center v in H 0, with
vertex set fvg [ feuv : euv = uv 2 Eg and with edge set fveuv : euv = uv 2 Eg.
For isolated vertices v 2 V , de�ne Hv = fvg. Then Hu \Hv 6= ; if and only if
uv 2 E. �
For treewidth, the following relation holds.

Proposition 6.5. If H 0 is a subdivision of H, then w(H 0) = w(H).

Proof. Clearly, H 0 is a forest if and only if so is H. Hence, we can assume
w(H) � 2 and w(H 0) � 2. Moreover, applying induction on jV (H 0)j � jV (H)j,
it su¢ ces to prove the proposition for the case when H 0 is obtained from H by
an elementary subdivision, i.e., when just one edge e = uv is replaced by a path
P = uev of length two.
To prove w(H 0) � w(H), let (fXi : i 2 Ig; T = (I; F )) be a tree decompo-

sition of H with max jXij = w(H) + 1 � 3. Then u; v 2 Xj for some j 2 I.
Adjoin a new vertex j0 and the edge jj0 to T , and de�ne Xj0 = fu; v; eg. Then
(fXi : i 2 I [ fj0gg, T 0 = (I [ fj0g; F [ fjj0g)) is a tree decomposition of H 0

with w(H 0) � w(H).
To prove the converse inequality w(H) � w(H 0), let (fXi : i 2 Ig; T =

(I; F )) be a tree decomposition of H 0 with max jXij = w(H 0) + 1. Replace e by
v in each Xi containing e, to obtain sets X 0

i. Then a tree decomposition of H
is de�ned, because
(1) there is a j 2 I with u; e 2 Xj ,
(2)

S
X = V (H 0)� feg = V (H), and

(3) the requirement on X 0
p \ X 0

r � X 0
q is satis�ed since e; v 2 Xj0 for

some j0 2 I, so that the union of subtrees induced by fi 2 I : e 2 Xig and
fi 2 I : v 2 Xig is again a subtree of T .
It is also clear that jX 0

ij � jXij for all i 2 I, thus w(H) � w(H 0). �
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By Propositions 6.4 and 6.5, Theorem 6.1 is implied by the following more
general result.

Theorem 6.6. Let k and w be �xed natural numbers. Then PrExt with color
bound k is polynomially solvable on the topological intersection graphs of graphs
H with treewidth w(H) � w.
Proof. Let G = (V;E) be a topological intersection graph of H. We put
n = jV (G)j; ! = !(G), w0 = w(G). We shall prove that PrExt can be solved in
CnK steps for each precoloring of G, where C = C(k;w) and K = K(k;w) are
independent of n.
We begin the precoloring extension algorithm with testing if ! � k. For k

�xed, this procedure takes O(nk) time. If ! > k, then the answer to PrExt is
�no�. Therefore, from now on, we assume that ! � k. Moreover, for technical
reasons, we test in O(n2) time whether in the precoloring there are two adjacent
vertices of the same color. The importance of this seemingly super�uous step
will become clear later. Those preliminary investigations require at most 14Cn

K

steps (when C and K are chosen to be su¢ ciently large.)
Let G be an intersection graph of H 0, for some subdivision H 0 of H. By

Proposition 6.5, w(H 0) = w(H) � w, and then a result of Sche er [18] implies
that w0 < !(w + 1) � kw + k. Thus, the O(nkw+k+1) algorithm of Arnborg,
Corneil and Proskurowski [2] veri�es that w(G) � kw + k � 1 and �nds a tree
decomposition (fXi : i 2 Ig; T = (I; F )) of G with max jXij = w0 + 1 in
polynomial time.
De�ne a separation of G as a pair (G0; G00) of subgraphs G0 = (V 0; E0) and

G00 = (V 00; E00) such that V 0 [V 00 = V , E0 [E00 = E, and E0 \E00 = ;. For any
subset Q � V and positive integerm, such a separation is called (Q;m)-balanced
if jV 0\V 00j � m and j(V 0�V 00)\Qj; j(V 00�V 0)\Qj � 2

3 jQ�(V
0\V 00)j. It follows

from results of Robertson and Seymour [17] that G has a (V; kw + k)-balanced
separation of G, and it can be found in polynomial time.
Now we apply induction on n to prove the upper bound of CnK on the time

complexity of PrExt. We assume that this bound is valid for n � 12k(w+1) and
that the (V; kw+k)-balanced separation mentioned above can be constructed in
at most 14Cn

K steps. (These requirements can be satis�ed by a suitable choice
of C and K.)
On the subgraph induced by V 0 \V 00 there are at most kkw+k partial exten-

sions of the precoloring. Since this number is just a constant, we may assume
that all of those partial extensions can be generated in less than 1

4 (
4
3 )
K steps. At

this point we do not consider adjacencies of those kw+k vertices to V �(V 0\V 00),
i.e., the partial extensions need not be proper precolorings. (Otherwise the time
complexity of this step could increase to O(n).)
Since there is no edge from V 0 � V 00 to V 00 � V 0, the problem of PrExt

on G is now �separated�into two independent subproblems, namely PrExt on
G0 = GV 0 and PrExt on G00 = GV 00 , for each partial extension on V 0 \ V 00.
Certainly, w(G0) � w0 and w(G00) � w0. Moreover, jV 0j < 3

4n and jV
00j < 3

4n
since the separation is balanced and n > 12k(w + 1). Consequently, for each
partial extension, the algorithm terminates in at most 2C( 34n)

K steps, by the

9



induction hypothesis.
We have obtained that the preliminary check and �nding a balanced sepa-

ration takes at most 1
2Cn

K time (together), and then the algorithm branches
into at most 1

4 (
4
3 )
K subalgorithms taking at most 2C( 34n)

K steps each. Thus

the total running time is bounded above by 1
2Cn

K + 1
4 (
4
3

K
)2C( 34n)

K = CnK .
This completes the proof of the theorem. �
We note that the time bound obtained in the previous proof can be improved

considerably. A more detailed time analysis will be given in [12].

Note added in proof. Problem 6.2 has been answered in the a¢ rmative by
P. Sche er.
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