

Overlapping triangular Gatzouras–Lalley-type carpets

István Kolossváry, joint with Károly Simon

Budapest University of Technology and Economics

Definition

A triangular Gatzouras–Lalley-type (TGL) carpet Λ is the attractor of a self-affine iterated function system (IFS) $\mathcal{F} = \{f_i(\underline{x}) = A_i \underline{x} + t_i\}_{i=1}^N, \text{ where } A_i = \begin{pmatrix} b_i & 0 \\ d_i & a_i \end{pmatrix}, t_i = \begin{pmatrix} t_{i,1} \\ t_{i,2} \end{pmatrix},$ such that $f_i(R) \subset R$ (throughout $R = [0, 1]^2$), $0 < a_i < b_i < 1$, we say that direction-x dominates and the parallelograms $f_i(R)$ are aligned in M non-overlapping columns $\mathcal{I}_1, \ldots, \mathcal{I}_M$ so that $\sum_{i \in \mathcal{I}_i} a_i \leq 1$ for $j = 1, \ldots, M$. A shifted TGL carpet may have overlapping columns.

 Λ is diagonally homogeneous if $a_i \equiv a$ and $b_i \equiv b$. has uniform vertical fibres if $\sum_{i \in \mathcal{I}_j} a_i^{s_B - s_H} = 1$ for all j.

Separation conditions

The rectangular open set condition (ROSC) holds if the strong open set condition holds with $U = (0, 1)^2$, i.e. $U \cap \Lambda \neq \emptyset$,

 $\bigcup f_i(U) \subseteq U$ and $f_i(U) \cap f_j(U) = \emptyset$ for every $i \neq j$.

The TGL IFS \mathcal{F} satisfies the transversality condition if there exists a $K_1 > 0$ such that for any two *n*th level cylinders $R_{i_1...i_n}$ and $R_{j_1...j_n}$ in the same column with $i_1 \neq j_1$ we have

 $\operatorname{proj}_{x}(R_{i_{1}\ldots i_{n}}\cap R_{j_{1}\ldots j_{n}}) < K_{1} \cdot \max\{a_{i_{1}}\cdot \ldots \cdot a_{i_{n}}, a_{j_{1}}\cdot \ldots \cdot a_{j_{n}}\}.$

The IFS $\mathcal H$ projected to the x-axis (one map per column) has **Exponential Separation Condition (ESC)** if there exist an $\varepsilon > 0$ and $n_k \uparrow \infty$ such that for

Results for carpets with ROSC

Let \mathbf{p} be a probability vector of length N. Then $s_{\mathrm{H}} := \sup_{\mathbf{p}} \frac{\log \langle \mathbf{p} \rangle_{\mathbf{p}}}{\log \langle \mathbf{a} \rangle_{\mathbf{p}}} + \left(1 - \frac{\log \langle \mathbf{b} \rangle_{\mathbf{p}}}{\log \langle \mathbf{a} \rangle_{\mathbf{p}}}\right) \frac{\log \langle \mathbf{q} \rangle_{\mathbf{q}}}{\log \langle \mathbf{b} \rangle_{\mathbf{p}}},$ where $\log \langle \mathbf{a} \rangle_{\mathbf{p}} = \sum_{i=1}^{N} p_i \log a_i$ and $q_j = \sum_{i \in \mathcal{I}_j} p_i$. The sup is attained for a \mathbf{p} with strictly positive entries. Furthermore, let $s_{\rm B}$ be the unique solution of $s_{\rm Aff}$ be the unique solution of $\sum_{i=1}^{N} b_i^{s_{\mathcal{H}}} a_i^{s_{\mathcal{B}}-s_{\mathcal{H}}} = 1, \qquad \sum_{i=1}^{N} b_i^{\min\{\tilde{s}_x,1\}} a_i^{s_{\mathcal{A}\mathrm{ff}}-\min\{\tilde{s}_x,1\}} = 1,$ where $s_{\mathcal{H}} = \dim_{B} \operatorname{proj}_{x}(\Lambda)$. where \tilde{s}_{x} solves $\sum_{i=1}^{N} b_{i}^{\tilde{s}_{x}} = 1$. **Theorem** (Gatzouras–Lalley; Barańsky)

A TGL carpet Λ is a Gatzouras–Lalley (GL) carpet if $d_i \equiv 0$ and Λ satisfies the ROSC. A GL carpet $\widetilde{\mathcal{F}} = \{\widetilde{A}_i \underline{x} + \widetilde{t}_i\}_{i=1}^N$ is a GL brother of \mathcal{F} if $\tilde{A}_i = \text{diag}A_i$ and $\tilde{\mathcal{F}}$ has the same column structure as \mathcal{F} .

$$\Delta_n := \min_{\substack{\overline{\imath}, \overline{\jmath} \in \{1...M\}^n \\ \overline{\imath} \neq \overline{\jmath}}} \begin{cases} |h_{\overline{\imath}}(0) - h_{\overline{\jmath}}(0)|, \text{ if } h'_{\overline{\imath}}(0) = h'_{\overline{\jmath}}(0); \\ \infty, & \text{otherwise.} \end{cases}$$

we have $\Delta_{n_k} > e^{-\varepsilon \cdot n_k}$. Hochman: ESC \Rightarrow the dimension of selfsimilar measures does not drop. We show that this is equivalent to another condition we call Weak Almost Unique Coding.

If a TGL carpet Λ has non-overlapping columns and satisfies ROSC (first and second picture), then

 $\dim_{\mathrm{H}} \Lambda = s_{\mathrm{H}}, \quad \dim_{\mathrm{B}} \Lambda = s_{\mathrm{B}}, \quad \dim_{\mathrm{Aff}} \Lambda = s_{\mathrm{Aff}},$

where \dim_{Aff} denotes the affinity dimension. Moreover, $\dim_{\mathrm{H}} \Lambda = \dim_{\mathrm{B}} \Lambda$ if and only if Λ has uniform vertical fibres.

Figure: The "evolution" of Gatzouras-Lalley carpets. First: original construction of Gatzouras and Lalley. Second: construction of Barańsky using lower triangular matrices satisfying ROSC. Our overlapping constructions: third has non-overlapping columns and transversality condition; fourth has shifted columns satisfying ESC; fifth has a mixture of both. The first one is the GL brother of all others.

Our main results for overlapping constructions

Irrespective of overlaps, for any shifted TGL carpet Λ

 $\dim_{\mathrm{H}} \Lambda = s_{\mathrm{H}}$ if the IFS \mathcal{H} satisfies ESC and

 $\dim_{\mathrm{B}} \Lambda = s_{\mathrm{B}}$ if either of the following hold

 $\dim_{\mathrm{H}} \Lambda \leq s_{\mathrm{H}}, \ \dim_{\mathrm{P}} \Lambda = \dim_{\mathrm{B}} \Lambda \leq \overline{s}_{\mathrm{B}}, \ \dim_{\mathrm{Aff}} \Lambda = s_{\mathrm{Aff}}$

In other words, the dimension of the GL brother dominates. $\dim_{\mathrm{H}} \Lambda = \dim_{\mathrm{B}} \Lambda$ if and only if Λ has uniform vertical fibres. $\dim_{\mathrm{B}} \Lambda = \dim_{\mathrm{Aff}} \Lambda$ if and only if $s_{\mathcal{H}} = \min\{\tilde{s}_x, 1\}$.

- each column independently satisfies the ROSC or
- Λ satisfies transversality and technical condition (fifth pic).
- Transversality and technical conditions hold if a_i is small enough compared to b_i , see below for examples.
- *H* satisfies ESC and each column independently satisfies the ROSC (fourth picture) or
- Λ is a TGL carpet, satisfies transversality and a technical condition (third picture).

Breaking equality between dimensions

top left: diag. homo. & uniform vertical fibres & $\operatorname{proj}_x \Lambda = [0, 1] \Rightarrow \dim_{\mathrm{H}} = \dim_{\mathrm{B}} = \dim_{\mathrm{Aff}}$. top right: overlaps, for every a < 1/6 still have $\dim_{\mathrm{H}} = \dim_{\mathrm{B}} = \dim_{\mathrm{Aff}} = 1 - \log 2/\log a$. **bottom left:** uniform vertical fibres $\Rightarrow \dim_{\mathrm{H}} = \dim_{\mathrm{B}}$ but $s_{\mathcal{H}} < 1 < \tilde{s}_x \Rightarrow \dim_{\mathrm{B}} < \dim_{\mathrm{Aff}}$ **bottom right:** non uniform vertical fibres $\Rightarrow \dim_{\mathrm{H}} < \dim_{\mathrm{B}} < \dim_{\mathrm{Aff}}$ for a < 0.10254...

 $\dim_{\mathrm{H}} \Lambda = \dim_{\mathrm{B}} \Lambda < \dim_{\mathrm{Aff}} \Lambda$

 $\dim_{\mathrm{H}} \Lambda = \dim_{\mathrm{B}} \Lambda = \dim_{\mathrm{Aff}} \Lambda$

$\dim_{\mathrm{H}} \Lambda < \dim_{\mathrm{B}} \Lambda < \dim_{\mathrm{Aff}} \Lambda$

Application to three-dimensional systems

Figure: A three dimensional IFS (left) with its attractor (right), whose orthogonal projection to xy-plane is an overlapping system like the top right on the left-hand side.

References

K. Barańsky. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete Continuous Dynamical Systems series A, 21(4):1015–1023, 2008.

B. Bárány, M. Rams and K. Simon. On the dimension of triangular self-affine sets. *ETDS*, to appear, 2018. J.M. Fraser. On the packing dimension of box-like self-affine sets in the plane. *Nonlinearity*, 25(7):2075–2092, 2012.

J.M. Fraser and P. Shmerkin. On the dimensions of a family of overlapping self-affine carpets. *Ergodic Theory* and Dynamical Systems, 36(8):2463–2481, 2016.

D. Gatzouras and S.P. Lalley. Hausdorff and box dimensions of certain self-affine fractals. Indiana University Mathematics Journal, 41(2):533–568, 1992.

Theorem

Start from a (possibly overlapping) diag. homo. TGL IFS \mathcal{F} which has uniform vertical fibres, satisfies the conditions of our theorems and $\text{proj}_x \Lambda = [0, 1]$. We "lift" \mathcal{F} to 3D space $\widehat{\mathcal{F}} := \left\{ F_i(\underline{\widehat{x}}) := \widehat{A}_i \cdot \underline{\widehat{x}} + \widehat{\mathbf{t}}_i \right\}_{i=1}^N, \text{ where } \widehat{A}_i = \begin{pmatrix} b & 0 & 0 \\ d_i & a & 0 \\ u_i & v_i & \lambda_i \end{pmatrix}, \ \widehat{t}_i := \begin{pmatrix} t_{i,1} \\ t_{i,2} \\ t_{i,3} \end{pmatrix}, \ \underline{\widehat{x}} \in [0,1]^3$ so that $0 < |\lambda_i| < a < b < 1$ (for small enough values of a) and $\widehat{\mathcal{F}}$ satisfies the SOSC. Then

 $\dim_{\mathrm{H}} \widehat{\Lambda} = \dim_{\mathrm{B}} \widehat{\Lambda} = \dim_{\mathrm{Aff}} \widehat{\Lambda} = 1 + \frac{\log(Nb)}{-\log a}.$

Prepared for the conference Dynamics, measures and dimensions in Bedlewo. April 2019. Research supported by grant OTKA K123782 and MTA-BME Stochastic Research Group. Manuscript "Triangular Gatzouras-Lalley-type carpets with overlaps" accepted in Nonlinear*ity*, preprint available on arXiv.