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Definition of Random Apollonian Networks

• Initially in d dimensions start with a Kd+2. Active cliques are the d + 1-cliques.
• At step n ≥ 1, pick an active clique C uniformly at random, which becomes inactive.
• Insert new node. All possible d+ 1-cliques with vertices of C become new active cliques.
• Repeat. Result after n steps is a RANd(n). Figure shows a RAN2(n) for n = 0, 2, 8.

Real-life propeties

• Power law degree distribution: this is a kind of preferential attachment model. The
larger the degree, the more faces are adjacent to it, so its degree grows with greater
probability.

• Large clustering coefficient: in every step we are creating cliques.
• Small world: a hierarchical structure unfolds, uncovering a tree-like structure,
whose branches are pretty evenly distributed in depth.

• We give precise formulations and proofs for these properties.

Degree distribution, clustering coefficient

•Nk(n) := #{vertices with degree k at time n}
• pk(n) := {proportion of vertices with degree k at time n} = Nk(n)/|V (n)|, where
|V (n)| stands for the total number of vertices.

Theorem for degree distribution

There exists a probability distribution {pk}∞k=d+1 and a constant c for which

P
max

k
|pk(n)− pk| ≥ c

√√√√√√√√√
log n
n

 = o(1).

Further, pk follows a power law with exponent (2d− 1)/(d− 1) ∈ (2, 3].
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The clustering coefficient of a vertex with degree k is deterministic and equals
d(2k − d− 1)
k(k − 1)

∼ 2d
k
.

Hence the clustering coefficient is

Corollary: Clustering
coefficient of RANs

The average clustering coefficient of
RANd(n) converges to a strictly po-
sitive constant as n→∞, given by

Cld = Σ∞k=d+1
d(2k − d− 1)
k(k − 1)

pk.
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Shortest paths

Hopd(n, u, v)= #{edges on shortest path between u and v},
Floodd(n, u)= maxv Hopd(n, u, v) and Diamd(n)= maxu,v Hopd(n, u, v).
Coupon collector random variable Yd := Σd+1

i=1 Geo( i
d+1), µd:= E[Yd], σ2

d:= Var[Yd].

Theorem for hopcount, flooding time and diameter

The hopcount between the vertices of two uniformly chosen active cliques satisfies
Hopd(n)− 2

µd
d+1
d log n√√√√√√2σ2

d+µd
µ3
d

d+1
d log n

d−→ Z, where Z ∼ N (0, 1).

Let fd(c) := c− d+1
d − c log( d

d+1c) and define c̃d = {cd > d+1
d : fd(cd) = −1}.

Then
Floodd(n)

log n
P−→ 1

µd


d + 1
d

+ α̃β̃c̃d

 and Diamd(n)
log n

P−→ 2α̃β̃ c̃d
µd
,

where (α̃, β̃) maximize αβ under the constraint 1 + fd(αc̃d)− αβ c̃dµdId
µd
β

 = 0.

Tree-like structure of RANs
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Coding of vertices

• Alphabet Σd = {1, 2, . . . , d + 1}
• d + 1 Neighbors of new vertex v:
drop subcode from end until last
occurrence of i ∈ Σd in v.

Initial graph ∼ root of tree
Forward edges ∼ branches of tree
Shortcut edges along a branch

Go down the hierarchy along forward ed-
ges and climb back up faster with short-
cut edges.

• Fastest way to reach root by longest hops:
shortest suffix where each symbol appears at
least once. Divide codes into such blocks.
Ex. 113213323122→ 1|132|1332|3122.

• Deepest common ancestor u ∧ v. Shortest
path intersects path between O and u ∧ v.

Main questions
• Length of the deepest common ancestor?
• Length of a typical / the longest code?
• Speed of ascent with shortcut edges?
• Large deviation for shortcut edges on
almost longest code?
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Diameter - sketch of proof

• Active clique chosen uniformly at random ∼ continuous time branching process
with i.i.d. exponential lifetimes and deterministic offspring distribution d + 1.

• Time when u ∧ v splits has a limiting distribution. ⇒ u ∧ v is "close" to root
• i ∈ Σd uniformly distributed among digits ⇒ Longest hop ∼ coupon collector Yd.
•Gm = generation of m-th chosen vertex = sum of indicators ⇒ satisfies a CLT.
Hk = #{full coupon collector blocks in a code of length k}. Also satisfies a CLT.
In the example 113213323122, Gm = 12 and Hk = 3.

• Large deviations for Gm and Hk:

lim
m→∞

log (P(Gm > c logm))
logm

= fd(c), lim
k→∞

1
k

log
P

Hk >
β

µd
k


 = − β

µd
Id


µd
β

,

where 1 ≤ β ≤ µd/(d + 1) and Id is the rate function of Yd. For the deepest branch
maxi≤mGi

logm
P−→ c̃d, where c̃d as in the Theorem.

• Entropy vs. energy argument. Deepest branch may not contain the most copies of Yd
⇒ count vertices u s.t. their depth Gu > αc̃d logm (α < 1), but have more than
expected number of coupon collector blocks, i.e. HGu

> β
µd
αc̃d logm.

Pick (α, β) so that the expected number of such vertices is constant, this yields the
constraint 1 + fd(αc̃d)− αc̃d βµdId

µd
β

 = 0, under which we maximize β
µd
αc̃d.
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