Stochastic analysis and its applications, Exam 1, May 21, 2010

Please give sufficiently detailed arguments. Each question is worth 10 points.

- 1. Let $(B(t))_{t\geq 0}$ be Brownian motion, B(0)=0. Evaluate the following conditional expectations.
 - (a) $\mathbb{E}(B(s) \mid B(t))$, when $0 \le s < t$. Hint: What is the joint distribution of (B(s), B(t))?
 - (b) $\mathbb{E}\left(\int_0^t B(s) \, ds \mid B(t)\right)$. Hint: You may approximate the integral by sums.
 - (c) $\mathbb{E}\left(\int_0^t s \, dB(s) \mid B(t)\right)$. Hint: You may approximate the integral by sums.
- 2. Let $(B(t))_{t\geq 0}$ be Brownian motion, $B(0)=x\in (a,b)$, where (a,b) is a bounded interval. Define $\tau=\inf\{t\geq 0: B(t)\notin (a,b)\}$, the first exit time from the interval. Show that $\mathbb{E}^x(\tau)=(x-a)(b-x)$. Hint: You may consider the martingale $B^2(t)-t$ and apply Doob's optional stopping theorem: When $(M(t))_{t\geq 0}$ is a martingale and τ is a stopping time, $(M(t\wedge\tau))_{t\geq 0}$ is a martingale as well.
- 3. Let $\mathbf{B}(t)$ be three-dimensional Brownian motion, $\mathbf{B}(0) = \mathbf{x} \neq \mathbf{0}$. Define $\tau_r = \inf\{t \geq 0 : |\mathbf{B}(t)| \leq \frac{1}{r}\}$, where r is a positive integer, $\frac{1}{r} < |\mathbf{x}|$.
 - (a) Show that $X_r(t) = 1/|\mathbf{B}(t \wedge \tau_r)|$ is a martingale for any fixed r. (This shows that $Y(t) = 1/|\mathbf{B}(t)|$ is a so-called *local martingale*.) Hint: You may apply the multidimensional Itô's formula. Check that $1/|\mathbf{x}|$ is a harmonic function for $\mathbf{x} \neq \mathbf{0}$.
 - (b) Show that Y(t) is notwithstanding not a martingale (Why?), because $\mathbb{E}^x(1/|\mathbf{B}(t)|) \neq 1/|\mathbf{x}|$, when t is large enough. Hint: Write down the expectation $\mathbb{E}^x(1/|\mathbf{B}(t)|)$ by an integral, and by estimating it, show that it tends to 0 as $t \to \infty$.
- 4. Let $(X(t))_{t\geq 0}$ be time-homogeneous Itô diffusion, $dX(t) = \mu(X(t))dt + \sigma(X(t))dB(t)$, where $\mu(x) = \frac{1}{2}\sin x\cos x$, $\sigma(x) = \cos x$, $X(0) = x \in (0, \frac{\pi}{4})$. Define $T_a = \inf\{t > 0 : X(t) = a\}$, the first hitting time of the point a. First solve the ODE

$$(Af)(x) = \mu(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x) = 0$$

in the interval $(0, \frac{\pi}{4})$. Show that then

$$\mathbb{P}^x(T_{\frac{\pi}{4}} < T_0) = \frac{f(x) - f(0)}{f(\frac{\pi}{4}) - f(0)}.$$

(Evaluate it as well.) *Hint:* You may use Itô's formula, Doob's optional stopping theorem with $t \wedge \tau$, where $\tau = T_a \wedge T_b$, and then you can take expectation. Check that you can have a limit in the expectation as $t \to \infty$.

5. Let $\mathbf{B}(t)$ be d-dimensional Brownian motion, $d \geq 2$, $\mathbf{B}(0) = \mathbf{x}_0 \neq \mathbf{0}$. Define the scalar process $(d\text{-}dimensional\ Bessel\ process)\ R(t) = |\mathbf{B}(t)| = \left(\sum_{i=1}^d B_i^2(t)\right)^{1/2}$.

Using the fact that $\mathbb{P}(\mathbf{B}(t) = \mathbf{0} \text{ for some } t \geq 0) = 0$, show that R(t) is an Itô diffusion, driven by $\mathbf{B}(t)$, with drift coefficient $\mu(t) = \frac{d-1}{2} |\mathbf{B}(t)|^{-1}$ and diffusion coefficient $\sigma(t) = \mathbf{B}(t) |\mathbf{B}(t)|^{-1}$, which is a $1 \times \mathbf{0}$ matrix. Argue that then R(t) is a time-homogeneous diffusion (Markov) process with infinitesimal generator

$$A = \tilde{\mu}(x)\frac{d}{dx} + \frac{1}{2}\tilde{\sigma}(x)\tilde{\sigma}^{T}(x)\frac{d^{2}}{dx^{2}} = \frac{d-1}{2}\frac{1}{x}\frac{d}{dx} + \frac{1}{2}\frac{d^{2}}{dx^{2}}.$$

So R(t) has the same generator as the solution of the following scalar SDE:

$$dX(t) = \frac{d-1}{2} \frac{1}{X(t)} dt + dW(t), \qquad X(0) = |\mathbf{x_0}|,$$

where W(t) is one-dimensional Brownian motion. (Hence R(t) is a so-called weak solution of this SDE.)