PROBABILITY, Continuous Distributions Practice

1. A probability density function $(p d f)$ of variable X is given as,

$$
f(x)=\left\{\begin{array}{lc}
2 x, & \text { if } 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then the cumulative density function $(c d f)$ is defined as;

$$
F(x)=\int_{0}^{x} f(t) d t=\left\{\begin{array}{l}
0, \quad \text { if } x \leq 0 \\
\int_{0}^{x} 2 t d t=\left[t^{2}\right]_{0}^{x}=x^{2}, \\
1, \quad \text { if } x>1
\end{array} \quad \text { if } 0<x<1\right.
$$

Also finding the probability over a certain interval is computed by integrate the ($p d f$) over that interval. In this example,

$$
\mathbb{P}\left(\frac{1}{4}<X<\frac{3}{4}\right)=\int_{\frac{1}{4}}^{\frac{3}{4}} 2 x d x=\left[x^{2}\right]_{\frac{1}{4}}^{\frac{3}{4}}=\frac{1}{2}
$$

Memoryless (Markov) Property of the Exponential distribution

Theorem. If $X \sim \operatorname{Exp}(\lambda)$, then

$$
\mathbb{P}(X>t+s \mid X>t)=\mathbb{P}(X>s), \forall t, s>0
$$

Proof:

$$
\begin{aligned}
\mathbb{P}(A \mid B) & =\frac{\mathbb{P}(A B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A)}{\mathbb{P}(B)}=\frac{\mathbb{P}(X>t+s)}{\mathbb{P}(X>t)}=\frac{1-F(t+s)}{1-F(t)} \\
& =\frac{1-\left(1-e^{-\lambda(t+s)}\right)}{1-e^{-\lambda t}}=\frac{e^{-\lambda t-\lambda s}}{e^{-\lambda t}}=e^{-\lambda s}=1-F(s)=\mathbb{P}(X>s)
\end{aligned}
$$

Example: let the lifetime (year) of a radioactive isotope, starting in 1986 , be $X . X$ is exponentially distributed with parameter $\lambda=\frac{1}{140}$. Find the halving time of the isotope (median of the distribution): it is T such that $F(T)=\frac{1}{2}$. From here, $T=\frac{\ln 2}{\lambda}=140 \ln 2<140$.
Which proportion of the isotopes is present now?

$$
\mathbb{P}(X>2017-1986)=\mathbb{P}(X>31)=1-F(310)=1-\left(1-e^{\frac{1}{140} 31}\right)=e^{-\frac{31}{140}}
$$

Which proportion of the isotopes present at 2000, is also present now?

$$
\mathbb{P}(X>31 \mid X>14)=\mathbb{P}(X>17)=1-F(17)=1-\left(1-e^{\frac{1}{140} 17}\right)=e^{-\frac{17}{140}}
$$

Exercises to the Normal Distribution (Gaussian Distribution)

2. Let $X \sim \mathcal{N}(\mu, \sigma)$ be rv. Using standardization $Y=\frac{X-\mu}{\sigma}$, find the following probabilities:

$$
\begin{aligned}
\mathbb{P}(\mu-\sigma<X<\mu-\sigma) & =\mathbb{P}(-\sigma<X-\mu<\sigma)=\mathbb{P}\left(-1<\frac{X-\mu}{\sigma}<1\right) \\
& =\Phi(1)-\Phi(-1)=\Phi(1)-(1-\Phi(1))=2 \Phi(1)-1 \approx 0.68
\end{aligned}
$$

The value of $\Phi(1) \approx 0.84$ is obtained from the standard normal table. As well,

$$
\begin{aligned}
\mathbb{P}(\mu-2 \sigma<X<\mu-2 \sigma) & =\mathbb{P}\left(-2<\frac{X-\mu}{\sigma}<2\right)=\Phi(2)-\Phi(-2)=\Phi(2)-(1-\Phi(2)) \\
& =2 \Phi(2)-1 \approx 0.95 .
\end{aligned}
$$

The value of $\Phi(2) \approx 0.9772$ is obtained from the standard normal table.

Exercises to the Central Limit theorem topic

3. A fair die is rolled 100 times. Find the exact and the approximate probability that the number of ' 6 ' outcomes is between 10 and 20.
Solution: let X be the number of the outcomes ' 6 '. Since $X \sim \operatorname{Bin}_{100}\left(\frac{1}{6}\right)$, the exact probability is

$$
\mathbb{P}(10 \leq X \leq 20)=\sum_{k=10}^{20}\binom{100}{k}\left(\frac{1}{6}\right)^{k}\left(1-\frac{5}{6}\right)^{100-k}
$$

This formula is correct to be written in the exam. The approximate probability can be calculated by the De-Moivre-Laplace theorem, where $n=100$ is "large".

$$
X \sim \mathcal{N}\left(100 \frac{1}{6}, \sqrt{100 \frac{1}{6} \frac{5}{6}}\right)
$$

which is,

$$
\approx \mathcal{N}\left(\frac{50}{3}, \frac{\sqrt{5} 10}{6}\right)
$$

Therefore, the probability is

$$
\mathbb{P}(10 \leq X \leq 20)=\mathbb{P}\left(\frac{10-\frac{50}{3}}{\sqrt{5} \frac{10}{6}} \leq \frac{X-\frac{50}{3}}{\sqrt{5} \frac{10}{6}} \leq \frac{20-\frac{50}{3}}{\sqrt{5} \frac{10}{6}}\right)
$$

By using the standard normal distribution function, this equals to

$$
\Phi\left(\frac{2}{\sqrt{5}}\right)-\Phi\left(-\frac{4}{\sqrt{5}}\right)=\Phi\left(\frac{2}{\sqrt{5}}\right)+\Phi\left(\frac{4}{\sqrt{5}}\right)-1=0.777
$$

4. There are 300 parking permits and each permit holder comes to the university with probability 0.7 , independently of the others. How many parking lots (l) to establish so that
$\mathbb{P}($ someone with permit cannot find a place to park $)=0.01$.

Solution: Let X be the number of permit holders coming in. Where $n=300$ and $p=0.7$, therefore, $X \sim \operatorname{Bin}_{300}(0.7)$. Then by the Central limit Theorem, $\quad X \sim \mathcal{N}(210, \sqrt{63})$, and so,

$$
\mathbb{P}(X>l)=0.01
$$

and

$$
\mathbb{P}(X \leq l)=0.99
$$

But

$$
\begin{gathered}
\mathbb{P}\left(\frac{X-210}{\sqrt{63}} \leq \frac{l-210}{\sqrt{63}}\right)=0.99 \\
\Phi\left(\frac{l-210}{\sqrt{62}}\right)=0.99
\end{gathered}
$$

From the standard normal table, the value that corresponds to the probability 0.99 is 2.33 . Hence,

$$
\frac{l-210}{\sqrt{63}}=2.33
$$

and $l=2.33 \cdot \sqrt{63}+210 \approx 229$.
5. 1000 persons arrive to the left or right entrance of a theater independently (they choose between the entrances with $0.5-0.5$ probability). How many hangers (h)to place into the left and right cloak rooms, if they want to give only a 1 percent chance to the event that somebody cannot place his/her coat in the nearest cloakroom. (Each person has a coat.)
Solution: let X be the number of people who arrive to the left. Since $X \sim B_{1000}(0.5)$, by using the Central Limit Theorem, $X \sim \mathcal{N}(500, \sqrt{250}=$ $5 \cdot \sqrt{10})$.

$$
\mathbb{P}(X>h \text { or } 1000-X>h)=.05
$$

Using the complementary event,

$$
\mathbb{P}(1000-h \leq X \leq h)=\mathbb{P}\left(\frac{-h-500}{5 \sqrt{10}} \leq \frac{X-500}{5 \sqrt{10}} \leq \frac{h-500}{5 \sqrt{10}}\right)=0.95
$$

and

$$
\Phi\left(\frac{h-500}{5 \sqrt{10}}\right)-\left(1-\Phi\left(\frac{h-500}{5 \sqrt{10}}\right)\right)=.95
$$

By solving this equation, $h=531$.

