PROBABILITY, Problems to Lesson 3.

1. I have N balls, M red and $N-M$ white, mixed in an urn. n balls are selected randomly without replacement (or at once). Suppose that $n \leq \min \{M, N-M\}$. What is the probability that among the selected n balls there are k red ones $(k=0,1, \ldots, n)$.
2. I have N balls, M red and $N-M$ white, mixed in an urn. n balls are selected randomly with replacement. What is the probability that among the selected (visited) n balls there are k red ones $(k=0,1, \ldots, n)$.
3. What is the probability that by a 5 -lottery ticket I win a prize (I have at least a 2 -hit)? (5 numbers are chosen out of $1,2, \ldots, 90$)
4. What is the probability that by a 6 -lottery ticket I win a prize (I have at least a 3 -hit)? (6 numbers are chosen out of $1,2, \ldots, 45$)
5. In a class of 20 students 8 are not prepared. The teacher selects randomly 5 students and asks them. Give the distribution of the number of students who are not able to answer the teacher's question among the selected 5 .
6. In a class of 20 students 3 are not prepared. The teacher selects randomly 5 students and asks them. Give the distribution of the number of students who are not able to answer the teacher's question among the selected 5 .
7. What is the probability that I have a k-hit by filling in a TOTO ticket randomly ($k=$ $0,1, \ldots, 13$)? (bet 1,2 , or x on the outcome of each of 13 soccer matches)
8. Give the distribution of the number of girls in a family having n children. Give the mode of this random variable! (Equivalent problem: n fair coins are tossed, or a fair coin is tossed n times; give the distribution of the number of heads.)
9. Waiting for the first boy. Consider the following population model: each family waits for a boy, and once they have him, they do not want more children. Give the boys/girls proportion in this population.
10. Cupon collecting problem. One of n different kinds of cupons is to be found in each package of a certain washing powder (think of n different color pictures, e.g., red, white, and green, if $n=3$). If I have a compelete collection (at least one of each kind) I can send it to the given address and get a pesent. On average, how many packages of this washing powder shall I bye, to have a complete collection?
11. It was enough of cupon collecting. Under the conditions of the previous exercise, I stop collecting the cupons (buying more washing powder), if I first revisit the same kind of cupon I have already found. Let X denote the number of packages of washing powder I have bought up to the moment, when I decide not to buy more. Give the distribution of X and give an asymptotic to its expectation, if n is large.
12. Cakes are made in a big bakery: the raisins are mixed into the mass and after the cakes are formed randomly. About how many raisins have to be planned for a cake, if they want to make the probability of possible complaints (of not having any raisin in the cake) as small as 0.01 . Give the mode of the number of raisins in a cake!
