1.

$$
\begin{array}{lll}
y^{\prime}+2 y=-x+4, & y^{\prime}-2 y=0, & y_{h}=c e^{2 x}, \\
c(x)=\int \frac{-x+4}{e^{2 x}} d x, & c(x)=\frac{2 x-7}{4} e^{-2 x}, & y_{p}=\frac{2 x-7}{4}, \\
y=y_{p}+y_{h}=\frac{2 x-7}{4}+c e^{2 x} . &
\end{array}
$$

2.

$$
\begin{array}{ll}
\underbrace{e^{y}}_{M(x, y)} d x+\underbrace{\left(x e^{y}+2 y\right)}_{N(x, y)} d y=0, & \frac{\partial M(x, y)}{\partial y}=e^{y}=\frac{\partial N(x, y)}{\partial x} \\
\frac{\partial F(x, y)}{\partial x}=M(x, y), & F(x, y)=\int M(x, y) d x \\
F(x, y)=x e^{y}+h(y) & \frac{\partial F(x, y)}{\partial y}=N(x, y) \\
x e^{y}+\frac{\partial h(y)}{\partial y}=x e^{y}+2 y & h(y)=y^{2}
\end{array}
$$

3.

$$
\begin{array}{ll}
y^{\prime \prime}+y=0, & y_{h}=c_{1} \cos x+c_{2} \sin x, \\
y_{p}=e^{x}(A \cos x+B \sin x) & y_{p}^{\prime \prime}=e^{x}(2 B \cos x-2 A \sin x) \\
A+2 B=0,-2 A+B=1 & A=-2 / 5, B=1 / 5 \\
y_{p}=e^{x}\left(-\frac{2}{5} \cos x+\frac{1}{5} \sin x\right) & y=y_{h}+y_{p}=\left(c_{1}-\frac{2}{5} e^{x}\right) \cos x+\left(c_{2}+\frac{1}{5} e^{x}\right) \sin x .
\end{array}
$$

4. Each permutation of A, B, C occurs with equal probability therefore the desired probability is $1 / 3!=1 / 6$.
5. Let event A : there is a tail among the 3 flips, B : there is a head among the 3 flips. $P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{1-\frac{2}{2^{3}}}{1-\frac{1}{2^{3}}}=6 / 7$.
6. Denote X the number of times a certain firm is investigated during a 5 year period. Then $X \sim \operatorname{Bin}(5,0.05)$.
a) $1-P(X=0)=1-0.95^{5}=0.226$.
b) $1-P(X=0)-P(X=1)=1-0.95^{5}-\binom{5}{1} 0.05^{1} \cdot 0.95^{4}=0.023$.

Remark. It is not reasonable to use Poisson distribution here because the number of experiments (5) is very small.
7. Let X denote the nicotine level of a random smoker. Then $X \sim \mathrm{~N}\left(315,131^{2}\right)$.
(a) $P(150<X<400)=P\left(\frac{150-315}{131}<\frac{X-315}{131}<\frac{400-315}{131}\right)=\Phi\left(\frac{85}{131}\right)-\Phi\left(-\frac{165}{131}\right)=$ $07422-(1-0.8962)=0.6384$.
(b) $P(X>a)=0.05$, that is, $P(X<a)=0.95$, whence $P\left(\frac{X-315}{131}<\frac{a-315}{131}\right)=0.95$, from where $\Phi\left(\frac{a-315}{131}\right)=0.95$, therefore $a=530.5$.
8. Rewriting the system we obtain

$$
\begin{array}{ccc}
(D+1) x+c & y & 0 \\
2 D x+ & +(D+1) y & =0
\end{array}
$$

from where

$$
\Delta=\left|\begin{array}{cc}
D+1 & 1 \\
2 D & D+1
\end{array}\right|=D^{2}+1
$$

whence

$$
x^{\prime \prime}+x=0, y^{\prime \prime}+y=0
$$

These are second order homogeneous linear differential equations with constant coefficients, hence

$$
x(t)=c_{1} \cos t+c_{2} \sin t, y(t)=c_{3} \cos t+c_{4} \sin t .
$$

Plugging these into, say, the first equation of the original system we obtain $c_{3}=$ $-c_{1}-c_{2}, c_{4}=c_{1}-c_{2}$. Now the general solution of the system is

$$
x(t)=c_{1} \cos t+c_{2} \sin t, y(t)=\left(-c_{1}-c_{2}\right) \cos t+\left(c_{1}-c_{2}\right) \sin t .
$$

9. If X denotes the number of defected items then $X \sim \operatorname{Bin}(500,0.02)$. Applying the central limit theorem we have $P(X \geq 15) \approx 1-\Phi\left(\frac{14.5-0.02 \cdot 500}{\sqrt{500 \cdot 0.02 \cdot 0.98}}\right)=1-\Phi(1.44)=$ 0.0749. (the exact probability is $\sum_{i=15}^{500}\binom{500}{i} 0.02^{i} \cdot 0.98^{500-i}=1-\sum_{i=0}^{14}\binom{500}{i} 0.02^{i}$. $0.98^{500-i}=0.081$)
