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Notations

¬ no, denial, negation
∧ and, conjunction
∨ or (permissive), disjunction
=⇒ implies, implication⇐⇒ if and only if,
iff if and only if, equivalence⇐⇒ equivalence
∀ for all
∃ there is, exists
∃! exists a unique, exists exactly one
! let contradiction

11



12 CONTENTS



Chapter 1

Introduction

After the usual long preparatory period and after many discussions the
Department of Cognitive Science started MSc courses in cognitive science.
It was obvious from the beginning that the students should learn some
mathematics in the wide sense, i.e. including mathematical statistics and
mathematically oriented informatics. The present notes are aimed at help-
ing them in studying mathematics, and in the same volume you also find
the supporting material to the other two subjects, as well.

We realized immediately that the students need and appreciate histor-
ical and philosophical sides of the subjects and may not have enough time
to study many technical details. Therefore we have pruned the usual first
semester course in mathematics for engineers and added some historical
and philosophical remarks and also quaite a lot if figures and pictures.

As to the technique: the Contents let you know that our aim is to reach
at the investigation of one variable real valued functions, a topics useful in
itself. But we also added a few topics (discrete dynamical systems, graph
theory etc.) which are not part of the usual calculus curricula.

The mathematical subjects are part of the first semester. At the very be-
ginning of the second semester we regularly have a meeting on the expe-
rience of students and teachers and try to continually modify the material
to better fit the needs of the students.

Summarized, the specialities of this course in mathematics given for
MSc students in cognitive science are as follows.

1. It presents mathematics in modern form, with as few compromises
as possible.

13



14 CHAPTER 1. INTRODUCTION

2. The mathematical material contained is tiny, much less then the ma-
terial usually taught for students at universities in two or more semesters
(in 6–10 lessons per week): we only have one semester.

3. It contains as much historical and philosophical remarks and addi-
tions (and also figures and pictures) as possible, and relatively many
application examples.

4. Recurrently, we make remarks on the connections between this sub-
ject and the tools provided by Mathematica .

1.1 Structure of the course

The requirements to be fulfilled by the student can (or will be) found on
the homepage of the Department of Analysis http://www.math.
bme.hu/~analizis/oktatotttargyak/2012osz/oktatotttargyak2012osz.
html.

The structure of the course: See the Contents.

The ingredients of a lecture

• What is this topics good for?

• What has been achieved from the goal(s)?

• Historical remarks

• Philosophical consequences

• Relations to cognitive science, if any

• References, links

• Food for thought

In this file you will find the material of the lectures and also some prob-
lems. A few proofs will also be presented.

A generally used textbook at our university is [29], which can also be
found in Hungarian, although my lectures will not follow it. You may use
it as background material. My major source was [14] which is in Hun-
garian, and contains much more material than needed here. The Urtext,
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however, is the book by Rudin [25]. You may find further material on my
home page http://www.math.bme.hu/~jtoth.

Any kind of critical remark is welcome, including those relating my
English.
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Chapter 2

Tools from logics

The coarse structure of mathematics is as follows. It starts from undefined
basic notions, then it formulates unproved statements called axioms using
these notions. Next, new concepts are introduced in definitions, and using
the defined and undefined concepts statements are formulated which are
called theorems. (Synonyms with slightly different meaning are corollary,
lemma, statement.)

A corollary is a direct consequence of a statement of any kind.
The expression lemma is most often used for a statement which
does not belong to the current main line of thought, and also,
which may be used elsewhere. It is not excluded that a lemma
be of exceptional importance. In the formal use a statement is
less important than a theorem.

The theorems are followed by proofs, the proofs are based on the previ-
ously proved theorems and on the axioms and they use methods of logics.

One may say that this structure is not so special as it seems to be. The
major difference between mathematics and other sciences lies in the ex-
actness and rigorism of formulation. This difference mainly comes from
the nature of subject, it is impossible to get really exact evidence e.g. in
history.

Example 2.1 The undefined basic concepts of geometry are point, line, fits
to. The axioms (also called postulates) with geometric content (also con-
taining defined concepts, for the sake of brevity) are as follows.

1. It is possible to draw a straight line from any point to any point.

17



18 CHAPTER 2. TOOLS FROM LOGICS

2. It is possible to extend a finite straight line continuously in a straight
line.

3. It is possible to describe a circle with any center and radius.

4. All right angles are equal to one another.

5. (The parallel postulate) For any given line and point not on the line,
there is one parallel line through the point not intersecting the line.

The last axiom is obviously more complicated and it is not so easy to accept
it as truth. There is a long (two thousand year long) story of trials to proof
or to confute it, and discard as an axiom. Finally, Nikolai Lobachevski
realized that it is possible to construct a geometry based upon the denial of

N. Lobachevski
(1792–1856)

this axiom, and János Bolyai made a systematic study on geometry with-

J. Bolyai
(1802–1860)

out his axiom. (There is no authentic picture of him left.) It turned out in
the twentieth century that we should reconsider the way we have looked
at the concept of a scientific theory earlier, and also at the concept of space.
No wonder that this non-Euclidean geometry is a fundamental tool in un-
derstanding relativity theory, as well.

There also a few other axioms of the more general character.

1. Things that are equal to the same thing are equal to one another.

2. If equals are added to equals, then the wholes are equal.

3. If equals are subtracted from equals, then the remainders are equal.

4. Things that coincide with one another, are to equal one another.

5. The whole is greater than the part.

One of the shock caused by set theory around the turn of
the twentieth century came from the fact that this axiom
does not hold there. See page 33.

It is an ideal form for other branches of science, including some social
sciences and humanities, as well: e.g. Baruch Spinoza used the method
(Lat. "more geometrico demonstrata") in his main opus Ethics, 1677. One
can find many translations and also the original on the web. In Hungar-
ian the version http://teol.lutheran.hu/tanszek/rendszeres/
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oktatas/eloadasok/filtort/spinoza_etika.pdf might be use-
ful. It is worth having at least a look at it, because the axiomatic method is
thought seriously by the author.

B. Spinoza
(1632–1677)

Let us see an example showing that the axioms of geometry can be
fulfilled by objects which are different from those of Euclidean geometry.
Consider the surface of a ball, and let the "lines" be the great circles. These
have the property that they are "the shortest paths between points," i.e.
they are geodesics. "Points" here are pairs of points opposite to each other.
One may check some of the usual axioms are fulfilled (which are not?).
Note, however, that the sum of the angles of a triangle exceeds two right
angles (180 degrees). The geometry obtained in this way is an example of
noneuclidean geometry.

Let us see another example showing that the axioms of geometry can
be fulfilled by objects which are far from being "natural".

Definition 2.1 A finite projective plane of order n (where n is a positive
integer) is formally defined as a set of n2+n+1 points with the properties
that:

1. Any two points determine a line.

2. Any two lines determine a point.

3. Every point has n+ 1 lines on it.

4. Every line contains n+ 1 points.

Homework 2.1 What are the lines of the Fano plane (the finite projective
plane for n = 2, Fig. 2?

2.1 Logical operations

The (undefined) fundamental concepts of mathematical logic are the math-
ematical objects, statements or theorems or theses relating them, and the
truth content of the statement: if they are true or false.

What are the statements? Their simplest property is that if some (one
or two) statements are given then applying the logical operations of

negation or denial (NOT),
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1

43 2

7

65

Figure 2.1: Fano plane

conjunction or combination (AND),

disjunction or disconnection (OR),

implication or conclusion or inference (IF. . . THEN),

equivalence or essential equality and interchangeability (. . . IF AND ONLY
IF THEN . . . )

one arrives at a statement again.
For example, the statement "It is raining" and the statement "Mary is

smiling" can be combined to give the statements

• "It is NOT raining",

• "It is raining AND Mary is smiling",

• "It is raining OR Mary is smiling",

• "IF it is raining THEN Mary is smiling",

• "It is raining IF AND ONLY IF Mary is smiling".
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Example 2.2 Find as many as possible alternatives to express the above
logical operations.

One may abbreviate statements with a single character and the opera-
tions may be denoted by symbols, for example if r denotes the statement
"It is raining", and s denotes the statement "Mary is smiling", then the
above statements will be denoted as follows: ¬r, r∧ s, r∨ s, r =⇒ s, r ⇐⇒
s.

There is another way to form statements. We start from the concept
of logical functions: functions with one or more variables (usually repre-
senting mathematical objects) assigning statements to their variables. Let
us take the nonmathematical example "A girl is smiling". Here "A girl" is
a variable, and if the value "Mary" is given to the variable "A girl" (if the
value "Mary" is substituted into the variable "A girl"), then the statement
"Mary is smiling" is formed. However, given a logical function, there are
other ways to form a statement Truth table, ; verification of identities. The
variable can be bound using

• the universal quantifier, meaning FOR ALL . . . , or EVERY; or

• the existential quantifier, meaning THERE IS . . . , or THERE EX-
ISTS. . . .

Applying these to our examples we get "ALL girls are smiling" and "THERE
ARE girls who are smiling".

Formally, we should take the sentences "FOR ALL girls it is true
that they are smiling" and "THERE IS a girl who is smiling", but
we do not want to enter into further details.

If S(x) is the shorthand for "x is smiling", then the above statements
will be denoted as follows: ∀xS(x),∃xS(x).

A statement may be true ar false. If the statement is constructed from
other statements with the above logical operations then one can simply
„calculate" the truth value of a statement given the truth values of its com-
ponents. If p and q are statements, and their truth values are denoted by
True or False, then the following truth tables are accepted when calcu-
lating the truth value of a composite statement.
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p q ¬p p∧ q p∨ q p =⇒ q p ⇐⇒ q

True True False True True True True
True False False False True False False
False True True False True True False
False False True False False True True

The table corresponds to common sense, except possible the last two
values in the column of implication. These may be rephrased as "a false
statement implies anything".

How to evaluate the truth value of a complicated expression? One can
use a few simplification methods. Before treating them let us introduce
the definition of equivalence of statements.

Definition 2.2 Two statements p and q are equivalent, if p ⇐⇒ q is true.
This fact is denoted by p ≡ q.

Now to decide if a statement is true or false the original statement may be
replaced with a simpler one, which is equivalent to the original one. To
this purpose one can use the following rules, obviously true based upon
their truth tables.

¬(p∧ q) ≡ ¬p∨ ¬q ¬(p∨ q) ≡ ¬p∧ ¬q

¬(¬p) ≡ p ¬p =⇒ q ≡ ¬q =⇒ ¬p

(p∧ q)∨ r ≡ (p∨ r)∧ (q∨ r) (p∨ q)∧ r ≡ (p∧ r)∨ (q∧ r).

The equivalences in the first row are called De Morgan identi-
ties or De Morgan rules, while those in the third row express
the fact that disjunction is distributive with respect to conjunc-
tion and also, conjunction is distributive with respect to dis-
junction.

A. De Morgan
(1806–1871)

As to the quantifiers, we understand that

¬(∀x : P(x)) ≡ ∃x : ¬P(x),

an agreement which does not follow from the truth tables.

Example 2.3 What can be said about the truth value of the statements be-
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low?

∀n(n even)∨ (n odd) (2.1)
¬(∀n : 2n > n) ⇐⇒ (∃n : 2n ̸> n) (2.2)

¬(∀x∃yx > y) ≡ (∃x∀y : x ≤ y) (2.3)
¬(∃k∀n > k : n | 12) ⇐⇒ (∀k∃n > k : n - 12) (2.4)
¬(3 < 5∨ 10 ≥ 20) ≡ ((3 ≥ 5)∧ (10 < 20)). (2.5)

Homework 2.2 sing the logical operations how would you formulate the
fact that

• p is a necessary condition of q,

• p is a sufficient condition of q,

• p is a necessary and sufficient condition of q.

Homework 2.3 Show that all the one- and two-variable logical operations
can be expressed by the Sheffer stroke | aka NAND operation which pro-
duces a value of false if and only if both of its operands are true. (Or, it
produces a value of true if and only if at least one of its operands is false.)

Homework 2.4 What can be said about the truth value of the statements
below?

(p =⇒ q) ⇐⇒ (¬p∨ q) (2.6)
¬(p =⇒ q) ≡ (p∧ ¬q) (2.7)

¬(p ⇐⇒ q) ⇐⇒ ((p∧ ¬q)∨ (q∧ ¬p)) (2.8)

Homework 2.5 Is this statement true? More than 99% of mankind has
more than average number of legs.

J. R. Kipling
(1865–1936)1. Formulate the sentences below using logical operators.

(a) What therefore God has joined together,
let no man separate.

(b) A smile is truly the only thing that can be understood in any
language.
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(c) You can fool some of the people all of the time,
and all of the people some of the time,
but you can not fool all of the people all of the time.

(d) If you can dream—and not make dreams your master;
If you can think—and not make thoughts your aim,
If you can meet with Triumph and Disaster
And treat those two impostors just the same...
Yours is the Earth and everything that’s in it,
And—which is more—you’ll be a Man my son!

(e) You don’t marry someone you can live with,
you marry the person who you cannot live without.

(f) Not only A, but B, as well.

(g) Neither A, nor B.

(h) B, assuming A.

(i) B is a sufficient condition for A.

2. Translate into plain English:

(a) A∧ B∧ ¬C,

(b) ¬A =⇒ B.

3. How do you negate/deny these statements:

(a) To be, or not to be.

4. LetQ(x) denote that x is a rational number. How do you describe by
formula that

(a) There exist rational numbers.

(b) Not all the numbers are irrational.

(c) There does not exist a number which is, if it is rational, then it
is irrational.

A. Lincoln
(1809–1865) Finally, let us mention that it is worth studying the following

Mathematica functions: And, BooleanConvert, BooleanTable,
Conjunction, Exists, ForAll, Implies, LogicalExpand,
Nand, Not, Or.
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2.2 Methods of proof

Here and below we collect the tools directly used in mathematics beyond
logical operations learned above. However, this does not mean that we
neglect the rules for the direction of the mind by Descartes, such as

1. You accept only that which is clear to mind.

2. You split large problems into smaller ones.

3. You argue from the simple to the complex.

4. And finally you check everything carefully when you have finished.

It is equally useful to keep in mind the rules of heuristics as formulated by
Pólya [19].

2.2.1 Constructive and nonconstructive proof

***********Here and below we use concepts known from high school which
we are going to formally introduce later.

The existence of something can be proved by constructing it.

Theorem 2.1 There exist irrational numbers a and b such that ab is ratio-
nal.

A constructive proof of the theorem would give an actual example,
such as:

a =
√
2 , b = log

2
(9) , ab = 3 . (2.9)

The square root of 2 is irrational, and 3 is rational. log2(9) is also irrational:
if it were equal to m

n,
then, by the properties of logarithms, 9n would be

equal to 2m, but the former is odd, and the latter is even.
A non-constructive proof may proceed as follows: Recall that

√
2 is

irrational, and 2 is rational. Consider the number q =
√
2

√
2
. Either it is

rational or it is irrational. If q is rational, then the theorem is true, with a
and b both being

√
2.
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If q is irrational, then the theorem is true, with a being
√
2

√
2

and b
being

√
2, since (√

2

√
2
)√

2

=
√
2
(
√
2·
√
2)
=

√
2
2
= 2.

This proof is non-constructive because it relies on the statement "Either
q is rational or it is irrational"—an instance of the law of excluded middle,
which is not so easy to accept, to say the least.

Suppose you would like to do temporary work in the United
States, then you would need visa. The classification of visas
show that the U. S. Citizenship and Immigration Services does
not accept the principle of excluded middle. Why? Because
they know the following categories:

1. H-2A: Temporary or seasonal agricultural workers,

2. H-2B: temporary non-agricultural workers,

3. H-1B3: fashion models of distinguished merit and ability,

and some further categories...

2.2.2 Indirect proof

Again we use here the law of excluded middle: it is impossible that the
negation of a statement is false therefore it should be true.

Assume statement S is false, if this assumption leads to a contradiction
than it was a false assumption, thus, the original statement S is true.

Theorem 2.2
√
2 is not a rational number.

Theorem 2.3 There is an infinity (?!) of primes.

Theorem 2.4 Consider a chessboard without two diagonal squares. Show
that it is impossible to cover the chessboard with twice by one domino
tiles.

Theorem 2.5 tan(1o) is irrational.
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2.2.3 Mathematical induction

It was A. De Morgan, whom we met before, who defined and introduced
the term mathematical induction putting a process that had been used
without clarity on a rigorous basis.

The picture of dominoes here http://en.wikipedia.org/wiki/
Mathematical_induction is enlightening.

∀n a statement An is given (has been formulated). If A1 is true, and
if ∀n(An =⇒ An+1), then the statement An is true (holds) for all natural
numbers.
An is said to be the induction hypothesis.
Mathematical induction should not be misconstrued as a form of in-

ductive reasoning, which is considered non-rigorous in mathematics. In
fact, mathematical induction is a form of rigorous deductive reasoning.

Example 2.4

1. 1+ 2+ · · ·+ n = n(n+1)
2

(K. F. Gauss)

2. 1+3+ · · ·+(2n+1) = n2. (Francesco Maurolico in his Arithmeticorum
libri duo (1575).)

3. 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

4. 13 + 23 + · · ·+ n3 = (1+ 2+ · · ·+ n)2 = n2(n+ 1)2/4

K. F. Gauss (1777–
1855)Bernoulli inequality

1. 2N ≥ N+ 1 (multiple proofs?)

2. 2 <
(
1+ 1

N

)N
< 4 (N ∈ N2 := N \ {1})

3. Prove using mathematical induction:

(a) 2!4! . . . (2N)! > ((N+ 1)!)N (N ∈ N2)

(b)
∑N

n=1(2n− 1)2 = N(4N2−1)
3

(the meaning of
∑

!)

(c) (1− 1
4
)(1− 1

4
) · · · (1− 1

(N+1)2
) = N+2

2N+2

4. Use the indirect method to prove that tan(1◦) is irrational.
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5. If the product of three positive numbers is larger than one and their
sum is less than the sum of their reciprocals, then none of them can
be larger than one.

Arithmetic and geometric mean

Theorem 2.6 (Arithmetic and geometric mean) For allN ∈ N;b1, b2, . . . , bN ∈
R+ one has

GN :=

(
N∏
n=1

bn

) 1
N

≤
∑N

n=1 bn

N
;

and equality holds if and only if the numbers b1, b2, . . . , bN ∈ R+ are equal.

Self-answering problems

1. What fraction of the letters in one-third are vowels?

2. Twenty-nine is a prime example of what kind of number?

Could you formulate similar problems?

2.2.4 Pigeonhole principle

Eight holes for 9
pigeons

Schubfachprinzip ("drawer principle" or "shelf principle"). For this rea-
son it is also commonly called Dirichlet’s box principle, Dirichlet’s drawer
principle

Application examples

2.2.5 Invariants

Seemingly very complicated problems can be solved using an invariant
quantity. The idea is that one has a (not necessarily: mathematical) object
which is transformed several times. One finds a quantity which is un-
changed (invariant) under these transformations, and this helps give the
solution to the problem. Let us see a few examples.

Example 2.5 Of 24 sheets of paper some have been cut into 10 pieces, and
some of these pieces have again been cut into 10 pieces each, and so on. Is
it possible to arrive at 2014 pieces after a few repetition of the procedure?
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Proof. Suppose k(∈ [1, 24]) sheets are lacerated at the first stage, then we
have (24 − k) + 10k = 24 + 9k pieces. From this point on every cutting
increases the number of pieces by 9, therefore the number of pieces can
always be only a multiple of 3. However, 2014 is not a multiple of 2014,
therefore this number cannot be reached by this procedure. �

Example 2.6 Write the numbers 1, 2, . . . , 10 onto the blackboard. At each
stage two numbers are deleted and they are replaced by their difference.
Is it possible to reach at zero after the 9th run?

Proof. The sum of the numbers on the blackboard is 55 at the beginning.
Suppose that (at any stage) one chooses the numbers a and b to delete,
then they should be replaced by a − b. The sum of the numbers on the
blackboard therefore changes by a + b − (a − b) = 2b, an even number.
Thus the total of the numbers on the blackbard will always be an odd
number, the even number zero can never be arrived at. �

Example 2.7 None of the members of the parliament have more than three
enemies. (To be an enemy is assumed to be a symmetric relation.) Show
that it is possible to divide the MPs into two groups in such a way that
nobody has more than two enemies in her/his group.

Proof. Suppose that an MP called Mr Smith has three enemies in his group.
Put any of his enemies, say Ms Brown, into the other group. Then, Mr
Smith will only have two enemies in his group and Ms Brown can also
not have more than two enemies in her group as she left Mr Smith behind.
Continue this procedure until the required goal. �

Emmy Noether
(1882–1935)

One might think that the concept of invariance is a nice toy for chil-
dren. It is much more than that. The German algebraist Emmy Noether
in 1915 discovered a strong connection between symmetry and invariants
aka conserved quantities. She was able to show e.g. that conservation
of matter is a consequence of the form of equations of mechanics, their
behaviour with respect to symmetry transformation. This observation be-
came later a fundamental tool of modern theoretical physics and the cal-
culus of variations, as well.
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2.3 On more refined approaches to logic

Here we only treated and will use propositional logic and first-order predi-
cate calculus (using quantification). However, part of the language and ar-
gumentation is not covered by these, and these parts are covered by other
disciplines, such as modal logic (describing possibility, necessity, impos-
sibility, modalities of time, knowledge and belief etc.), three-valued (and
more generally, multivalued) logic. One should also mention probabilis-
tic logic closely connected to statistical inference.

, Reduce, Refine, Resolve, SatisfiableQ, TautologyQ,
LogicalExpand. See also Theorem Proving in Version 10.



Chapter 3

Sets, relations, functions

G. F. L. Ph. Cantor
(1845–1918)

3.1 Fundamentals of set theory

Basic concepts: set and belongs to. (Alternative wordings: a belongs to
the set A, a is an element of the set A, a ∈ A, the set A contains the ’ele-
ment’ a.)

You may be interested in axiomatic set theory for which we have no
time and place here. See e.g. the axiom of extensionality, etc. http:
//en.wikipedia.org/wiki/Zermelo_set_theory

In order to avoid some complications it is safe to consider the subset of
given set (called universal set) in our investigations.

Definition 3.1 If a set has no elements at all then it is the empty set de-
noted by either ∅ or Λ or { }.

The empty set is unique: there is only one empty set.

Definition 3.2 The set A is a subset of (is included in) the set B, if all the
elements of A are also an element of B. This fact is denoted as A ⊂ B.

The empty set is a subset of every set, and every set is a subset of itself.

Definition 3.3 Given a set A its power set denoted either by P(A) or by
2A is the set of all its subsets.

According to the definition, P(A) always contains A and the empty set. Is
it true that the power set always has at least two elements? How many
elements are in a power set?

31
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3.1.1 Operations on sets

We start with the most common bivariate operations.

Definition 3.4 The union of the sets A and B is the set which contains all
such elements which belong to either A or B.

Definition 3.5 The intersection of the sets A and B is the set which con-
tains all such elements which belong to both A and B.

Definition 3.6 The complement of the setAwith respect to the set B is the
set which contains all

the elements which belong to A and do not belong to B; it is denoted by
A \ B. The complement of the set A with respect to the universal set is
simply called the complement of A and it is denoted by A.

Definition 3.7 The Descartes product A× B of the sets A and B is the set
of all pairs such that the first component is an element ofA and the second
component is an element of B : A× B := {(a, b);a ∈ A&b ∈ B}.

Note that the concept of ’pair’ is undefined here. Also, if one of the factors
in the Descartes product is the empty set then the product is defined to be
the empty set.

3.1.2 Properties of set operations

Theorem 3.1 For any two sets A and B the de Morgan identities hold:

• A ∪ B = A ∩ B,

• A ∩ B = A ∪ B.

1. Show using direct and indirect methods (a Venn diagram might also
help):
If A ⊂ B ⊂ C, then (A \ B) ∪ (B \ C) = ∅.

2. Show (and draw a Venn diagram, as well): A∪B = A∩B =⇒ A = B.

3. Solve these systems of equations:

(a) A ∪ X = B ∩ X A ∩ X = C ∪ X
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(b) A \ X = X \ B X \A = C \ X

4. Give a necessary and sufficient condition for: A \ B = B \A?

5. Calculate (using a Venn diagram)A∩ (B∪A); calculate using a truth
table A∨ (B∧A).

3.1.3 Applications

Gellért bath
(around 1930)

Example 3.1 The following facts are known:

1. There exists a tvset-owner who is not a painter.

2. Those who visit the Gellért bath but are no painters have no tv set.

Do these facts imply that: Not all tv-owners visit the Gellért bath?

Example 3.2 The following facts are known:

1. Nonsmoking bachelors collect stamps.

2. Either all stamp-collectors living in Cegléd do smoke, or there is no
such nonsmoking stamp-collector who does not live in Cegléd.

3. Paul Kiss living in Budapest has as his most important hobby col-
lecting stamps since he has stopped smoking as a result of his wife’s
stimulation.

Do all bachelors living in Cegléd smoke?

3.1.4 Cardinality

It was proved by Euclid that there are infinitely many primes, more pre-
cisely, that it is impossible that the number of primes is finite.

Euclid of
Alexandria
(cca. 325 BC–
cca. 265 BC)

Actual and potential infinity: read this, if you wish: http://en.
wikipedia.org/wiki/Actual_infinity.

Galileo Galilei
(1564–1642)

The part is smaller than the whole.
Galileo noticed that it is possible to construct a one-to-one correspon-

dence between the positive integers and the set of squares of positive inte-
gers.
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Figure 3.1: Smokers, bachelors, stamp collectors and Cegléd inhabitants
can be represented by the four sets in the figure. Denote what the assump-
tions say about the relationships of the sets.
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Theorem 3.2 The set of rational numbers has the same cardinality as a
proper subset of the set of integers.

Proof. Let the simplified form of a rational number be p

q
in decimal system.

Map this number into paq understood in undecimal system. Then, all
the rational numbers are mapped onto an integer, and some integers are
not used (those not containing the digit a). (Here a is the digit 10 in the
undecimal system, the system with the base 11.) �

Remark 3.1 A Mathematica code to realize the transformation in the theo-
rem might be
f[Rational[p_,q_]]:=BaseForm[FromDigits[p,10,q,11],11].

Sets of equal cardinality. Finite, countable and uncountable sets. Car-
dinality of the continuum. Finite and denumerable sets. The cardinality
of the power set is always larger than that of the original set. Relations
between cardinalities. The cardinality of real numbers is larger than that
of the integers. The continuum hypothesis.

∪ finite countable uncountable
finite finite countable uncountable
countable countable countable uncountable
uncountable uncountable uncountable uncountable

∩ finite countable uncountable
finite finite finite finite
countable finite ≤countable ≤uncountable
uncountable finite countable ≤uncountable

Union, Intersection, MemberQ, Complement.

3.2 Relations

First of all, let us remark that the concept of relation as used here has noth-
ing to do with such things as human relations, international relations or
public relations. Let us give the formal definition of a relation which seems
to be quite abstract at the beginning; hopefully the examples below will
show that it is a useful formalization.
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Definition 3.8 Let A and B be nonempty sets, then any subset ρ of A × B
is said to be a (binary) relation. A subset of A × A is usually called a
homogeneous binary relation.

There exist different fomulations. One may say the element a and element
b are in relation ρ, one can use the notations aρb, or also (emphasizing
that ρ is a set): (a, b) ∈ ρ.

We may also have n-ary relations: these are subsets of the Descartes
product of a set taken n times. Let us see an example. In a certain body of
people on may have three-member committees. These committees define
a relation: triples of people stand in a relation, if they belong to the same
committee. Obviously, some (most of the) people are not in a relation.

An example of a unary relation on the set of people is to be woman.
Below we focus on binary and homogeneous binary relations. Such

relations are widely studied also in graph theory, where they are known
as directed graphs.

3.2.1 Properties of relations

Important types of homogeneous binary relations on a set A follow.

Definition 3.9 A homogenenous binary relation ρ on the set A is

1. reflexive: ∀a ∈ A : aρa;

2. irreflexive: ∀a ∈ A : ¬(aρa);

3. symmetric: ∀a, b ∈ A : aρb =⇒ bρa;

4. antisymmetric: ∀a, b ∈ Aa ̸= b : aρb =⇒ ¬(bρa);

5. asymmetric: ∀a, b ∈ A : aρb =⇒ ¬(bρa);

6. transitive: ∀a, b, c ∈ A : (aρb∧ bρc) =⇒ aρc;

7. total: ∀a, b ∈ A either aρb or bρ hold;

8. trichotomous: ∀a, b ∈ A exactly one of aρb, bρ or a = b holds.

Example 3.3
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1. The homogeneous binary relation is a brother of on the set H hu-
manity is irreflexive, symmetric and transitive.

2. Strict inequality on the set of real numbers is an irreflexive and an-
tisymmetric (thus, asymmetirc, see the remark below), trichotomous
and transitive.

3. Do you agree with the statement that friendship (again on the set H)
is a transitive relation?

Remark 3.2

• Asymmetricity is stronger than anti-symmetry. In fact, asymmetry is
equivalent to anti-symmetry plus irreflexivity.

• Under the assumption of transitivity, irreflexivity and asymmetry
are equivalent.

Definition 3.10

• A relation that is reflexive, symmetric, and transitive is called an
equivalence or equivalence relation.

• A relation that is reflexive, antisymmetric, and transitive is called a
partial order.

• A partial order that is total is called linear order, or a chain.

• A linear order where every nonempty set has a least element is called
a well ordering.

Equivalence classes, or partitions

3.2.2 Operations on relations

Definition 3.11 Let ρ ⊂ A× B be a binary relation. Then,

1. the inverse of ρ, denoted by ρ−1 ⊂ A×A is

ρ−1 := {(b, a) ∈ B×A|aρb};
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2. the restriction of ρ onto a set C ⊂ A denoted by ρ|C is

ρ|C := {(a, b) ∈ S× B|aρb}.

Definition 3.12 Let ρ ⊂ A×A be a homogeneous binary relation. Then,

1. the reflexive closure of ρ, denoted by ρ= ⊂ A×A is

ρ= := {(a, a)|a ∈ Ab} ∪ ρ;

2. the transitive closure of ρ, denoted by ρ+ ⊂ A × A is ρ+ such that
whenever aρb and bρc, then aρc is adjoined to ρ.

Theorem 3.3

• A binary relation over a set is equal to its inverse if and only if it is
symmetric.

Definition 3.13 Let ρ, σ ⊂ A× B be two binary relations. Then,

1. the union of ρ and σ is

ρ ∪ σ := {(a, b) ∈ A×A|either aρb or bσa};

2. the intersection of ρ and σ is

ρ ∩ σ := {(a, b) ∈ A×A|aρb and bσa}.

Definition 3.14 Let ρ ⊂ A×B and σ ⊂ b×C be two binary relations. Then,
σ ◦ ρ ⊂ A× C defined by σ ◦ ρ := {(a, c) ∈ A× C|∃b ∈ B : aρb andbρc} is
the composition.

1. Describe the properties of the relations on the set N:

(a) a = b

(b) a < b

(c) a ̸= b
(d) a|b
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(e) a is a proper divisor of b.

2. How to chose the base set to get a transitive relation from these:

(a) a is a brother of b,

(b) a is the mother of a?

3. Describe the properties of the orthogonality relation on the set of the
lines of the plane/of the space.

3.3 Functions

Example 3.4 Suppose there are four objects house, car, a farm, a firm and
four persons George, Bill, Warren, Mary. Suppose that George owns the
house, Bill owns the car, and Mary owns the firm. Nobody owns the farm
and Warren owns nothing. Then the binary relation "owns" is given as

{(George, house), (Bill, car), (Mary, firm)} ⊂
{George, Bill,Warren,Mary}× {house, car, afarm, afirm}.

Thus the first elements of ρ is the set of people, the second elements con-
sists of the objects. The pair (owner, object) denoted by ownerρobject
means that the object is owned by the owner. The set of first elements
which are in relation with some second elements form the domain of the
relation ρ,while the set of second elements which are in relation with some
first elements form the range of the relation.

Definition 3.15 The binary relation ρ ⊂ A× B is

1. injective if ∀a ∈ Ab ∈ B : (aρb∧ cρb) =⇒ a = c;

2. functional if ∀a ∈ Ab ∈ B : (aρb∧ aρc) =⇒ a = c;

3. one-to-one if it is injective and functional;

4. surjective ∀b ∈ B∃a ∈ A : aρb;

5. bijective or bijection if it is both surjective and injective.
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Definition 3.16 A functional relation f ⊂ A × B is also said to be a func-
tion. Notation: (a, b) ∈ f is usually denoted as b = f(a), and in this case
we also say that the value of the function at the argument a is b. In case
A ⊂ N, one also uses the notation fa. The domain and range of a function
is the domain, respectively the range in the sense as defined for relations.
Composition of two functions are defined to be their composition as rela-
tions.

Remark 3.3 Conventional, prefix, postfix, infix notations. Notations used
in Mathematica .

Example 3.5

1. If A = {1, 2, . . . , n} with some n ∈ N, the function f ⊂ A × B is said
to be a (n-dimensional) vector.

2. If A = N, B = R, then the function f ⊂ A× B is said to be a sequence
of real numbers.

3. If A = R, B = R, then the function f ⊂ A × B is said to be a a real
valued function of a (single) real argument.

Definition 3.17

1. The function f ⊂ A× B is said to be a surjective function, or surjec-
tion, if Rf = B.

2. The function f ⊂ A × B is said to be an injective function, or injec-
tion, if it has the property that (a, b); (c, b) ∈ f =⇒ a = c.

3. A function which is both surjective and injective is a bijective func-
tion, or bijection (a one-to-one correspondence).

Theorem 3.4 The inverse of a bijective function (as that of a relation) is a
function itself.

Theorem 3.5 The identity relation is a function; it is called the identity
function.

Remark 3.4 Cf. the vector with List, the identity function with pure
functions and Slot.
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Definition 3.18 The function g is said to be the restriction of the function
f onto the set C, if f, g ⊂ A× B are functions, C ⊂ A, and Df = A,Dg = C.
In this case f is said to be and extension of g.

Mapping a set. Pair of functions. Projections. Composition. Inverse.
Operations with functions.

1. *Show that f(
∪
i∈IAi =

∪
i∈I f(Ai)). (What does the notation mean?)

2. *Suppose that φ : A −→ B is a bijection. Show that

(a) φ−1 : B −→ A is a bijection,

(b) φ−1 ◦φ = idA,

(c) φ ◦φ−1 = idB.

3. Are the below relations defined on R functions or not? What about
their properties?

(a) xρy :⇐⇒ x = y2

(b) xρy :⇐⇒ y = x2

(c) xρy :⇐⇒ y = −x3

(d) xρy :⇐⇒ y = 2x− x2

4. Find the largest set A, for which it is possible to restrict the function
g so as to define f ◦ (g|A), if

(a) g(x) := sign(x) :=


1, if x > 0,
0, if x = 0,
−1, if x < 0.

(x ∈ R) and

f(x) := 1
x2−1

, if x ∈ R, and x2 ̸= 1.

(b) ∗g(z) := Re(z) (z ∈ C) and f(x) := x
x2−1

, if x ∈ R, and x2 ̸= 1.

Function, CompiledFunction, InverseFunction, InverseSeries,
Dispatch, =, :=, ˆ=, ˆ:=, FunctionDomain, FunctionRange,
Composition, FunctionExpand, #&, Identity, IdentityMatrix,
Reduce, Resolve.
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Chapter 4

Graphs and networks

4.1 The Bridges of Königsberg

Further details can be found here: jcu.edu/math/vignettes/bridges.
htm

4.2 Formal definitions

Definition 4.1 A finite nonempty set of vertices V and a set E ⊂ V × V of
ordered pairs of vertices, called arcs is said to be a directed graph, and it
is usually denoted as (V, E). Arcs of the form (v, v) ∈ E are called loops.

Definition 4.2 A finite nonempty set of vertices V and a set E of unordered
pairs of vertices, called edges is said to be a(n undirected) graph, and it is
also denoted as (V, E). (Multiple edges are not always excluded.) Edges of
the form (v, v) ∈ E are called loops in case of undirected graphs, as well.

Definition 4.3 In both cases, vertices connected by an edge (by an arc) are
said to be adjacent. Edges (arcs) with a common vertex are also called
adjacent. The adjacency matrix of the graph (V, E) is a |V | × |V | matrix
with an entry aij = 1, if vertex i ∈ V and vertex j ∈ V are connected with
and edge (arc): if they are adjacent, otherwise the entry is zero.

Obviously, in case of undirected graphs the adjacency matrix is symmetric
and redundant: all the edges are represented twice.

43
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Definition 4.4 An edge (an arc) and both of its vertices are said to be inci-
dent. The edge (v,w) of an undirected graph connects the two vertices v
and w, while the arc (v,w) of a directed graph begins at the vertex v and
ends at the vertexw. The incidence matrix I of the directed graph (V, E) is
an a |V |× |E| matrix with an entry

1. ive = 1, if there is an arc beginning at the vertex v incident at the arc
e,

2. ive = −1, if there is an arc ending at the vertex v incident at the arc e,

3. ive = 0 otherwise.

Definition 4.5 A subgraph of a graph (V, E) is a graph (V, E) such that
V ⊂ V and E ⊂ E holds, and all the edges (arcs) E are incident with
vertices from V only. A spanning subgraph of (V, E) is a subgraph that
contains all the vertices V. A finite sequence of edges e1, e2, . . . , ek is called
a path connecting the vertices e1 and ek. In case of a directed graph such a
sequence of arcs is called a directed path. A closed path, i.e. one for which
e1 = ek is called a cycle, respectively a directed cycle. A graph without cy-
cles (without directed cycles) is a forest; it is a tree, if it is also connected.
A spanning forest is a spanning subgraph which is a forest.

Definition 4.6 A graph is said to be connected if any pair of its vertices
is connected by a (directed) path. A maximal connected subgraph of an
undirected graph is said to be a connected component. In case of a di-
rected graph the connected component is also called strong component.
The weak components of a directed graph (V, E) are obtained in the fol-
lowing way. First, if either (v,w) ∈ E or (w, v) ∈ E, then let the (undi-
rected) arc (v,w) be represented by an edge of an undirected graph (V, E).
Then, the connected components of (V, E) are said to be the weak compo-
nents of (V, E). Those strong components of a directed graph in which no
edge starts ending in a vertex outside the component are called ergodic
components.

Definition 4.7 A directed bipartite graph consists of two vertex sets, say
V1 and V2, and arcs can only go from one vertex set into the other one, but
there are no arcs proceeding within the vertex sets. This means that for the
arc set E of such a graph one has E ⊂ V1 × V2 ∪ V2 × V1.
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Since graphs without multiple edges (arcs) can be considered as special
relations on finite sets, terminology of relations can also be used for them.

Definition 4.8 A directed or undirected graph (V, E) is reflexive if for all
v ∈ V (v, v) ∈ E, i.e. the graphs contains all the possible loops. A di-
rected graph (V, E) is symmetric if together with the arc (v,w) ∈ E it also
contains the arc (w, v) ∈ E. It is called transitive, if for all pairs of arcs
(v,w), (w, z) ∈ E (v, z) is also an arc. The transitive closure of the directed
graph (V, E) is obtained in such a way that if there is a directed path be-
ginning in the vertex v and ending in the vertex w, then the arc (v,w) is
appended to the set of arcs.

Theorem 4.1 If the transitive closure of a directed graph is symmetric then
the same number of its strong components is the same as the number of
its ergodic components.

Hamiltonian path, circle

4.3 Applications

4.3.1 Enumeration of Carbohydrates

Pólya

4.3.2 Social networks

It is quite common to ask the pupils in a class of elementary school who
are their best friends, and evaluate the answers in a such a way that the
pupils are represented by vertices of a graph and (directed) edges going
from A to B show that A is a friend of B. When the teacher has a look at
the graph (s)he immediately conceives the structure of the class, (s)he will
see subgroups, called cliques (also in graph theory!) all the members of
which are connected to each other, isolated children with no friends at all
etc.

Friendships in a class, six steps (Karinthy)
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4.3.3 Internet

4.3.4 Web

4.3.5 Automata

4.3.6 Chemical reaction kinetics

Feinberg–Horn–Jackson graph

Volpert graph

4.3.7 PERT method

4.3.8 Transportation problems

Maximal flow (minimal cut)

4.3.9 Matching

Suppose we are given a bipartite graph, the two vertex sets of which are
the set of girls and the set of boys, and edge connects two persons of dif-
ferent gender if they know each other. How can we form the maximal
number of girl-boy pairs so that pairs are only made from acquaintances?
This is an example of the matching problem.

4.3.10 Neural networks

McCulloch and Pitts

4.4 Planar graphs

4.5 Coloring maps

What is a proof, anyway?



Chapter 5

A few words on combinatorics

Theory of finite sets.
B. Pascal (1623–
1662)

Erdős, Lovász Permutation, combination, variation, with and without
repetition. Binomial coefficients. The Pascal triangle. The binomial theo-
rem by Pascal. (Generalization by Newton).

P. Erdős
(1913–1996)

1.
∑N

n=0

(
N

n

)
= 2N

2.
∑N

n=0

(
N

n

)
(−1)n = 0.

Theorem 5.1

∀N ∈ N :

(
1+

1

N

)N
< 3.

Proof.(
1+

1

N

)N
=

N∑
n=0

(
N

n

)(
1

N

)n
=

N∑
n=0

N(N− 1) . . . (N− n+ 1)

1 · 2 · · · · · n
1

Nn

=

N∑
n=0

N(N− 1) . . . (N− n+ 1)

N ·N · · · · ·N
1

1 · 2 · · · · · n

< 1+ 1+

N∑
n=2

1
1

n!
< 2+

N∑
n=2

1

2n−1
< 3.

�
L. Lovász (1948–)Calculate the number of all one-, two-, n-variable logical operations.
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Chapter 6

Numbers: Real and complex

Homework 6.1 Could you possibly understand what is going on here:
http://www.mathematika.hu/flash/csoda1.swf?

6.1 Axioms to describe the set of real numbers

We are given two operations, P and T, and the relation L on the set of real
numbers.

Commutativity of addition ∀x, y ∈ R : P(x, y) = P(y, x);

Associativity of addition ∀x, y, z ∈ R : P(P(x, y), z) = P(x, P(y, z));

Neutral element of addition: zero ∃0 ∈ R∀x ∈ R : P(x, 0) = x;

Additive inverse ∀x ∈ R∃(−x) : (P(x,−x) = 0;

Commutativity of multiplication ∀x, y ∈ R : T(x, y) = T(y, x);

Associativity of multiplication ∀x, y, z ∈ R : T(T(x, y), z) = T(x, T(y, z));

Neutral element of multiplication: unity ∃1 ∈ R∀x ∈ R : T(x, 1) = x;

Multiplicative inverse ∀x ∈ R, x ̸= 0 =⇒ ∃(x−1) : T(x, x−1) = 1;

Distributivity of multiplication wrt addition

∀x, y, z ∈ R : T(x, P(y, z)) = P(T(x, z), T(y, z));

49
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Irreflexivity ∀x ∈ R : ¬L(x, x);

Asymmetry ∀x, y ∈ R : L(x, y) =⇒ ¬L(y, x);

Transitivity ∀x, y, z ∈ R : L(x, y)∧ L(y, z) =⇒ L(x, z);

Trichotomy ∀x, y ∈ R exactly one holds: L(x, y)∨ L(y, x)∨ x = y;

Monotonicity wrt addition ∀x, y, z ∈ R : L(x, y) =⇒ L(P(x, z), P(y, z));

Conditional monotonicity wrt multiplication

∀x, y, z ∈ R : L(x, y)∧ L(z, 0) =⇒ L(T(x, z), T(y, z)).

Remark 6.1 From now on we shall mainly use the notations:

x+ y := P(x, y) xy := T(x, y) x < y := L(x, y) ∀x, y ∈ R.

The notation x ≤ y is used to abbreviate x < y∨ x = y.

Closed interval Let a, b ∈ R;a < b. [a, b] := {x ∈ R;a ≤ x∧ x ≤ b.}

Open interval Let a, b ∈ R;a < b. ]a, b[:= {x ∈ R;a < x∧ x < b.}

Half open intervals Let a, b ∈ R;a < b.

[a, b[:= {x ∈ R;a ≤ x < b.} ]a, b] := {x ∈ R;a < x ≤ b.}

Remark 6.2 Instead of a < x∧ x < b one usually writes a < x < b, etc.

Let us introduce two symbols, not numbers!

Infinity The set of real numbers larger than a ∈ R will be denoted as
]a,+∞[.

Minus infinity The set of real numbers smaller then a ∈ R will be de-
noted as ] −∞, a[.

Remark 6.3 The intervals [a,+∞[ etc. are defined similarly. Note that the
side where −∞ or∞ stands is always open.

The axioms by Archimedes and Cantor. The absolute value function.
Which axiom do you use in the individual steps?
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1. Solve the inequalities below and present the result as subsets of the
real line:

(a) 5x+ 3 ≤ 2− 4x
(b) 5x−1

4
≤ x+ 1 < −2+ 2x

(c) −3(x+ 1)(x+ 2) > 0

(d) a2x2 − 2x− 5 ≤ 0
(e) x4 − 5x2 + 4 > 0

(f) 4x−1
4x+1

< −1

(g) (x−1)(x+2)
x+3

< x− 2

(h) x2−5x+4
x2−6x+7

> 0

2. Prove that for all x, y ∈ R one has

(a) |x+ y| ≤ |x|+ |y|

(b) |x− y| ≥ ||x|− |y||

3. Solve the inequalities below and present the result as subsets of the
real line:

(a) |2x+ 3| < 2

(b) |2− x2| > 3

(c) ||x+ 1|− |x− 1|| < 1

(d) |x(1− x)| < 0.05

(e) |x(1− x)| < 0.25

6.1.1 Operations

Smart multiplication

The classical solution to calculate the product of two polynomials is:

(a+ bx)(c+ dx) = ac+ (ad+ bc)x+ bdx2.

Hovewer, one can do it smarter, using the Karatsuba algorithm.

u := (a+ b)(c+ d)ad+ bc = u− ac− bd
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6.2 Complex numbers

6.2.1 Evolution of the concept of number

The definition of operations are defined as operations on pairs of real num-
bers.
i2 = −1.Real and imaginary parts. Correspondence between the points

of C and R2.
. Addition and the parallelogram rule. Absolute value or modulus.

Definition 6.1 The conjugate of the complex number a + bi is defined to
be the complex number a− bi.

Geometrical meaning. Relations with arithmetical operations and with the
calculations of the real and imaginary parts. i = −i. Now one has square
root(s) of −1. Argument. The algebraic form of a complex number.

Moivre formula: (reiφ)(seiψ) = (rs)ei(φ+ψ). Rotation can be obtained
by a multiplication of modulus 1. Unit roots. The vertices of a regular
polygon. nth roots of a complex number.

6.3 Operations and relations on real valued func-
tions

6.3.1 Algebraic operations on real valued functions

Definition 6.2 Let f, g ⊂ A× R real valued functions. Then:

1. (−f)(x) := −f(x) (x ∈ Df);

2. (λf)(x) := λf(x) (x ∈ Df)∧ λ ∈ R;

3. (f± g)(x) := f(x)± g(x) (x ∈ Df ∩ Dg);

4. (fg)(x) := f(x)g(x) (x ∈ Df ∩ Dg);

5. (f/g)(x) := f(x)/g(x) (x ∈ Df ∩ Dg)∧ (g(x) ̸= 0).

Example 6.1 What do the definitions mean in the case of pairs, vectors,
series?
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6.3.2 Inequality relations and real valued functions

The definition of f < g. This relation is transitive and monotonous with
respect to both operations, however, it is not trichotomous. Monotonous
functions.

6.4 Polynomials

Definition 6.3 Let N ∈ N0 be a natural number, and let a0, a1, . . . , aN ∈ C
be real numbers, and suppose aN ̸= 0. Then, the function

C ∋ x 7→ p(x) := a0 + a1x+ · · ·+ aNxN ∈ C (6.1)

is said to be a polynomial of degreeN; the numbers a0, a1, . . . , aN ∈ C are
the coefficients of the polynomial. The degree of p is denoted by deg(p).

As polynomials are special cases of real variable real valued functions,
one knows how to carry out operations on them.

Theorem 6.1 1.

2. A polynomial p multiplied by a complex number α is a polynomial
as well. If α = 0, then deg(αp) = 0, otherwise deg(αp) = deg(p).

3. The sum of two polynomials p and q is a polynomial; deg(p + q) ≤
max{deg(p),deg(q)}.

4. The product of two polynomials p and q is a polynomial; deg(pq) =
deg(p) + deg(q).

To find the greatest common divisor of two polynomials it is enough
to apply the Euclidean algorithm, appropriately modified.

Definition 6.4 Let p be a polynomial, different from the zero polynomial.
The set

p−1({0}) = {x ∈ C|p(x) = 0} (6.2)

is the set of roots or zeros of the polynomial p.

Theorem 6.2 (The fundamental theorem of algebra) A nonzero polyno-
mial p has not more than deg(p) roots.
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Theorem 6.3 If two polynomials p and q (as functions) are equal, then all
their coefficients are equal too.

Theorem 6.4 (Factorization of polynomials) Let p be a nonzero polyno-
mial, and letN := deg(p). Then, there are complex numbers λ1, λ2, . . . , λN,
not necessarily different, with which one has:

p(x) = (x− λ1)(x− λ2) . . . (x = λN). (6.3)

Formulas for expressing the roots of polynomials of degree 2 in terms
of square roots have been known since ancient times (see quadratic equa-
tion), and for polynomials of degree 3 or 4 similar formulas (using cube
roots in addition to square roots) were found in the 16th century (see Nic-
colo Fontana Tartaglia, Lodovico Ferrari, Gerolamo Cardano, and Vieta).
But formulas for degree 5 eluded researchers. In 1824, Niels Henrik Abel
proved the striking result that there can be no general (finite) formula, in-
volving only arithmetic operations and radicals, that expresses the roots
of a polynomial of degree 5 or greater in terms of its coefficients (see Abel-
Ruffini theorem). This result marked the start of Galois theory which en-
gages in a detailed study of relationships among roots of polynomials.

Polynomials with real coefficients are of special importance. Let us
emphasize that the fact that the coefficients are real does not imply that
the roots of the polynomial are real, as the example x 7→ x+1 shows. Still,
one can formulate a series of useful statements.

Theorem 6.5 1.

2. A polynomial p with real coefficients multiplied by a real number α
is a polynomial with real coefficients as well.

3. The sum of two polynomials p and q with real coefficients is a poly-
nomial with real coefficients.

4. The product of two polynomials p and q with real coefficients is a
polynomial with real coefficients.

Let us go a bit farther, let us introduce a larger class of functions.

Definition 6.5 Let p and q be a polynomials, and suppose q is different
from the zero polynomial. Let the degree of q be N, and let the roots of q
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be λ1, λ2, . . . , λN. Then, the function

R \ {λ1, λ2, . . . , λN} ∋ x 7→ p(x)

q(x)
∈ C (6.4)

is said to be a rational function.

Example 6.2 The function x 7→ x
x

is not defined at the value 0, at other
arguments it is equal to 1.

Rational functions can be represented in a form which is both simple
and useful for some purposes.

Theorem 6.6 (Partial fraction decomposition) Let q be a nonzero polyno-
mial which can be represented in the form q =

∏k

i=1 r
ni

i , where the func-
tions ri are distinct irreducible polynomials (of degree one or two). Then,
there are (unique) polynomials b and aij with deg(aij) < deg(ri) such that

p

q
= b+

k∑
i=1

ni∑
j=1

aij

r
j
i

. (6.5)

Furthermore, if deg(p) < deg(q),, then b = 0.

Example 6.3 1
z4+1

.

See how Apart is working.
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Chapter 7

Sequences of real numbers

7.1 Lower and upper limit of a set of real num-
bers

Definition 7.1 The set A ⊂ R of real numbers is said to be bounded
above, if there is a real number K ∈ R such that ∀x ∈ A|x| ≤ K. The
set A ⊂ R of real numbers is said to be bounded below, if there is a real
number K ∈ R such that ∀x ∈ A|x| ≥ K. A set is bounded if it is bounded
above and bounded below, as well.

Theorem 7.1 Among all the upper bounds of a set bounded above there
is a smallest one.

Definition 7.2 The smallest upper bound of the set A ⊂ R is called its
supremum, and this number is denoted as supA. The largest lower bound
of the set A ⊂ R is called its infimum, and this number is denoted as
infA. The fact that the set A is not bounded above is expressed by the
notation supA = +∞, while the fact that the set A is not bounded below
is expressed by the notation infA = −∞,

Real numbers extended. The real line. Accumulation point of a set of
real numbers.
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7.2 Real sequences

Definition 7.3 The function a : N −→ R is said to be a (real valued) se-
quence. Its values are usually denoted as a(n), or, more often as an. an is
the nth member of the sequence, and n is its index.

Example 7.1 Let b, d, q ∈ R be given.

The sequence an := b+ nd (n ∈ N) is an arithmetic sequence,

1.2. the sequence bn := bqn (n ∈ N) is a geometric sequence,

3. the sequence cn := 1
n

(n ∈ N) is the harmonic sequence.

Example 7.2 Let b ∈ R be a given real number. The constant sequence
an := b (n ∈ N) is both an arithmetic and a geometric sequence. (WHy?)

Definition 7.4 A sequence of real numbers is strictly increasing, increas-
ing, strictly decreasing, decreasing if it has these properties as a real valued
function. (See above.)

Definition 7.5 A strictly increasing function ν : N −→ N is said to be an
index sequence, if a : N −→ R is a real sequence, then a ◦ ν : N −→ R is
its subsequence.

Example 7.3 Let an := (−1)nn (n ∈ N), and let µn := 2n, ν(n) :=
2n−1 (n ∈ N). Then, µ and ν are index sequences, and the subsequences
formed by them have the members: (2, 4, 6, . . . ) and (−1,−3,−5, . . . ), re-
spectively.

Theorem 7.2 All real sequences have a monotonous subsequence.

The statement is not true with the adverb "strictly" added.

7.2.1 Operations on real sequences

Definition 7.6 Let α ∈ R; and let a, b : N −→ R be real sequences. Then

(αa)n := αan; (a± b)n := an ± bn (n ∈ N).
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Definition 7.7 A sequence is bounded above, below, bounded if its range
has the same property. The supremum (infimum) of a sequence is the
supremum (infimum) of its range.

The supremum might also be +∞, the infimum might also be −∞.
7.2.2 Relations between real sequences

Definition 7.8 Let a, b : N −→ R be real sequences. Then a < b and a ≤ b
is defined as follows:

an < bn;an ≤ bn (n ∈ N).

The functional sup is monotonously increasing.

7.3 Limit of sequences

Definition 7.9 The real number A is said to be the limit of the sequence
a : N −→ N if ∀ε > 0∃N ∈ N∀n > N : |an −A| < ε. (N is a threshold index
corresponding to ε.)

Definition 7.10 A sequence can have no more than one limit. If it has one,
it is convergent, otherwise it is divergent.

Theorem 7.3 A convergent sequence is bounded.

Examples.
Three different definitions of convergence. A finite number of compo-

nents (members) can be changed without effect.
Important convergent sequences.

7.3.1 Arithmetic opearations and limits

Zero sequences: c0(R), Convergent sequences: c(R). c0(R) ⊂ c(R) ⊂ RN,

sőt lineáris alterek. lima = A←→ (an −A) ∈ c0(R).
Operations and convergence, operations and limit, Multiple summands,

multiple factors.
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7.3.2 Inequality relations and limits

lima > limb =⇒ m. m. n : an > bn.

m. m. n : an ≥ bn =⇒ lima ≥ limb.

Alkalmazás: nemnegatív tagú sorozatokra és pozitív határértékre. Ab-
szolút értékben nullasorozattal majorálható sorozat nullasorozat. Közre-
fogási elv.

7.3.3 The limit of monotonous sequences

Theorem 7.4 A monotonously increasing sequence which is also bounded
from above is convergent, as well. Its limit is equal to its supremum.

Theorem 7.5 (Bolzano–Weierstrass) All the bounded sequences have a con-
vergent subsequence.

Theorem 7.6 A monotonous sequence is bounded if and only if it is con-
vergent.

Pozitív számok gyöke: értelmezés konstrukcióval (Newton-módszer).

Theorem 7.7 (Cauchy) The sequence a : N −→ R is convergent if and only
if

∀ε > 0∃N ∈ N : ∀m,n > N|an − am| < ε.

This criterion of convergence is an inner one, it does not contain the value
of the limit.

Some of the divergent sequences are more regular than the others.

Definition 7.11 The sequence a : N −→ R is said to tend to +∞, if ∀K >
0∃N ∈ N∀n > N : an > K. (N is a threshold index corresponding to K.)

One may say that such a sequence does have a limit—in a broader sense.

Theorem 7.8 A monotonously increasing sequence always has a limit (per-
haps in the broader sense). Its limit is equal to its supremum.
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7.3.4 Explicitly defined sequences, implicitly defined se-
quences, difference equations

Limes superior and limes inferior of a sequence

Definition 7.12 limes superior (inferior)

Theorem 7.9 (Properties of the limes superior) 1. IfK < lim supa =⇒
, then there are an infinite number of members of the sequence greater
than K.

2. If L > lim supa =⇒, then there are only a finite number of the mem-
bers of the sequence larger than L.

3. If a subsequence b of the sequence a has a limit B, it will necessarily
be between lim supa and lim infa : lim infa ≤ B ≤ lim sup .

4. There is always a subsequence b such that limb = lim supa.

5. There exists lima if and only if lim supa = lim infa(= lima).

6. For all positive real numbers λ ∈ R+ lim sup(λa) = λ lim supa holds.

Definition 7.13 An accumulation point of the sequence a is the pointA, if
for all ε there is a member of a in the interval ]A− ε,A+ ε[.

(This may be defined for a set, and transferred to the range of a se-
quence.)

7.4 Numerical series

The sequence of partial sums.
The map Σ is bijective.
The sum of a series.

Theorem 7.10 (Cauchy criterion)

The change of a finite number of members makes no difference.

Definition 7.14 A series is absolutely convergent if

Theorem 7.11 An absolutely convergent series is convergent, as well.
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7.4.1 Important classes of series

Series with positive members

Theorem 7.12 A series with positive members is convergent, if and only
if the sequence of its partial sums is bounded.

Theorem 7.13 (Comparison criterion)

Leibniz series

Definition 7.15 (Leibniz series) A series
∑
a is a Leibniz series if

Theorem 7.14 A Leibniz series is convergent Error estimate

7.4.2 Operations and series

Operastions. Associativity (putting the parnethesis) Commutativity (re-
ordering)

7.4.3 Relations and series

7.4.4 Further criteria of convergence

Theorem 7.15 (The root criterion by Cauchy)

Theorem 7.16 (The ratio criterion by d’Alembert)

Corollaries

Theorem 7.17 (The criterion by Raabe and that of Farkas Bolyai)
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Limit and Continuity of Functions

8.1 Important classes of functions

Here we mainly recollect what is known from high school and also add a
few things.

8.1.1 Polynomials

Polynomials have been defined above in Definition ??. Here we only men-
tion that to evaluate a polynomial it is more economic to use their Horner
form then the one given in the original definition.

Theorem 8.1 Let p be a polynomial with the degree N ∈ N0 and with the
(real or complex) coefficients a0, a1, . . . , aN. Then the following equality
holds

∀x ∈ C : p(x) = (. . . (aNx+ aN−1)x+ aN−2 + . . . )x+ a0. (8.1)

Remark 8.1 The advantage of the Horner form is that Evaluation of a
polynomial in the original form requiresN additions and n2+n

2
multiplica-

tions (and only 2n−1multiplications, if powers are calculated by repeated
multiplication). By contrast, Horner’s scheme requires only N additions
andNmultiplications, and its storage requirements is also less that that of
the calculations in the original form.

Example 8.1 The polynomial with N = 1 and a1 = 1 is the same as the
identity function of the real (or: complex) numbers.

63
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Rational functions also have been introduced above: ??.
There are some other functions known from high school, here we only

repeat their definition.

Definition 8.1

1. The absolute value of a real number is the number itself if it is non-
negative, and it is the negative of the number if it is negative:

R ∋ x 7→ Abs(x) := |x| := max{x,−x} ∈ R+. (8.2)

The absolute value of the complex number z =: a+ bi a, b ∈ R is
defined to be

√
a2 + b2.

2. The sign of a negative real number is −1, that of a positive number
is +1,whereas the sign of zero is 0 :

R ∋ x 7→ Sign(x) :=


−1, if x < 0
0, if x = 0
−1, if x > 0

(8.3)

3. The integer part of a real number is the largest integer not larger
than the number itself:

R ∋ x 7→ Int(x) := max{n ∈ Z|n ≤ x} ∈ Z. (8.4)

4. The fractional part of a real number is the difference of the number
and its integer part:

R ∋ x 7→ Frac(x) := x− Frac(x) ∈ [0, 1[. (8.5)

5. Re Im

It may be useful to have a look at the Mathematica functions Abs,
Ceiling, Floor, FractionalPart, Im, IntegerPart, Sign, Re,
Round

intervallum volt már?
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8.1.2 Power series

Definition 8.2 power series, coefficients, circle (disk) of convergence

Theorem 8.2 (Cauchy–Hadamard)

Definition 8.3 domain of convergence, convergence radius, sum a power
series, analytic function

Power series and operations

Reordering included.

Power series and relations

???

Elementary functions

exp, cos, sin, ch, sh.

Theorem 8.3 (Addition theorems)

Theorem 8.4 (Functional equations)

Parity, oddity

8.2 The limit of functions

8.2.1 Arithmetic operations and limits

8.3 Continuous functions

Continuity at a point of the domain of a function Principle of transfer???
Continuity on a set Discontinuity, points of the first and second kind,
jump, removable discontinuity Continuity from the left/right
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8.3.1 Operations and continuity

Composition

Compact sets

Definition 8.4 The set F ⊂ R is a closed set if If a closed set is bounded as
well, the it is a compact set.

Theorem 8.5 If a is a sequence with the property Ra ⊂ K, where K ⊂ R is
a compact set, then a has a convergent subsequence b for which limb ∈ K.

Theorem 8.6 A closed set contains all of its finite accumulation points.

Theorem 8.7 A compact set contains all of its accumulation points.

Functions continuous on a compact set

Theorem 8.8 If K is a compact set and f : K→ R is a continuous function,
then f(K) is compact as well.

Theorem 8.9 (Weierstrass) If K is a compact set and f : K→ R is a contin-
uous function, then f has a maximum: ∃x∗ ∈ K : sup f = f(x∗).

Definition 8.5 (korábbra) The function f : A → B is said to be bounded,
if Rf is bounded.

Theorem 8.10 (Weierstrass) If K is a compact set and f : K → R is a con-
tinuous function, then f is bounded.

8.3.2 Uniformly continuous fuctions

Definition 8.6 The function f ⊂ R×R is said to be uniformly continuous,
if for every positive ε there exists a positive δ such that for all x, y ∈ Df for
which |x− y| < δ the relation |f(x) − f(y)| < ε holds.

Theorem 8.11 If the function f ⊂ R×R is uniformly continuous, then it is
continuous, as well.

Heinrich Eduard
Heine
(1821–1881)
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Theorem 8.12 (Heine) If the domain of the continuous function f ⊂ R×R
is a compact set, then it is uniformly continuous.

Definition 8.7 The function f ⊂ R × R is said to have the Darboux prop-
erty, if in case u,w ∈ Rf;u < w for all v ∈ [u,w] there exists an x ∈ Df

such that v = f(x).

Theorem 8.13 (Bolzano) If the domain of the function f ⊂ R×R is a closed
interval, then it has the Darboux property.

Bernard Placidus
Johann Nepomuk
Bolzano
(1781–1848)

Jean Gaston Dar-
boux
(1842–1917)

Theorem 8.14 If the domain of the continuous function f ⊂ R × R is an
interval, then its range is an interval, too.

8.3.3 Continuity of the inverse function

Theorem 8.15 The inverse of a continuous bijection defined on a compact
set is itself continuous.

Theorem 8.16 The inverse of a continuous bijection defined on an interval
is itself continuous.

Continuity of the root function. Definition of the functions ln, exp
a
, log

a
,

and that of the power function with real exponent.



68 CHAPTER 8. LIMIT AND CONTINUITY OF FUNCTIONS



Chapter 9

Differential calculus

9.1 Set theoretic preparations

Definition 9.1 Let A ⊂ R be an arbitrary set of real numbers. The point
a ∈ A is an inner point, if there exists a positive number ε ∈ R+ such that
]a− ε, a− ε[⊂ A.

Definition 9.2 The A ⊂ R set of real numbers is an open set, if all its
points are inner points.

Theorem 9.1 The G ⊂ R set is open if and only if R \A is closed.

Proof. A) Suppose that G ⊂ R is open, and let x ∈ (F := R \G)N be a
convergent sequence with the limit x∗. Then the assumption x∗ ∈ G leads
to a contradiction because G being open there should be an ε ∈ R+ such
that ]x∗ − ε, x∗ + ε[⊂ G, but this excludes the possibility that a sequence in
F has x∗ as its limit.

B) Suppose that the set (F := R \G)N is closed. If x ∈ G, then the set F
cannot contain points arbitrarily close to the point x, because then it would
be possible to construct a sequence tending to x, contradicting to the fact
that F is closed. �
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9.2 Definition of the derivative and its basic prop-
erties

Let the domain of the function f be the set Df ⊂ R, and let a ∈ Df be an
inner point of Df.

Definition 9.3 The function

Df \ {a} ∋ x 7→ f(x) − f(a)

x− a
(9.1)

is the difference ratio function of the function f at the point a. If the limit
limx→a f(x)−f(a)x−a

exists and is finite, then the function is said to be differ-
entiable at the point a, and the limit A := limx→a f(x)−f(a)x−a

is its deriva-
tive at the point a. The derivative is denoted in the following ways:
f ′(a), ḟ(a), Df(a), df

dx |x=a

The difference ratio function shows the value of the slope of the secant
to the graph of the function f going through the points (x, f(x) and (a, f(a).
Intuitively clear that the in the limit this secant is closer and closer to the
tangent line of the graph at the point (a, f(a). However, having no differ-
ent definition for this concept this is what we accept as a definition of the
tangent line.

Definition 9.4 Let the function f be differentiable at the inner point a of
its domain Df. Then the line through (a, f(a) with the slope f ′(a) is said to
be its tangent line at the at the point (a, f(a).

The following fact is something what one would expect and easy to
prove, and important, as well.

Theorem 9.2 If the function f be differentiable at the inner point a of its
domain Df then it is also continuous at the point a.

The example of the function Abs shows that the converse is not true:
this function is continuous, but it is not differentiable at the argument a.

Példák. Egyoldali derivált és érintő.
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9.2.1 Arithmetic operations and the derivative

Kapcsolat a műveletekkkel. Deriváltfüggvény. Műveletek. Polinom, racionális
függvény, analitikus függvény deriválható.

A deriválhatóság ekvivalens definíciója. (Differenciál, hibaszámítás.)
Közvetett függvény deriváltja. Inverz függvény deriváltja. Példák.

Lokális korlátosság, növekedés, fogyás, szélsőérték. Növekedés és de-
rivált. Szélsőérték és derivált.

9.2.2 Mean value theorems

Theorem 9.3 (Rolle)

Theorem 9.4 (Cauchy)

Theorem 9.5 (Lagrange)

Theorem 9.6 (Darboux)

The inverse of some elementary functions

Properties of the functions sin and cos

Defining the functions tan and cot

The inverse of the trigonometric functions

The inverse of the hyperbolic functions

9.2.3 Applications of differential calculus

Theorem 9.7 (The l’Hospital rule, variations)
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Multiple derivatives. Taylor formula

Twice differentiable function at a given point, on a given set. Multiply dif-
ferentiable functions, infinitely many times differentiable functions. Mul-
tiple derivation and arithmetic operations. Leibniz’s theorem on the higher
derivative of a product. Examples. Derivatives of an analytic function. An
analytic function is differentiable infinitely many times. Taylor polyno-
mial, Taylor series, Taylor formula.

Convex and concave functions

Definition 9.5 function convex (concave)

Theorem 9.8 (Convexity and difference ratios)

Theorem 9.9 (Convexity and derivatives)

Definition 9.6 change of sign

Definition 9.7 inflexion point

Analysis of fuctions

Theorem 9.10 (First order necessary condition of the existence of extrema.)

Theorem 9.11 (Second order sufficient condition of the existence of extrema.)

Theorem 9.12 (Second order sufficient condition of the existence of an inflexion point.)

Theorem 9.13 (Third order necessary condition of the existence of an inflexion point.)

Definition 9.8 (Asymptotes)

What to check when analyzing a function?

1. Domain of the function
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2. Zeros.

3. Parity.

4. Continuity, differentiability.

5. Monotonicity.

6. Extrema.

7. Inflexion points.

8. Concave and convex parts.

9. Limits at ±∞.
10. Asymptotes at a finite point and at infinity.

11. Range of the function

Tangent to a curve

The derivative of function with values in Rn. Smooth elementary curve in
Rn. Parametrization. Closed smooth elementary curve. The parametriza-
tion of a line and of a section. Tangent.

Examples.
http://www.georgehart.com/bagel/bagel.html http://www.

dimensions-math.org/Dim_E.htm http://2009b.impulsive.hu
Öveges
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Chapter 10

Forms

Operations!! Moebius
Analytic geometry (Descartes) In this way, I should be borrowing all

that is best in geometry and algebra, and should be correcting all the de-
fects of the one by the help of the other.
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Chapter 11

Integrals

11.1 Antiderivative

11.1.1 Basic notions

Relations with differential equations to be emphasized. Only function de-
fined on intervals are considered here.

AntiderivativeAntiderivative with a given root. Indefinite integral Ba-
sic integrals Examples Operations and integrals Integration by parts Ex-
amples Integration by substitution Examples

11.1.2 Functions with elementary antiderivatives

Elementary functions. Their historical role. Rational functions Integrals
reducing to calculation of the integrals of rational functions Examples

11.2 Definite integral

11.2.1 Basic notions

Divisions. Lower and upper sum. Lower and upper integral of the Darboux-
type. Riemann integrability. Area under a curve. Nonintegrable functions:
examples. Oscillatory sum. Riemann sum. The limit of Riemann sums.
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11.2.2 Operations on integrable functions

The integral is a homogeneous linear functional. Integrability of the prod-
uct and the ratio. How does the integral depend on the interval? Esti-
mates. Mean value theorems and their consequences.

11.2.3 Classes of integrable functions

Continuous, monotonous, piecewise continuous, piecewise monotonous
functions are integrable. Finite exceptional points make no difference.

11.2.4 Newton–Leibniz theorem

The fundamental theorem of calculus Conditions!
Ennek egy része az előadáson fog elhangzani.
Érdemes megemlíteni néhány integráltáblázatot (Bronstejn–Szemengyajev,

Korn–Korn, Abramowitz–Stegun, Gradstejn–Rüzsik; egyszer majd megadom
a rendes hivatkozást is), valamint azt a tényt, hogy a matematikai pro-
gramcsomagok elég jól tudnak primitív függvényt számolni. A www.wolfram.com
címen működik egy integrátor: a begépelt függvénynek kiszámolja egy
primitív függvényét.
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Differential equations
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Chapter 13

Discrete dynamical systems

Simple models with chaotic behaviour May
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Chapter 14

Algorithms
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Chapter 15

Guide to the collateral texts

15.1 How to read a paper (book), how to listen to
a lecture?

1. Where was the paper/text/book/lecture published/presented? (Im-
portance, quality, impact factor, SJR etc.)

2. Where do the authors work? (Prestigious institute, multiple places,
continents)

3. Number of pages, figures, tables, references (review paper, new re-
sults, popularization), length and appearance of video etc.

4. Electronic supplement(s), if any. (Additional data, documents, ex-
periments, proofs etc.)

5. Acknowledgements, (financial) support. (Beware of cancer research
supported by a tobacco factory.)

6. Goal of the work in one sentence. Does it reach the purported/declared
goal?

7. Methods (experimental, theoretical, mathematical, etc.).

8. Previous knowledge needed (courses).
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15.2 Which one to choose?

Do not be frightened, what you see is an abundant list from which you
have to select five items (usually papers or book chapters), and I will select
the one which you report on.

[2] is an easy to read booklet. Any chapter of [10] (including the one I
inserted here), any dialogue by Rényi, perhaps the one here [20] can play
the rule of collateral texts.

Interested in the neurobiological background? Read Chapter 4 or 11
from [3].

You will be astonished how smart a Bush can be: [5].
Of the twin books [6] and [13] the first one needs quite a good back-

ground in mathematics. The second one is much less ordered, however, it
offers a much wider than usual approach to the philosophy of mathemat-
ics.

The minimum needed from set theory if you would like to learn math-
ematics seriously, is here: [12]. Relatively easy to read.

[15] is the best (and probably the shortest) paper to start with if you are
interested in chaos theory and its applications at the same time. [16, 17]
and [31] are classics of Computer Science. Visiting the sites [8, 27, 26] will
give provide you with a lot of interesting things to listen and to read. [24]
is a wonderful introduction to mathematics originally written for Marcell
Benedek, a literary man. [33] and [32] should be read together, especially
if you have a background in economics.



Chapter 16

Sources of information

You find here links which may help you not only in learning mathematics.

Connected to Mathematics The site http://thesaurus.maths.org/
mmkb/view.html?resource=index&msglang=en contains brief
explanations of mathematical terms and ideas in Danish, English,
Finnish, Hungarian, Lithuanian, Polish, Slovak and Spanish at a level
between elementary and high school.

Oxford Dictionary, Mathematics And not only mathematics. The site http:
//www.tankonyvtar.hu/konyvek/oxford-typotex/oxford-typotex-081030-43
provides a smooth transition between high school and university in
Hungarian.

Eric Weisstein: Wolfram Mathworld http://mathworld.wolfram.com/
is a university level glossary with Mathematica notebooks included.

Michiel Hazewinkel: Encyclopaedia of Mathematics http://eom.springer.
de is a graduate or research level reference work of mathematics.
Originally, it was a five volume set in Russian, then it has been trans-
lated and enlarged to consist of 10 volumes, and finally it arrived at
the Internet.

Dictionaries All the major English dictionaries are collected here http:
//www.onelook.com/. Pronunciation is also included.

English-Hungarian, Hungarian-English An unfinished still rich English-
Hungarian dictionary is here: http://mek.oszk.hu/00000/00076/
html/index.htm.
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Wikipedia Almost every time it is worth starting here: http://en.wikipedia.
org/wiki/Main\_Page.

Magyarító könyvecske Foreign words translated into Hungarian: http:
//www.net.klte.hu/~keresofi/mke/a1.htm

If you happen to find something what is useful, important or both, tell me,
and I’ll include it here.
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Chapter 17

Appendix 1: Assignments

These are the assignments of the previous year, the actual ones you re-
ceive from Ágota Busai http://www.math.bme.hu/~bgotti/matMC.
html.

17.1 Assignment 1

1. Could you possibly understand what is going on here: http://
www.mathematika.hu/flash/csoda1.swf? http://www.mathematika.hu/flash/csoda1.swf

2. Prove that 1× 0 = 0 using the axioms for real number in all steps.

3. Find the solution to the inequality 3x− 5 < −2x+ 12. again showing
which axiom is used in the individual steps.

4. Calculate (using a Venn diagram) A∩ (B∪A); calculate using a truth
table A∨ (B∧A).

17.2 Assignment 2

1. Show that both the additive and the multiplicative inverse is unique.

2. What is the range of the function x 7→ x2 + 3x+ 2?
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3. Show that the composition of two functions is a function. What
about the domain of the composition?

4. Let the relation ρ ⊂ N× N be defined by: nρm :⇐⇒ m = n+ 1.

(a) Is it a function? Is it surjective, injective, bijective?

(b) What is the inverse of this relation? Is that a function?

(c) What is the domain and range of this relation? And those of it
inverse?

17.3 Assignment 3

1. Is the relation {(x, y)inR2;y = 2x − x2} a function? If yes, what is its
range, is it injective, surjective, bijective?

2. Let f and g two real valued functions defined on the same set, and
let us introduce the relation f < g by the definition for all x ∈ D(f) :
f(x) < g(x). Show that this relation is transitive, monotonous wrt ad-
dition and conditionally monotonous wrt multiplication, but is not
trichotomous.

3. Could you characterize those first degree polynomials which are sur-
jections? (Additional problems: Second degree etc.? Injections, bijec-
tions?)

4. Find anything (methods of proof, logic, set theory, axiomatics, real
numbers etc.) connected to the lectures on mathematics on the web
page demonstrations.wolfram.com

17.4 Assignment 6

Characterize the sequences below (monotonicity, boundedness), find their
supremum and infimum. Which of them are convergent? In the case of
convergent sequences find their limit, and calculate the threshold indexN
given ε = 0.015.
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1. an := 1−4n
n+1

(n ∈ N)

2. an := 1√
n

(n ∈ N)

3. an := (−n)3 (n ∈ N)

4. an := (−1)n

n
(n ∈ N)

5. an := (−1)nn (n ∈ N)

17.5 Assignment 7

1. Solve problem 4 and 5 from the previous set.

2. Characterize the sequences below (monotonicity, boundedness), find
their supremum and infimum. Which of them are convergent? In
the case of convergent sequences find their limit, and calculate the
(if possible, the smallest) threshold index N given ε = 0.015. You
may also find that a sequence is divergent but tends to ±∞. To have
an idea about the behaviour of the sequence calculate the first few
members of the sequence, make drawings etc.

(a) an := n− 1
n

(n ∈ N),
(b) an := 5n+1

n−11.5
(n ∈ N),

(c) an := ((−1)n + 1) (n ∈ N),
(d) an := 1+2+···+n

n(n+1)
(n ∈ N),

(e) an+1 := 1
2
(an +

3
an
), a1 := 1 (n ∈ N).

17.6 Assignment 8

1. Give a formal proof of the statement that a monotonously decreasing
sequence if it is also bounded from below is convergent.
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2. Give a sequence which is monotonously decreasing and not conver-
gent.

3. Show that the sequence an :=
√
1+ an−1, a1 = 3 (n ∈ N) is conver-

gent and calculate its limit.

4. Find the tenth member of the Fibonacci sequence defined by fn =
fn−1 + fn−2, f1 = f2 = 1.

5. Characterize the sequences below (monotonicity, boundedness), find
their supremum and infimum. Which of them are convergent? In the
case of convergent sequences find their limit, and calculate the (if
possible, the smallest) threshold index N given ε = 0.015. You may
also find that a sequence is divergent but tends to ±∞. In this case
find a threshold index from which on |an| > 1000 holds. To have
an idea about the behaviour of the sequence calculate the first few
members of the sequence, make drawings etc.

(a) an := n2−3n+1
n

(n ∈ N),

(b) an := n2−3n+1
−n2+2

(n ∈ N),

(c) an := n2−3n+1
n3+n2+n+1

(n ∈ N),

(d) an := n2−3n+1
(−1)nn2+n+1

(n ∈ N),

17.7 Assignment 9

1. Calculate the values f(
√
2), f(

√
8), f(

√
log

2
1024), if

f(x) :=


2x3 + 1, if −1 ≤ x < 0;
1
x−2

if 0 ≤ x < π;
x

x2−2
if π ≤ x ≤ 6.

2. Suppose we know f(x−2) = 1
x+1

(x ̸= −1).What do we know about
f?
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3. Determine the largest intervals which may be taken as the domain of
the functions defined by the formulae:

a) x2

1+x
b)

√
x+

√
−x c) 3

√
2x

x2−2x+2
d) lg(sin(lg(x))).

4. The domain of f is the interval [0, 1].What is the domain of f ◦ tan?

5. Calculate the limits below
a) limx→0 1

1+x
b) limx→1 x4+2x2−3x2−3x+2

c) limx→+∞ x2−1
2x2+1

.

6. Find the points where the function defined by the formula is contin-
uous:

f(x) :=


1− x2, if x ≤ 0;
(1− x)2 if 0 < x ≤ 2;
3− x if 2 < x.

7. How to choose the parameter a to get a continuous function by the
definition

f(x) :=

{
ax2 + 1, if 0 < x;
−x if x ≤ 0.

8. Calculate the inverse of the function: [0, 1] ∋ x 7→ 3x+ 5 ∈ R.

17.8 Assignment 10

1. What can you say about the continuity of the functions f◦g and g◦f,
if f = Sign and g = 1+ id2?

2. Calculate the limit limx→0 √
1+x+x2−1

x

3. Find the points of discontinuity of the function defined by

f(x) :=

{
x2−5x+6
x2−7x+10

, if x ̸= 2, x ̸= 5;
0 if x = 2, x = 5.

4. Suppose the functions f and g are both discontinuous at the point of
their domain a. Is it possible that f+ g, f− g, f/g, f2 is continuous at
a?
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5. Suppose the functions f is continuous at the point of its domain a,
and the function g is discontinuous at the point of its domain a. Is it
possible that f+ g, f− g, f/g, f2 is continuous at a?

6. Calculate the limits below
a) limx→0 1

1+x
−1

x
b) limx→1 (y+x)2−y2

x
c) limh→0 (x+h)2−x2

h
.
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Appendix 2: Mid-terms

18.1 Mid-term 1

18.1.1 Preliminary version

Exercise 1 Formulate the sentences below using logical operators.
“And if you’ve got to sleep
A moment on the road
I will steer for you
And if you want to work the street alone
I’ll disappear for you
If you want a father for your child
Or only wanna walk with me a while
Across the sand
I’m your man” (Leonard Cohen)

Exercise 2 Translate into plain English.
A is a necessary and sufficient condition for B.

Exercise 3 Expand the expressions below using logical identities. Give
their truth table.

1. x ⇐⇒ y

2. (¬x∨ y) =⇒ (v∧w)
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Exercise 4 Convert the expression using ∪,∩ and complement.

A− (C− (B− (B− C)))

Exercise 5 Prove the statements below for every A,B and C set. Illustrate
the expressions on either side of the equal sign by using Venn diagrams.

1. (A ∪ B) ∩ (A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)

2. A− (B− C) = (A− B) ∪ (A ∩ C)

Exercise 6 How can you arrive at Barack Obama through a chain of ac-
quaintances of length not more than 6?

Figure 18.1: Exercise 7.

Exercise 7 Color the “map” of the unicorn in Fig. 18.1. Draw its graph
and color the vertices too.

Exercise 8 Describe the properties of the relations below. Are they func-
tions? What is the inverse of the relations, is that a function? What about
their properties?
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1. ρ ⊂ N× N, n ρm ⇐⇒ m ≥ n− 1

2. ρ ⊂ N× N, n ρm ⇐⇒ m = 7n− 4

3. ρ ⊂ Z× Z, n ρm ⇐⇒ n = m2


