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Computation with reaction networks

Computation near action.

Biological cells:

e process information, and
e have macromolecules.

How to compute in a wet environment of a living cell?

Synthetic biologists can implement reaction networks, using
for instance DNA-strand displacement.
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Programmable chemical controllers made
from DNA

Yuan-Jyue Chen', Neil Dalchau?, Niranjan Srinivas®, Andrew Phillips? Luca Cardelli?,
David Soloveichik** and Georg Seelig'**
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DNA as a universal substrate for chemical kinetics
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Joint work with David Anderson (University of
Wisconsin-Madison)

input hidden hidden output
layer L° layer L' layer L™! layer L™

@ David F. Anderson, Badal Joshi, and Abhishek Deshpande. On
reaction network implementations of neural networks, Journal of
Royal Society Interface, 18, 177, (2021).

@ David F. Anderson, and Badal Joshi. Chemical mass-action
systems as analog computers: implementing arithmetic
computations at specified speed, arXiv, April 2024.
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Why analog computing?

Initial value problem

z(t) =1—2x(t), x(0)=xo.

Reaction network “computer”

0=X x(0) = xo

What about arithmetic or discrete processes?



Existing schemata for arithmetic:
Conservation law based schema

o Conservation-law based schema ': eg. Addition
o a(0)=a, b0)=0b, z(0)=0.

A— X, B-—X.
lim x(t) = a+b.
t—o0

e Works for discrete (marbles) or continuous (water);
stochastic or deterministic.

o Memory lost. No trace of inputs remains after computation.
Problem when composing elementary computations or
reusing inputs.

'H. L. Chen, D. Doty, W. Reeves, D. Soloveichik. “Rate-independent
computation in continuous chemical reaction networks.” Journal of the
ACM 70.3 (2023): 1-61.



Existing schemata for arithmetic:
Positive steady state based schema

e Positive steady state based schema ?: eg. Addition

A—-A+X, B—-B+X, X-—=0,
&(t) = a(t) +0(t) — x(t),
tlg(r)lo x(t) = tlgglo (a(t) +0b()) .

o If this is the entire network:

a(t) = a(0), b(t) =0b(0) for all t > 0,
lim x(t) = a(0) + b(0).

t—o00

o Inputs not degraded.

o Can do parallel computation.

2H. J. Buisman, H.M. ten Eikelder, P.A. Hilbers, & A.M. Liekens
(2009). Computing algebraic functions with biochemical reaction networks.
Artificial life, 15(1), 5-19.




Reaction network and mass action kinetics

X1 4 Xy — X5,
X3 — X1+ Xo,
2X3 — 0.
T1 -1 1 0
z(t) = | 22 | = crz1m0 -1 + cax3 1 + Cgl‘g 0
T3 1 -1 —2

@ A polynomial dynamical system
z=f(x), zeR” f:R*"—>R"
is a mass action system if and only if x; appears in any
monomial of f;(x) that has a negative coefficient.

e This condition ensures that the nonnegative orthant RZ is
forward-invariant.



Negativity and dual rail representation

Dual rail map

(a,0), ifa>0,

H n —
ar (ap, an) {(O,—a), if a < 0.

Most algebra in dual rail is straightforward.
a-b=(ap,an) - (bp,bn) = (ap — an) - (bp — bn)
= apby + anby, — apby, — anby, = (apby + anbp, apby, + anby).

One exception: “real inversion”

L é,o) it a, > 0,
0, if a, > 0.

1
Qn



Assumptions

able to record concentrations — inputs and outputs of
computation — with arbitrary precision,

can implement arbitrary reaction networks (no binary
constraint),

all reactions occur at the same rate.



Input independent speed of computation

Suppose we want reciprocal of a > 0.

0—-X, A+X— A

r=1-—ax.
o(t) = é + (m(()) _ 1) emat.

o z(t) 22 1/a.
o Speed of computing n digits:

n
— ~ Q.

Ty



Input independent speed of computation

X 52X, A+2X 5 A+ X

t=z(l —ax).
Unique solution for all time:

B xo/a
2(t) = (1/a — xgp)e~t + o’

o z(t) 22 1/a.
o Speed of computing n digits:
n

— ~ 1.

n



Speed of computation

Definition

Let g : R>o — R be a real-valued function that converges to a
real number g* € R. The rate of convergence of g to g* is
defined to be
In|g(t) — g*
py = — limsup lg(t) — g \7
t—o0 t
whenever p, € (0, 00]. Alternatively, in the context of
computation, we say that g(t) computes g* at speed py.

lg(t) — g*| ~ f(t)e P, f(t) is sub-exponential.



Simple convergence results

Lemma: For each of i € {1,2}, let g; : R>9p — R be a real-valued
function that converges to g7 € R at a rate greater than p,,.

o The sum g1 (t) + g2(t) converges to gj + g5 at a rate that is
at least

min{ﬂm 1 Pga }-

e The product g;(t)ga(t) converges to gigs at a rate that is at
least

min{pglvpgz}v if g1 # 0,95 # 0,
Pgrs if g1 = 0,93 #0,
Pgas if gt # 0,95 =0,
Pgr + Pgz if gt =0,95 =0.



Simple convergence results

Lemma: Let g : R>g — R be a real-valued function that
converges to a nonzero real constant ¢g* € R\ {0} at a rate that
is at least py. Then 1/g(t) converges to 1/g* at rate that is at
least py.

Lemma: Let g : R>g — R be a real-valued function that
converges to a non-negative constant g* € R>¢ at a rate that is
at least p,. Then for any m € Rsg, g(t)'/™ converges to (g*)/™
at rate that is at least

pg7 lf g* > 07
pg/m, if g* =0.



Analysis of non-autonomous systems

Lemma: Let g; : R>¢9 — R be a real-valued function that
converges to g7 € R at a rate that is at least pg,; let

92 : R>0 — R be a real-valued function that converges to a
positive limit g5 € R5¢ at a rate that is at least pg,. We assume
that the g1, g2 are smooth enough so that for any x(0) = xg > 0,
the following non-autonomous differential equation has a unique
solution z : R>g — R for all time

#(t) = g1(t) = g2(t)x(t).

Then z(t) converges to gj /g5 at rate that is at least

min{pgl 1 Pga> 95}



Analysis of non-autonomous systems

Lemma: For i € {1,2}, let g; : R>9 — R be a real-valued
function that converges to a positive limit g € Ry at a rate
that is at least py,. We assume that the g1, g2 are smooth
enough so that for any x(0) = xy > 0, the following
non-autonomous differential equation has a unique solution
z : R>9 — R>g for all time

a(t) = x(t)(91(t) — g2()z(®)™), (M € Z>o).

1/m

Then x(t) converges to (gi/g3)"'"" at rate that is at least

min{pg, , pg,, Mgy }-



Analysis of non-autonomous systems

Lemma: Let g; : R>¢9 — R be a real-valued function that
converges to a negative limit g7 € Ry at a rate that is at least
Pgi; let g2 : R>g — R be a real-valued function that converges to
a positive limit g5 € Ry at a rate that is at least pg,. We
assume that g1 and go are smooth enough so that for any

x(0) = g > 0, the following non-autonomous differential
equation has a unique solution = : R>o — R>( for all time

#(t) = z()(g1(t) = g2()z(1)™), (M € Zxo).

Then z(t) converges to 0 at rate that is at least

min{pgl ) _gT}



Analysis of non-autonomous systems

Lemma: Let g : R>g — R be a real-valued function that
converges to 0 at a rate that is at least p,. We assume that g is
smooth enough so that for any x(0) = z¢ > 0, the following
non-autonomous differential equation has a unique solution

z : R>0 = Ry for all time

z(t) =z(t)(1 — g(t)z(t)™), (m € Zso).
Then for any € > 0, there is a ¢. > 0 such that

z(t) > cee™™pa/m k=)t gor all ¢ > 0.



Absolute difference Consider the reaction network and
mass-action system

{Y - 2Y, 24+3Y —24+2Y,

29B+3Y —2B+2Y, A+B+3Y - A+ B+5Y,
X 22X, Y+2X =Y + X},

g(t) = y(t) (1= (a(t) = b()*y(1)*),

#(t) = 2(t) (1 —y()z(t)),

where a(t) and b(t) are non-negative functions of time that
converge to non-negative constants a* and b* at rates that are
at least p, and py, respectively. Then the concentration of
species X, i.e. the variable x, computes absolute difference
(a*,b*) — x* = |a* — b*| at speed that is at least

min{pa, Pb; 1}



Lemma (Rectified subtraction): Consider the reaction network
and mass-action system
{Y =2Y, 24+3Y =-2A+2Y, 2B+3Y —2B+2Y,
A+ B+3Y - A+ B+5Y, A4+Y+X > A+Y 42X,
B4+Y+X—>B+Y, Y+2X Y+ X},
9(t) = y(t) (1 - (a(t) = b(t))*y(t)?),
() = y(t)x(t) (a(t) — b(t) —x(t)),
where a(t) and b(t) are non-negative functions of time that
converge to non-negative constants a* and b* at rates that are

at least p, and py, respectively. Then the concentration of
species X, i.e. the variable x, computes rectified subtraction

a*—b* ifa" > b
0 if a* < b*

e
at speed that is at least

min{pq, pp, 1}



Lemma (Partial real inversion): Consider the reaction network

and mass-action system

{Y =2Y, A,+2Y - A,+7Y,

Ap +2Y - Ap+Y, Ap+Y +X = A, +Y +2X,

A +Y +X -5 A, +Y, 24, +Y +2X 24, +Y + X},
y(t) = y(t) (1 = (ap(t) + an(t))y(t))

o(t) = y(t)x(t) (ap(t)(1 — ap(t)x(t)) — an(t))
We assume that one and only one of a,, or a;, is positive, while

the other is zero. Then the concentration of species X, i.e. the
variable x, computes partial real inversion

/a3, if ab >0,

p
0, if a =0,

w;aﬁk+{
at speed that is at least

min{pqa,, Pa,, 1}



m-th root Consider the reaction network and mass-action
system
{Y -2Y, A+ (m+1)Y - A+mY,

X —=2X, Y+2X Y+ X}

y(t) = y(t) (1 —a(t)y()™),

() = z(t) (1 —y()z(t))
where m € Z> and a(t) is a non-negative-valued function of
time that converges to a non-negative constant a* at a rate that
is at least p,. Then the concentration of species X, i.e. the

variable x, computes the mth root a* — x* = ¥ a* at speed
that is at least

{min{pa, 1}, if a* # 0,

min {221}, ifa* = 0.



Speed of an arbitrary arithmetic computation

Theorem (Composite computations)

Consider a computation that is composed from a finite number
of elementary computations.
o Then the speed of this composite computation is at least that
of the slowest elementary computation.

o If none of the elementary computations is a root of zero,
then the speed of the composite computation is at least 1.

o Computation speed independent of number of elementary
steps.
@ Speed of each elementary step can be controlled.



aa

a) Identification.

Daxb

(d) Multiplication.

a .
P

o 8~

(g) Rectified subtraction.

Elementary gates

a«[}»%

(b) Inversion. (c) mth root.

a

b:Dm b
(e) Addition. (f) Absolute difference.

ifap > 0,an =0,
if ap = 0,a, > 0.

ﬂp

) Partial real inversion.



Division

Maximum

max{a, b}

ol



Real Addition

a
a— " ap+ by —(an + by)
by
a .
b" an +bn (ap+bp)

Real Multiplication

a apby + anbn

( apby + anby

bn




Open questions

Proved results in idealized mass action setting.

Arithmetic at input independent speed using only
bimolecular reactions?

When doing rectified subtraction a — b, an intermediate
variable goes to oo when a = b. Can this be avoided?
Assumed all reactions have rate constant 1. What if rate
constants are known, but not controllable? How should the
constructions be modified?

A root of zero is a bottleneck. Can this be avoided while
keeping input-independent speed?

Can the root of zero be used to advantage? Use it as “zero
detector” or “equality detector’?

What about power series or limiting processes?

e Can we compute other functions (eg. log, exp, sin etc.) at

(]

input independent speeds?
Algorithms for Boolean and other algebras.
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