
Chemical mass-action systems as analog
computers:

implementing arithmetic computations at
specified speed

Badal Joshi
California State University San Marcos

Formal Reaction Kinetics

May 7, 2024

Computation with reaction networks

Computation near action.

Biological cells:
process information, and
have macromolecules.

How to compute in a wet environment of a living cell?

Synthetic biologists can implement reaction networks, using
for instance DNA-strand displacement.

Joint work with David Anderson (University of
Wisconsin-Madison)

David F. Anderson, Badal Joshi, and Abhishek Deshpande. On
reaction network implementations of neural networks, Journal of
Royal Society Interface, 18, 177, (2021).

David F. Anderson, and Badal Joshi. Chemical mass-action
systems as analog computers: implementing arithmetic
computations at specified speed, arXiv, April 2024.

https://royalsocietypublishing.org/doi/10.1098/rsif.2021.0031
https://royalsocietypublishing.org/doi/10.1098/rsif.2021.0031
http://arxiv.org/abs/2404.04396
http://arxiv.org/abs/2404.04396
http://arxiv.org/abs/2404.04396

Why analog computing?

Initial value problem

ẋ(t) = 1− x(t), x(0) = x0.

Reaction network “computer”

0 � X x(0) = x0

What about arithmetic or discrete processes?

Existing schemata for arithmetic:
Conservation law based schema

Conservation-law based schema 1: eg. Addition
a(0) = a, b(0) = b, x(0) = 0.

A→ X, B → X.

lim
t→∞

x(t) = a+ b.

Works for discrete (marbles) or continuous (water);
stochastic or deterministic.
Memory lost. No trace of inputs remains after computation.
Problem when composing elementary computations or
reusing inputs.

1H. L. Chen, D. Doty, W. Reeves, D. Soloveichik. “Rate-independent
computation in continuous chemical reaction networks.” Journal of the
ACM 70.3 (2023): 1-61.

Existing schemata for arithmetic:
Positive steady state based schema

Positive steady state based schema 2: eg. Addition

A→A+X, B → B +X, X → 0,

ẋ(t) = a(t) + b(t)− x(t),
lim
t→∞

x(t) = lim
t→∞

(a(t) + b(t)) .

If this is the entire network:

a(t) = a(0), b(t) = b(0) for all t ≥ 0,

lim
t→∞

x(t) = a(0) + b(0).

Inputs not degraded.
Can do parallel computation.

2H. J. Buisman, H.M. ten Eikelder, P.A. Hilbers, & A.M. Liekens
(2009). Computing algebraic functions with biochemical reaction networks.
Artificial life, 15(1), 5-19.

Reaction network and mass action kinetics

X1 +X2 → X3,

X3 → X1 +X2,

2X3 → 0.

ẋ(t) =

ẋ1ẋ2
ẋ3

 = c1x1x2

 −1−1
1

+ c2x3

 1
1
−1

+ c3x
2
3

 0
0
−2

 .

A polynomial dynamical system
ẋ = f(x), x ∈ Rn, f : Rn → Rn
is a mass action system if and only if xi appears in any
monomial of fi(x) that has a negative coefficient.
This condition ensures that the nonnegative orthant Rn≥0 is
forward-invariant.

Negativity and dual rail representation

Dual rail map

a 7→ (ap, an) =

{
(a, 0), if a > 0,

(0,−a), if a ≤ 0.

Most algebra in dual rail is straightforward.

a · b = (ap, an) · (bp, bn) = (ap − an) · (bp − bn)
= apbp + anbn − apbn − anbp = (apbp + anbn, apbn + anbp).

One exception: “real inversion”

a−1 =


(

1
ap
, 0
)

if ap > 0,(
0, 1

an

)
if an > 0.

Assumptions

able to record concentrations – inputs and outputs of
computation – with arbitrary precision,

can implement arbitrary reaction networks (no binary
constraint),

all reactions occur at the same rate.

Input independent speed of computation

Suppose we want reciprocal of a > 0.

0→ X, A+X → A

ẋ = 1− ax.

x(t) =
1

a
+

(
x(0)− 1

a

)
e−at.

x(t)
t→∞−−−→ 1/a.

Speed of computing n digits:

n

Tn
∼ a.

Input independent speed of computation

X → 2X, A+ 2X → A+X

ẋ = x(1− ax).

Unique solution for all time:

x(t) =
x0/a

(1/a− x0)e−t + x0
,

x(t)
t→∞−−−→ 1/a.

Speed of computing n digits:

n

Tn
∼ 1.

Speed of computation

Definition

Let g : R≥0 → R be a real-valued function that converges to a
real number g∗ ∈ R. The rate of convergence of g to g∗ is
defined to be

ρg = − lim sup
t→∞

ln |g(t)− g∗|
t

,

whenever ρg ∈ (0,∞]. Alternatively, in the context of
computation, we say that g(t) computes g∗ at speed ρg.

|g(t)− g∗| ∼ f(t)e−ρgt, f(t) is sub-exponential.

Simple convergence results

Lemma: For each of i ∈ {1, 2}, let gi : R≥0 → R be a real-valued
function that converges to g∗i ∈ R at a rate greater than ρgi .

The sum g1(t) + g2(t) converges to g∗1 + g∗2 at a rate that is
at least

min{ρg1 , ρg2}.

The product g1(t)g2(t) converges to g∗1g∗2 at a rate that is at
least 

min{ρg1 , ρg2}, if g∗1 6= 0, g∗2 6= 0,

ρg1 , if g∗1 = 0, g∗2 6= 0,

ρg2 , if g∗1 6= 0, g∗2 = 0,

ρg1 + ρg2 , if g∗1 = 0, g∗2 = 0.

Simple convergence results

Lemma: Let g : R≥0 → R be a real-valued function that
converges to a nonzero real constant g∗ ∈ R \ {0} at a rate that
is at least ρg. Then 1/g(t) converges to 1/g∗ at rate that is at
least ρg.

Lemma: Let g : R≥0 → R be a real-valued function that
converges to a non-negative constant g∗ ∈ R≥0 at a rate that is
at least ρg. Then for any m ∈ R>0, g(t)1/m converges to (g∗)1/m

at rate that is at least{
ρg, if g∗ > 0,

ρg/m, if g∗ = 0.

Analysis of non-autonomous systems

Lemma: Let g1 : R≥0 → R be a real-valued function that
converges to g∗1 ∈ R at a rate that is at least ρg1 ; let
g2 : R≥0 → R be a real-valued function that converges to a
positive limit g∗2 ∈ R>0 at a rate that is at least ρg2 . We assume
that the g1, g2 are smooth enough so that for any x(0) = x0 ≥ 0,
the following non-autonomous differential equation has a unique
solution x : R≥0 → R for all time

ẋ(t) = g1(t)− g2(t)x(t).

Then x(t) converges to g∗1/g∗2 at rate that is at least

min{ρg1 , ρg2 , g∗2}.

Analysis of non-autonomous systems

Lemma: For i ∈ {1, 2}, let gi : R≥0 → R be a real-valued
function that converges to a positive limit g∗i ∈ R>0 at a rate
that is at least ρgi . We assume that the g1, g2 are smooth
enough so that for any x(0) = x0 > 0, the following
non-autonomous differential equation has a unique solution
x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(g1(t)− g2(t)x(t)m), (m ∈ Z>0).

Then x(t) converges to (g∗1/g
∗
2)

1/m at rate that is at least

min{ρg1 , ρg2 ,mg∗1}.

Analysis of non-autonomous systems

Lemma: Let g1 : R≥0 → R be a real-valued function that
converges to a negative limit g∗1 ∈ R<0 at a rate that is at least
ρg1 ; let g2 : R≥0 → R be a real-valued function that converges to
a positive limit g∗2 ∈ R>0 at a rate that is at least ρg2 . We
assume that g1 and g2 are smooth enough so that for any
x(0) = x0 > 0, the following non-autonomous differential
equation has a unique solution x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(g1(t)− g2(t)x(t)m), (m ∈ Z>0).

Then x(t) converges to 0 at rate that is at least

min{ρg1 ,−g∗1}.

Analysis of non-autonomous systems

Lemma: Let g : R≥0 → R be a real-valued function that
converges to 0 at a rate that is at least ρg. We assume that g is
smooth enough so that for any x(0) = x0 > 0, the following
non-autonomous differential equation has a unique solution
x : R≥0 → R≥0 for all time

ẋ(t) = x(t)(1− g(t)x(t)m), (m ∈ Z>0).

Then for any ε > 0, there is a cε > 0 such that

x(t) ≥ cεe(min{ρg/m,1}−ε)t, for all t ≥ 0.

Absolute difference Consider the reaction network and
mass-action system

{Y → 2Y, 2A+ 3Y → 2A+ 2Y,

2B + 3Y → 2B + 2Y, A+B + 3Y → A+B + 5Y,

X → 2X, Y + 2X → Y +X},
ẏ(t) = y(t)

(
1− (a(t)− b(t))2y(t)2

)
,

ẋ(t) = x(t) (1− y(t)x(t)) ,

where a(t) and b(t) are non-negative functions of time that
converge to non-negative constants a∗ and b∗ at rates that are
at least ρa and ρb, respectively. Then the concentration of
species X, i.e. the variable x, computes absolute difference
(a∗, b∗) 7→ x∗ = |a∗ − b∗| at speed that is at least

min{ρa, ρb, 1}.

Lemma (Rectified subtraction): Consider the reaction network
and mass-action system

{Y → 2Y, 2A+ 3Y → 2A+ 2Y, 2B + 3Y → 2B + 2Y,

A+B + 3Y → A+B + 5Y, A+ Y +X → A+ Y + 2X,

B + Y +X → B + Y, Y + 2X → Y +X},
ẏ(t) = y(t)

(
1− (a(t)− b(t))2y(t)2

)
,

ẋ(t) = y(t)x(t) (a(t)− b(t)− x(t)) ,

where a(t) and b(t) are non-negative functions of time that
converge to non-negative constants a∗ and b∗ at rates that are
at least ρa and ρb, respectively. Then the concentration of
species X, i.e. the variable x, computes rectified subtraction

(a∗, b∗) 7→

{
a∗ − b∗ if a∗ > b∗

0 if a∗ ≤ b∗

at speed that is at least

min{ρa, ρb, 1}.

Lemma (Partial real inversion): Consider the reaction network
and mass-action system

{Y → 2Y, Ap + 2Y → Ap + Y,

An + 2Y → An + Y, Ap + Y +X → Ap + Y + 2X,

An + Y +X → An + Y, 2Ap + Y + 2X → 2Ap + Y +X},
ẏ(t) = y(t) (1− (ap(t) + an(t))y(t))

ẋ(t) = y(t)x(t) (ap(t)(1− ap(t)x(t))− an(t))

We assume that one and only one of a∗p or a∗n is positive, while
the other is zero. Then the concentration of species X, i.e. the
variable x, computes partial real inversion

(a∗p, a
∗
n) 7→

{
1/a∗p, if a∗p > 0,

0, if a∗p = 0,

at speed that is at least

min{ρap , ρan , 1}.

m-th root Consider the reaction network and mass-action
system

{Y → 2Y, A+ (m+ 1)Y → A+mY,

X → 2X, Y + 2X → Y +X}
ẏ(t) = y(t) (1− a(t)y(t)m) ,
ẋ(t) = x(t) (1− y(t)x(t)) ,

where m ∈ Z≥2 and a(t) is a non-negative-valued function of
time that converges to a non-negative constant a∗ at a rate that
is at least ρa. Then the concentration of species X, i.e. the
variable x, computes the mth root a∗ 7→ x∗ = m

√
a∗ at speed

that is at least {
min{ρa, 1}, if a∗ 6= 0,

min
{ρa
m , 1

}
, if a∗ = 0.

Speed of an arbitrary arithmetic computation

Theorem (Composite computations)

Consider a computation that is composed from a finite number
of elementary computations.

Then the speed of this composite computation is at least that
of the slowest elementary computation.
If none of the elementary computations is a root of zero,
then the speed of the composite computation is at least 1.

Computation speed independent of number of elementary
steps.
Speed of each elementary step can be controlled.

Elementary gates

Division

Maximum

Real Addition

Real Multiplication

Open questions

Proved results in idealized mass action setting.
Arithmetic at input independent speed using only
bimolecular reactions?
When doing rectified subtraction a −̇ b, an intermediate
variable goes to ∞ when a = b. Can this be avoided?
Assumed all reactions have rate constant 1. What if rate
constants are known, but not controllable? How should the
constructions be modified?
A root of zero is a bottleneck. Can this be avoided while
keeping input-independent speed?
Can the root of zero be used to advantage? Use it as “zero
detector” or “equality detector”?
What about power series or limiting processes?
Can we compute other functions (eg. log, exp, sin etc.) at
input independent speeds?
Algorithms for Boolean and other algebras.

References:
David F. Anderson, Badal Joshi, and Abhishek Deshpande.
On reaction network implementations of neural networks,
Journal of Royal Society Interface, Vol. 18, Issue 177,
(April 2021), arXiv.
David F. Anderson, and Badal Joshi. Chemical mass-action
systems as analog computers: implementing arithmetic
computations at specified speed, arXiv, submitted April
2024.

Acknowledgements:
Work supported by NSF grant DMS-2051498.

https://royalsocietypublishing.org/doi/10.1098/rsif.2021.0031
https://arxiv.org/abs/2010.13290
http://arxiv.org/abs/2404.04396
http://arxiv.org/abs/2404.04396
http://arxiv.org/abs/2404.04396
http://arxiv.org/abs/2404.04396

Thank you!

