
A Multi-Parameter Singular Perturbation Analysis
of the Robertson Model

L. Baumgartner1 & P. Szmolyan2

Abstract

The Robertson model describing a chemical reaction involving three reactants is one of
the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of
three reaction rates k1, k2, and k3, with largely differing orders of magnitude, acting as
parameters. The model has been widely used as a numerical test problem. Surprisingly,
no asymptotic analysis of this multiscale problem seems to exist. In this paper we provide
a full asymptotic analysis of the Robertson model under the assumption k1, k3 ≪ k2. We
rewrite the equations as a two-parameter singular perturbation problem in the rescaled
small parameters (ε1, ε2) := (k1/k2, k3/k2), which we then analyze using geometric singular
perturbation theory (GSPT). To deal with the multi-parameter singular structure, we
perform blow-ups in parameter- and variable space. We identify four distinct regimes in
a neighbourhood of the singular limit (ε1, ε2) = (0, 0). Within these four regimes we use
GSPT and additional blow-ups to analyze the dynamics and the structure of solutions. Our
asymptotic results are in excellent qualitative and quantitative agreement with the numerics.

Keywords: Multi-parameter singular perturbation · Robertson model · Geometric singular perturbation
theory · Blow-up method
MSC2020: 34E10 · 34E13 · 34E15 · 92E20

1 Introduction

In this paper we give a dynamical systems analysis of the Robertson model [27] based on methods from
geometric singular perturbation theory (GSPT). The Robertson model describes a chemical reaction of three
reactants X, Y , and Z, which interact according to the reaction scheme shown in Figure 1.

X
k1−→ Y

Y + Y
k2−→ Y + Z

Y + Z
k3−→ X + Z

Figure 1: Reaction scheme of the Robertson model.

With mass-action kinetics the Robertson model leads to the following system of ODEs

ẋ = −k1x + k3yz

ẏ = k1x − k2y2 − k3yz

ż = k2y2,

(1.1)
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with corresponding concentrations x, y, z ∈ R, reaction rates ki > 0, i = 1, 2, 3. As usual ˙( ) := d
dt denotes

the time derivative. The classical choice of parameters and initial values in [27] is

k1 = 4 · 10−2, k2 = 3 · 107, k3 = 104 (1.2)

and
(x(0), y(0), z(0))T = (1, 0, 0)T . (1.3)

The qualitative dynamics of system (1.1) is fairly simple.
Lemma 1.1. All solutions of (1.1) starting in the non-negative orthant R3

+ exist globally in forward time.
The z-axis is a line of attracting equilibria. The solution with initial value (x0, y0, z0)T ∈ R3

+ converges to the
equilibrium (x̂, ŷ, ẑ)T = (0, 0, c)T , with c := x0 + y0 + z0 > 0.

Proof. Adding the three equations of (1.1) implies that the quantity x + y + z = const. is conserved. Since
on the boundary of the non-negative orthant R3

+, the flow does not point outwards, i.e.,

ẋ|x=0 = k3yz ≥ 0, ẏ|y=0 = k1x ≥ 0, ż|z=0 = k2y2 ≥ 0,

we can conclude that R3
+ is forward invariant under (1.1), see [1, p. 219]. Consequently, the solution starting

at an initial value (x0, y0, z0)T ∈ R3
+, where 0 < c := x0 + y0 + z0, is contained in the compact set

K = {(x, y, z)T ∈ R3
+ : x + y + z = c}

and therefore exists for all times t ≥ 0.

Due to the conserved quantity, we may reduce the dimension of (1.1) by using x = c − y − z to obtain

ẏ = k1(c − y − z) − k2y2 − k3yz

ż = k2y2.
(1.4)

Since the divergence of the vector field (1.4) given by −k1 − 2k2y − k3z is negative for positive reaction rates,
we can exclude non-constant periodic solutions by the Bendixson-Dulac criterion. The unique equilibrium
of (1.4) is given by (ŷ, ẑ)T = (0, c)T , hence by the Poincare-Bendixson theorem all solutions of (1.4) will
ultimately converge to this equilibrium.

In particular, we conclude from Lemma 1.1 that the solution of (1.1) with initial value (1.3) converges to
the unique equilibrium (x̂, ŷ, ẑ)T = (0, 0, 1)T . Thus, our interest in the Robertson model is not this rather
simple dynamics but the multi-scale structure of these solutions which we now describe in a preliminary way
based on numerical simulations. The time series of a numerical solution of (1.1) with the classical choice
of reaction rates (1.2) and initial condition (1.3) is shown in Figure 2. In the time series three distinct
parts can be distinguished. The reaction starts with a very fast initial increase of y up to a plateau value
ynum

max ≈ 3.65 · 10−5. This is followed by an intermediate phase where y is almost constant. In the third part
the conversion of x into z (via y) proceeds on a much longer time scale. Numerical experiments indicate that
this solution structure occurs for all parameter values

0 < k1, k3 ≪ k2 (1.5)

This peculiar structure of solutions has been observed early on as the Robertson model was widely used as a
test problem for stiff numerical solvers, e.g. [11, p. 3]. Up to our knowledge the Robertson model (1.1) has
been investigated only numerically. No analytical results explaining the solution structure described above
seem to be available.

Similar phenomena can be observed in many chemical reactions and more general classes of biological models.
Due to the occurrence of variables and parameters of widely different orders of magnitude most of these
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Figure 2: Numerical solution of equation (1.1) with an implicit BDF solver [28]. Note the logarithmic time
scale.

models are multi-scale in nature, i.e. individual trajectories contain a succession of fast and slow processes
on widely separated time scales. This is the basis of the widely used quasi steady state approximation
(QSSA) used to obtain lower-dimensional approximating models, i.e. reactants involved in fast processes are
eliminated by assuming that they are in equilibrium [29, 30].

A powerful concept in explaining these phenomena are slow manifolds. The mathematical theory of slow
manifolds and more general of slow-fast dynamical systems, known as geometric singular perturbation theory
(GSPT), is well developed for ODEs depending singularly on one distinguished parameter ε ≪ 1, see [8, 16,
21, 24, 32] an the numerous references therein. The origins of GSPT date back to the work of Fenichel [8],
where he introduced an invariant manifold approach for singularly perturbed differential equations of the form

z′ = H(z, ε) (1.6)

with z ∈ Rk, k ≥ 2 and ε ≪ 1, see also [32] for a modern presentation. A problem of this form is a singular
perturbation problem iff the solution set of the equation H(z, 0) = 0 is a manifold S, which is denoted as the
critical manifold of the system.

An important special case of (1.6) are slow-fast systems in standard form given by

x′ = f(x, y, ε)
y′ = εg(x, y, ε)

(1.7)

with x ∈ Rm, y ∈ Rn and ε ≪ 1, where differentiation is w.r.t the fast time τ . Systems of the form (1.7) are
called slow-fast in standard form, because as long as f and g are O(1) the dynamics of x is fast compared to
y, i.e. x is the fast variable and y the slow variable.
Remark 1.2. It will turn out that for the analysis of the Robertson model both forms (1.6) and (1.7) are
relevant. In the following explanation of the basic principles of GSPT, we will limit ourselves to the important
special case (1.7).

The ε = 0 limit problem of (1.7)
x′ = f(x, y, 0)
y′ = 0

(1.8)

is called layer problem, which is used as an approximation of the fast dynamics. The set of equilibria of (1.8)

S := {(x, y)T ∈ Rm+n : f(x, y, 0) = 0},

3



is referred to as critical manifold, despite the fact that S does not need to be a manifold in the strict sense.
By switching to the slow time t = ετ we may write system (1.7) in the (for ε > 0) equivalent form

εẋ = f(x, y, ε)
ẏ = g(x, y, ε)

(1.9)

where differentiation is w.r.t. the slow time t. The limit problem on the slow time scale

0 = f(x, y, 0)
ẏ = g(x, y, 0)

(1.10)

is called reduced problem and is used as an approximation of the slow dynamics. Observe that the reduced
problem is a dynamical system on the critical manifold S. Parts of the critical manifold S, where the Jacobian
∂f
∂x is regular, may be represented locally as graphs x = h(y) by the implicit function theorem. The reduced
flow on S is then given by

ẏ = g(h(y), y, 0).

The goal of GSPT is to combine the dynamics of the two simpler limiting systems (1.8), and (1.10) to
understand the behaviour of (1.7) for 0 < ε ≪ 1. In [8] Fenichel showed that if the Jacobian ∂xf is uniformly
hyperbolic, the critical manifold S perturbs smoothly to a locally invariant slow manifold Sε which is
O(ε)-close to S, shares its stability properties with S and the slow flow on Sε converges to the reduced flow
as ε → 0.

A major difficulty that remained in GSPT were non-hyperbolic points, i.e., points where at least one eigenvalue
of the Jacobian ∂xf lies on the imaginary axis. Frequently these points are given by the singularities of
the critical manifold. The problem remained open until the pioneering work of Dumortier and Roussarie
[7] where they introduced the blow-up method, which was then developed into a powerful tool in GSPT by
Krupa and Szmolyan see [21, 22]. The main idea of the blow-up method is to first extend the state space by
adding the trivial equation ε′ = 0 and then introducing suitable weighted spherical coordinates to blow-up
the singularity, e.g., a point to a sphere or a line to a cylinder. After dividing out a suitable power of the
radial variable, less singular differential equations are obtained which often allow for a complete analysis with
dynamical systems tools. By now the blow-up method has been widely used in the analysis of singularly
perturbed differential equations, see e.g. [5, 10, 12, 13, 17, 18, 23, 26, 31]. It seems fair to say that GSPT
is very well developed for systems with a distinguished singular perturbation parameter ε and that it has
proven to be very useful in a large array of applications.

However, surprisingly little seems to be known in the case of systems depending singularly on several small
or large parameters, e.g., chemical reactions with reaction rates ki, i = 1, . . . , p of widely differing orders
of magnitude. An obvious and often used approach to apply GSPT to such models is to reduce to the
one-parameter case by identifying a suitable parameter ε such that

(k1, . . . , kp)T ∼ (εα1 , . . . , εαp)T , αi ∈ Z, i = 1, . . . , p. (1.11)

A simple illustration of this approach (and its inherent arbitrariness) in the context of the Robertson model
with the classical parameters (1.2) would be ε = 1/10 which leads to α1 = 2, α2 = −7, and α3 = −4. This
widely used approach, where parameters are restricted to a curve, can be very successful if good numerical
values of the parameters are available, see, e.g., [15, 19]. Unfortunately, this is often not the case.

Hence it is desirable to develop or adapt GSPT to problems depending singularly on several independent
parameters (ε1, . . . , εl)T , l ≥ 2. Such problems are potentially more challenging since the singular behaviour
and the multi-scale structure can vary significantly in a neighbourhood of the singular limit (ε1, . . . , εl)T =
(0, . . . , 0)T . As a step towards a framework for multi-parameter singular perturbations of ODEs, we distinguish
three different cases. We expect that this classification is preliminary and not exhaustive, nevertheless we
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feel it is useful as a first step. For simplicity we phrase this classification for systems depending on two
parameters, but it can be easily extended to systems depending on more parameters.

Case 1: There exists an ordered sequence of time-scales, i.e., the system of differential equations has the form

ẋ1 = f1(x, ε1, ε2)
ẋ2 = ε1f2(x, ε1, ε2)
ẋ3 = ε1ε2f3(x, ε1, ε2),

(1.12)

with 0 < ε1, ε2 ≪ 1, which is the three time-scale analogon to the slow-fast standard form (1.7). In this
situation one can apply Fenichel theory iteratively to obtain a nested sequence of critical manifolds. This case
is fairly well understood if the manifolds are normally hyperbolic, see [3]. If there are non-hyperbolic points,
the situation can be more complicated, e.g., see the early influential paper [20] and the more recent [14].

In the two remaining cases, we consider more general systems in non-standard form, i.e.,

ż = H(z, ε1, ε2) (1.13)

with 0 < ε1, ε2 ≪ 1.

Case 2: The parameter ε1 is a classical singular perturbation parameter of (1.13) with corresponding critical
manifold S(ε2) (depending on ε2) by standard Fenichel theory. The singular dependence of (1.13) on ε2 is
caused by singularities of the critical manifold S(ε2) as ε2 → 0, e.g., S(ε2) loses normal hyperbolicity, see [12,
18].

Case 3: Both parameters ε1 and ε2 act as singular perturbation parameters, leading to fundamentally
different slow-fast structures in different regions of the parameter space.

Clearly, cases 2 and 3 contain a large variety of unexplored situations. So far the analysis of such problems
has been carried out mostly in the form of individual case studies, e.g., see the very interesting work [6] and
also [4]. For more examples and an attempt to extract common features of existing results we refer to the
recent review [25] and the many references therein.

The goal of this work is to make progress on this important class of problems as part of the ongoing thesis
project [2]. We give an asymptotic analysis of the Robertson model (1.1) under the assumption (1.5), which
covers the classical choice (1.2) in [27]. It turns out that the Robertson model has features of case 2 and case
3, which shows that the above classification is not strict. We view our analysis as a step in adapting GSPT
to multi-parameter singular perturbation problems like (1.13) and also as a starting point for the analysis
of similar problems depending on more than two parameters. First, we rewrite (1.1) as a two-parameter
singular perturbation problem in the rescaled parameters

(ε1, ε2)T :=
(

k1/k2, k3/k2

)T

∈ R+ × R+,

varying in a neighbourhood of (ε1, ε2)T = (0, 0)T .

Recall from the proof of Lemma 1.1, that we can reduce the Robertson model to a planar dynamical system
of the form (1.4). By switching to the fast time scale τ = k2t we obtain

y′ = ε1(c − y − z) − y2 − ε2yz

z′ = y2,
(1.14)

with initial value (y0, z0)T = (0, 0)T , “ ′ ” denotes the derivative w.r.t. the fast time τ , and 0 < ε1, ε2 ≪ 1.
System (1.14) is now a planar multi-parameter singularly perturbed differential equation of the form (1.13).
Up to a reparametrization of time, system (1.14) is equivalent to (1.1), hence, we will perform our GSPT
analysis based on the planar system (1.14).
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Figure 3: The four scaling regions B11, B12, B2, and B3.

Remark 1.3. It follows from Lemma 1.1 that the solution of (1.14) with initial value (y0, z0)T = (0, 0)T

converges to the equilibrium Q = (0, c)T for ε1, ε2 > 0. The linearization of (1.14) at Q has eigenvalues
λ1 = −ε1 − ε2c and λ2 = 0 with corresponding eigenvectors v1 = (1, 0)T and v2 = (ε1, −ε1 − ε2c)T .
Standard center manifold theory [9] implies that this solution converges to the equilibrium tangent to the
center-direction v2.

It turns out that for an asymptotic analysis, a small neighborhood of (ε1, ε2)T = (0, 0)T must be divided into
four regions corresponding to different singular limits and slow-fast structures in phase space, see Figure 3.
Our main result can be summarized as follows.

Theorem 1.4. There exists δ > 0 such that the following holds in the δ-neighbourhood

Dδ := {(ε1, ε2)T ∈ R2 : ε1 ≥ 0, ε2 ≥ 0, ε2
1 + ε2

2 ≤ δ}

of the origin in parameter space.

1. There exist constants 0 < β3 < β2 and β1 > 0 such that the curves C1 = {(ε1, ε2)T ∈ R2 : ε1 = β1ε2},
C2 = {(ε1, ε2)T ∈ R2 : ε1 = β2ε2

2}, and C3 = {(ε1, ε2)T ∈ R2 : ε1 = β3ε2
2} divide Dδ into four regions

B11, B12, B2, and B3, see Figure 3.

2. In each of the regions B11, B12, B2, and B3 the problem (1.14) has a different slow-fast structure
each depending on a distinguished singular perturbation parameter. These structures become visible
in suitable rescalings and blow-ups.

3. For each of these regions B11, B12, B2, and B3 we identify a singular orbit γ0 of a certain type
connecting the initial value O = (0, 0)T to the unique equilibrium Q = (0, c)T of (1.14).

4. In each of the regions B11, B12, B2, and B3 the orbit corresponding to the initial value approaches
the corresponding singular orbit γ0 in Hausdorff distance as (ε1, ε2)T → (0, 0)T in the respective
region, with error estimates depending on the sizes of ε1, ε2.

Remark 1.5. (i) By choosing slightly different constants βi the regions B11, B12, B2, and B3 can be viewed
as overlapping. This implies that the multi-scale structure of the solution changes in a smooth way for ε1, ε2
close to the curves C1, C2, and C3. (ii) Actually, Theorem 1.4 holds for arbitrary constants 0 < β3 < β2 and
β1 > 0 if δ is chosen sufficiently small.

Our analysis and proofs are based on suitable blow-ups of the origin in parameter space which combined with
blow-ups in phase space reveal the underlying slow-fast structures in the regions B11, B12, B2, and B3. We
are confident that this approach can also be useful in the analysis of systems with more than two singular
perturbation parameters.
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The rest of the paper is organized as follows: In a first step it is convenient to blow up the origin in parameter
space (ε1, ε2)T = (0, 0)T in a suitable way. This is done in Section 2. Loosely speaking this allows to apply
GSPT with the radial parameter as a distinguished singular perturbation parameter. In Section 3 we carry
out the rather straightforward GSPT analysis for region B2. The slow fast-structures corresponding to the
regions B11, B12 and B3 are more complicated and require additional blow-ups. The analysis of these cases
is carried out in in Section 4 and 5, respectively. We end with a conclusion and outlook.

2 Structure of Parameter Space

The goal in singularly perturbed systems with a single parameter ε ≪ 1 is to prove statements which hold for
ε ∈ (0, ε̂] for some ε̂ > 0. In system (1.14) we are now dealing with a two-parameter problem in ε1, ε2 ≪ 1,
hence we need to prove results which hold in a small neighbourhood of the origin in the parameter space R2

+.

As a first step, it is instructive to look at the three limiting problems of (1.14):

1) ε2 = 0, ε1 > 0 : There exists a unique equilibrium given by (y, z)T = (0, c)T . The linearization at
the equilibrium has one negative and one vanishing eigenvalue, thus center manifold theory can be
applied there.

2) ε1 = 0, ε2 > 0 : The line y = 0 consists of equilibria. The line of equilibria {(0, z)T , z > 0} is
attracting for ε2 > 0. The origin (y, z)T = (0, 0)T is more degenerate, i.e. the corresponding
linearization has a double zero eigenvalue.

3) ε1 = 0 = ε2 : The line y = 0 consists of degenerate equilibria, i.e. the corresponding linearizations
have a double zero eigenvalue.

The three cases above are qualitatively quite different, ranging from a unique equilibrium, which can be
analysed by center manifold reduction, to a very degenerate line of nilpotent equilibria. This indicates that
in the double limit we should expect that the relative sizes of ε1 and ε2 have a significant influence on the
detailed dynamics and asymptotics. It turns out that this is indeed the case and parameter space must be
divided into three regions B1, B2 and B3 where

ε2
2 ≪ ε1, ε1 ≈ ε2

2, ε1 ≪ ε2
2,

respectively. To be precise we define the curves

C2 := {(ε1, ε2)T ∈ R2 : ε1 = β2ε2
2}, C3 =: {(ε1, ε2)T ∈ R2 : ε1 = β3ε2

2} (2.1)

for 0 < β3 < β2 and the regions

B1 = {(ε1, ε2)T ∈ R2 : ε1 > β2ε2
2} (2.2)

B2 = {(ε1, ε2)T ∈ R2 : β3ε2
2 ≤ ε1 ≤ β2ε2

2} (2.3)
B3 = {(ε1, ε2)T ∈ R2 : ε1 < β3ε2

2}, (2.4)

see Figure 5 (left).

To separate the curves C2 and C3 in a neighbourhood of the origin we perform a non-homogeneous blow-up
transformation. It turns out that this allows for a GSPT analysis in Region B2, by using the radial parameter
as singular perturbation parameter.
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Figure 5: Parameter blow-up Φ1
par of the origin and charts P1 (orange) and P2 (blue)

The blow-up map respecting the scaling properties of the curves C2 and C3 is

Φ1
par : [0, ∞) × S1 → R2

(r, ε̄1, ε̄2) 7→

{
ε1 = r2ε̄1

ε2 = rε̄2,

(2.5)

where we naturally restrict ourselves to the meaningful parameter space ε̄1, ε̄2 ≥ 0. The preimage of the
origin under Φ1

par is the quarter circle (r = 0), which implies that Φ1
par is not injective for r = 0. Away from

the origin the blow-up map Φ1
par is a diffeomorphism. In the blown-up parameter space the quadratic curves

C2 and C3 correspond to well separated straight lines C̄2 and C̄3 given by

C̄2 =
{

(r, ε̄1, ε̄2)T ∈ [0, ∞) × S1 : ε̄1 = −1/2β2 +
√

1/4β2
2 + 1

}
(2.6)

C̄3 =
{

(r, ε̄1, ε̄2)T ∈ [0, ∞) × S1 : ε̄1 = −1/2β3 +
√

1/4β2
3 + 1

}
(2.7)

with β3 < β2 from (2.1), respectively, see Figure 5. The regions B1, B2, and B3 correspond to B̄1, B̄2, and
B̄3 in the obvious way. The size of the constants β2 and β3 determines the size of the regions B̄1, B̄2, and
B̄3. For β2 → ∞ the line C̄2 approaches the ε̄1-axis, similarly the line C̄3 approaches the ε̄2-axis as β3 → 0.

Remark 2.1. The choice of the constants β2 and β3 determines the size of the neighbourhood in which our
GSPT analysis is valid. However, for arbitrary constants 0 < β3 < β2 we can always find such a sufficiently
small neighbourhood.

It is natural to perform the remaining analysis in directional charts P1 and P2 corresponding to the directions
ε̄1 = 1 and ε̄2 = 1, respectively. In these charts the blow-up transformation has the form

P1 : ε1 = r2, ε2 = rε̃2 (2.8)
P2 : ε1 = r2ε̃1, ε2 = r, (2.9)

respectively. Chart P1 covers the regions B̄1 and B̄2, while P2 covers the regions B̄2 and B̄3, see Figure 5
where the regions covered by charts P1 and P2 are shown in orange and blue, respectively. The alternating
colors in region B̄2 indicate that this region is covered by both charts.

The regions B̄1 and B̄2 in chart P1 are given by 0 ≤ ε̃2 <
√

1
β2

and
√

1
β2

≤ ε̃2 ≤
√

1
β3

, respectively. For the
analysis in region B̄3 its description in chart P2, i.e., 0 ≤ ε̃1 < β3, will be relevant.

We start with the analysis in region B̄2, which is the simplest case and covers the slow-fast structure
corresponding to the classical parameters (1.2). The regions B̄1 and B̄3 correspond to more degenerate cases
and somewhat more complicated slow-fast structures, which we will treat afterwards.
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3 Analysis in Region B2

The analysis in region B̄2 can be carried out in any of the two charts Pi, i = 1, 2, we choose to work in chart
P1. Inserting (2.8) into (1.14), we obtain a slow-fast system in non-standard form

y′ = r2(c − y − z) − y2 − rε̃2yz

z′ = y2,
(3.1)

where r, ε̃2 ∈ R≥0. It will be important that in region B̄2 we have ε̃2 ∈
[√

1
β2

,
√

1
β3

]
. This avoids degeneracies

occurring as ε̃2 → 0 or ε̃2 → ∞ which are treated in the analysis of regions B̄1 and B̄3. For better readability
we are dropping the “˜” in the following.

In system (3.1), the parameter r is the slow-fast parameter. The layer problem (r = 0) has the simple form

y′ = −y2

z′ = y2,
(3.2)

which obviously coincides with the limit problem ε1 = ε2 = 0 of (1.14). System (3.2) is explicitly solvable
and its orbits are straight lines with slope −1, i.e.,

z = −y + s, s ∈ R.

As mentioned before, y = 0 is a line of nilpotent equilibria which attracts all orbits with y(0) > 0 in forward
time and attracts all orbits with y(0) < 0 in backward time. As a consequence of this degeneracy, solutions
are very sensitive to perturbations around y = 0. Note that the initial value O = (0, 0)T and also the unique
equilibrium Q = (0, c)T of (3.1) lie on the line of equilibria y = 0 represented by a teal and black dot in
Figure 6, respectively.

In terms of slow-fast systems the critical manifold S is given by

S = {(y, z)T ∈ R2 : y = 0},

which is not normally hyperbolic (which is indicated by green simple arrows in Figure 6). Due to the lack of
normal hyperbolicity Fenichel theory is not applicable. We resolve this degeneracy by rescaling the variable y

with
y = rỹ. (3.3)

9
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Inserting (3.3) into (3.1) gives
ỹ′ = r(c − rỹ − z − ỹ2 − ε2ỹz)
z′ = r2ỹ2.

(3.4)

For r = 0 this vector field vanishes identically, thus we desingularize the system by dividing out a factor r,
which can be viewed as transforming to a slower timescale. Clearly this does not change the orbits of the
system. This leads to

ỹ′ = c − rỹ − z − ỹ2 − ε2ỹz

z′ = rỹ2.
(3.5)

Remark 3.1. The rescaling (3.3) can also be viewed as the scaling chart of a cylindrical blow-up of the
degenerate line (0, z, 0), z ∈ R in extended (y, z, r) phase space. Since this chart covers the relevant dynamics,
we do not introduce this blow-up explicitly.

System (3.5) is of standard slow-fast form w.r.t. the singular perturbation parameter r. In the following we
will again omit the “˜”. For r = 0 we obtain the layer problem

y′ = c − z − y2 − ε2yz

z′ = 0.
(3.6)

The critical manifold is S = {(x, y)T ∈ R2 : c − z − y2 − ε2yz = 0}. In the following we focus on the part
of S in the half plane y ≥ 0, denoted by Sa, which is normally attracting for ε2 ∈

[√
1

β2
,
√

1
β3

]
and can be

described as a graph

z = c − y2

1 + ε2y
. (3.7)

The hyperbolicity of Sa follows since the eigenvalue of the corresponding linearization of (3.6) is λ1 =
−2y − ε2z < 0. Note that Sa intersects the positive y-axis at y = ymax :=

√
c, see Figure 7.

The parameter ε2 changes the geometry of the critical manifold S, compare Figure 7 where S is shown in blue.
These changes are due to the occurrence of a transcritical bifurcation of S at (y, z)T = (−

√
c, 2c)T for 1

ε2
2

= c.

We do not study this in detail since it occurs in the nonphysical part of phase space. For ε2 ∈
[√

1
β2

,
√

1
β3

]
these changes do not affect normal hyperbolicity of Sa. For ε2 → 0, however, the fold point of S approaches
the equilibrium Q. In the limit ε2 = 0 the critical manifold is given by

z = c − y2,
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Figure 8: Limits of the singular dynamics of (3.5).

i.e., the fold point of the critical manifold coincides with the equilibrium Q = (0, c)T , see Figure 8a. For
ε2 → ∞ the critical manifold S approaches the y- and z-axis, see Figure 8b. In these two limits, normal
hyperbolicity of Sa is lost at Q and O, respectively.

Since we stay away from these degenerate limits in region B̄2, the following construction of singular orbits and
proof of their persistence based on Fenichel theory works for all ε2 in region B̄2. In particular, the compact
part of Sa connecting ymax and the equilibrium Q = (0, c)T

γs
0 = {(y, z)T ∈ Sa : y ∈ [0, ymax]}. (3.8)

is normally attracting (which is indicated by green double arrows in Figure 7). The first part of the singular
orbit, which connects the initial value O = (0, 0)T along the fast fiber (green) with the point (ymax, 0)T ∈ Sa

is given by
γf

0 = {(y, 0)T ∈ R2 : y ∈ [0, ymax]} (3.9)

It remains to check the reduced flow on Sa. We change to the slow time scale t = rτ and obtain the reduced
flow on Sa

ż = y2 ≥ 0, (3.10)

where “ ˙ ” denotes differentiation w.r.t. t. Thus, the solution of the reduced problem starting at (ymax, 0)T

converges center-like, i.e., with an algebraic rate, to the equilibrium Q = (0, c)T . We obtain the following
lemma.

Lemma 3.2. There exists a singular orbit γ0 := γf
0 ∪ γs

0 of (3.6) connecting the initial value O and the
equilibrium Q.

Due to the following theorem, the singular orbit perturbes to a genuine orbit for r small.

Theorem 3.3. There exists r0 > 0 such that for all ε2 ∈
[√

1
β2

,
√

1
β3

]
and r ∈ (0, r0] there exists a smooth

orbit γr of system (3.5), connecting the initial value O = (0, 0)T with the equilibrium Q = (0, c)T . The
perturbed orbit γr is O(r)-close to γ0 in Hausdorff distance.

Proof. The normally hyperbolic attracting critical manifold Sa perturbs to an attracting slow manifold Sa
r

by Fenichel theory for 0 < r ≪ 1, which contains the equilibrium Q. Since there are no further equilibria
for r > 0 the slow flow on Sa

r converges to Q for y ≥ 0 (as a center flow). Viewed as an equilibrium of
system (3.5) Q has a two-dimensional center-stable manifold W cs which intersects Sa

r transversally. By
Fenichel theory the solution with inital value O, i.e. the orbit γr, is attracted exponentially onto Sa

r and
hence converges to Q in the center direction. By construction γr is O(r) close to γ0.
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We conclude that for all (ε1, ε2)T ∈ B2 with ||(ε1, ε2)T || < r0 there exists a smooth orbit γε1 of system (1.14),
which is O(√ε1)-close to γ0 in Hausdorff distance, connecting the initial value O with the equilibrium Q.

A possibility to compare our asymptotic results with the numerics is the maximal value of the y-component
ymax, which we will focus on in the following. Due to the extra rescaling (3.3) we even achieve an error
estimate of O(ε1) in y-direction. Indeed, by undoing the rescalings (2.8) and (3.3) we obtain

y = rỹ =
√

ε1ỹ. (3.11)

Along the singular orbit γ0 we have

max{ỹ : (ỹ, z)T ∈ γ0} = ỹmax =
√

c,

such that
ymax =

√
ε1(

√
c + O(

√
ε1)) =

√
ε1c + O(ε1).

Inserting the parameter values (1.2) of the original problem gives

ymax = 3, 651 · 10−5 + O(10−9), (3.12)

which fits well with the value obtained by numerical simulations, e.g., compare with Figure 2. In particular,
this confirms the numerical results in [11].

It remains to do the analysis of the degenerate cases corresponding to ε̃2 → 0 and ε̃2 → ∞ in regions B̄1 and
B̄3, respectively. We start with the region B̄1, since this allows us to continue in the current chart P1.

4 Analysis in Region B1

The starting point of the following analysis in chart P1 are the equations (3.5), which we restate here for
notational purposes

y′ = c − ry − z − y2 − ε̃2yz

z′ = ry2.
(4.1)

As described before, for ε̃2 → 0 the fold point of S is at Q = (0, c)T , see Figure 8a. To treat this loss of normal
hyperbolicity we perform a blow-up of the fold point (0, c, 0)T in extended (y, z, ε̃2)T space. To handle the
terms −ry and −ε̃2yz in (4.1), an additional homogeneous parameter blow-up of the origin (r, ε̃2)T = (0, 0)T

in chart P1 is introduced. Otherwise, we would not be able to desingularize the dynamics in the blow-up of
the fold point. In the original parameters the second parameter blow-up amounts to dividing the region B1
into two parts B11 and B12 by a curve

C1 := {(ε1, ε2)T ∈ R2 : ε1 = β1ε2} (4.2)

with some β1 > 0. The parts B11 and B12 correspond to scaling regimes 0 ≤ ε2 ≲ ε1 and ε2
2 ≪ ε1 ≲ ε2,

respectively. The second parameter blow-up map is given by

Φ2
par : [0, ∞) × S1 → R2

(s, r̄, ¯̃ε2) 7→

{
r = sr̄

ε̃2 = s¯̃ε2.

(4.3)

In the blown-up space the curve C1 corresponds to the line

ε̄2 =

√
1

1 + β2
1

.
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Figure 10: Schematic picture of the parameter blow-up Φ2
par of the point F (corresponding to the origin in

chart P1) shown in blown-up (R × S1)-space.

Again it is convenient to perform the analysis in two charts corresponding to the directions r̄ = 1 and ε̄2 = 1,
respectively. In these charts the blow-up transformation Φ2

par is given by

P11 : r = s, ε̃2 = sε21, (4.4)
P12 : r = sr1, ε̃2 = s. (4.5)

such that in chart P11 the regions B11 and B12 in the blown-up space are given by ε21 < β1 and ε21 ≥ β1,
respectively. A schematic representation of the second blow-up in parameter space is shown in Figure 10. As
can be seen in Figure 10, chart P11 will be used for analysing the limit ε̃2 → 0 in region B̄11, whereas chart
P12 covers region B̄12. We begin with the analysis in chart P11.

4.1 Analysis in region B11

Inserting the parameter blow-up transformation (4.4) into (4.1) we obtain

y′ = c − sy − z − y2 − sε21yz

z′ = sy2.
(4.6)

In the following analysis, it will be important that ε21 ∈ [0, β1]. System (4.6) is of classical slow-fast type
with parameter s. The critical manifold is given by

S = {(y, z)T ∈ R2 : z = c − y2}

with a fold point at the equilibrium Q = (0, c)T , see again Figure 8. The candidate singular orbit starting
from the initial value O = (0, 0)T is again γ0 = γf

0 ∪ γs
0, but it approaches Q along the slow manifold S,

which loses normal hyperbolicity at the fold point. Therefore, we cannot use Fenichel theory directly to prove
convergence to the genuine equilibrium along γ0. We resolve this degeneracy by artificially adding s′ = 0 to
(4.6) and applying a spherical blow-up of the nilpotent point (y, z, s)T = (0, c, 0)T of this extended system,
see [21] for a detailed explanation of the blow-up method in the context of planar fold points.

The suitable blow-up transformation is given by

Φ : [0, ∞) × S2 → R3

(σ, ȳ, z̄, s̄) 7→


y = σȳ

z = c + σ2z̄

s = σs̄.

(4.7)
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Figure 11: Dynamics of the blown-up extended system (4.6).

The nilpotent point (0, c, 0)T is blown-up to the sphere {0} × S2, which is the preimage of (0, c, 0)T under the
map Φ, see Figure 11.
Remark 4.1. Note that in the transformation (4.7) the weights of the radial variable σ deviate from the
weights in the analysis of the generic fold point. This is a consequence of the fold point coinciding with an
equilibrium in our case.

Much of the following analysis proceeds along the lines of [21], the dynamics on the sphere σ = 0 is, however,
different from the standard fold point, so we give the necessary details. Again it will be convenient to work in
directional charts which correspond to directions ȳ = 1, s̄ = 1, and z̄ = −1. The blow-up transformation in
these charts is given by

K1
11 : y = σ1, z = c + σ2

1z1, s = σ1s1 (4.8)
K2

11 : y = σ2y2, z = c + σ2
2z2, s = σ2 (4.9)

K3
11 : y = σ3y3, z = c − σ2

3 , s = σ3s3, (4.10)

respectively. Note that subscripts refer to the parameter blow-up chart, whereas a superscript denotes the
corresponding chart in phase space. Chart K1

11 covers the right (ȳ > 0) side of the sphere, chart K2
11 covers

the top (s̄ > 0) of the sphere, and chart K3
11 covers the front (z̄ < 0) side of the sphere, see Figure 11.

Remark 4.2. For blow-ups in phase space we will often follow the useful convention, that an object A is
denoted as Ai in a chart Ki, i = 1, 2, 3 in which the blow-up is studied. As an example consider the equilibrium
Q which will be studied in chart K2

11 and is denoted as Q2 there.

The following subset of the sphere is central for our analysis.
Definition 4.3. Let Ω be the compact subset of the sphere (σ = 0) enclosed by the equator (s̄ = 0), the
meridian (ȳ = 0), and the curve which is represented by s1 = −z1 in chart K1

11 and z2 = −y2 in chart K2
11,

see Figure 11 where Ω is shown in red.

We have the following result.
Lemma 4.4. The flow of the blown-up vector field on the sphere has the properties:

(i). The set Ω is forward invariant.
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(ii). There exists a heteroclinic orbit γc
0 connecting the endpoint Pa of S with the equilibrium Q.

Proof. We start the analysis in chart K1
11, which is one of the entrance charts since it contains the endpoint

Pa of the attracting branch of the critical manifold S, denoted by Sa, with reduced flow towards the sphere.
Inserting (4.8) into (4.6) and after desingularizing, i.e., dividing out a factor of σ1, we obtain

z′
1 = s1 + 2z1(s1 + z1 + 1 + σ2

1ε21s1z1 + s1ε21c)
s′

1 = s1(s1 + z1 + 1 + σ2
1ε21s1z1 + s1ε21c)

σ′
1 = −σ1(s1 + z1 + 1 + σ2

1ε21s1z1 + s1ε21c).
(4.11)

The planes σ1 = 0 and s1 = 0 are invariant. They intersect in a line, which corresponds to a part of the
equator of the sphere, on which the dynamics is governed by z′

1 = 2z1(z1 + 1). There are two equilibria
Pa = (−1, 0, 0)T and Pr = (0, 0, 0)T which are attracting and repelling on this line with eigenvalues −2 and 2,
respectively.

On the plane s1 = 0 the dynamics is given by

z′
1 = 2z1(z1 + 1)

σ′
1 = −σ1(z1 + 1).

(4.12)

The normally attracting line of equilibria
z1 = −1

corresponds to the attracting branch of the critical manifold Sa, see Figure 11. We now investigate the
dynamics on the plane σ1 = 0 (on the sphere) near the point Pa governed by

z′
1 = s1 + 2z1(s1 + z1 + 1 + s1ε21c)

s′
1 = s1(s1 + z1 + 1 + s1ε21c).

(4.13)

We recover the equilibria Pa and Pr. The eigenvalues of the linearization at Pa and Pr are −2, 0 and 2, 1,
respectively. We conclude that Pr is a source on the sphere. Standard center manifold theory [9] implies the
existence of an attracting one-dimensional center manifold Na at Pa, which is given as a graph z1 = h1(s1)
with expansion

h1(s1) = −1 − (1
2 + ε21c)s1 + O(s2

1). (4.14)

The corresponding flow on Na is governed by

s′
1 = s2

1/2 + O(s3
1),

hence z1 increases along Na. This implies that the branch of Na in s1 > 0 is unique. For proving assertion (ii),
it remains to show that the continuation of this branch of Na by the flow connects Pa with the equilibrium Q

(which is only visible in the scaling chart K2
11). This is done in the following by first proving assertion (i) and

using a phase plane argument.

The part of ∂Ω that is visible in chart K1
11 is given by the invariant half line s1 = 0 and the line s1 = −z1,

respectively, both with z1 ≤ 0. On these half lines the flow cannot exit Ω. For the line s1 = −z1 this follows
from

(s1 + z1)′|s1=−z1 = −s2
1ε21c ≤ 0. (4.15)

for all ε21 ≥ 0, see [1, p. 219].
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Now we switch to the chart K3
11 in which the governing equations are

y′
3 = −y3s3 + 1 − y2

3 + σ2
3ε21y3s3 − s3ε21y3c + 1

2y3
3s3

s′
3 = 1

2y2
3s2

3

σ′
3 = −1

2σ3y2
3s3.

(4.16)

On the invariant plane s3 = 0 we recover the two normally hyperbolic parts of the critical manifold as lines
of equilibria

y3 = ±1,

where the attracting line y3 = 1 terminates in Pa. Clearly this chart also covers the center manifold Na

originating at Pa.

The part of ∂Ω on the sphere σ = 0 that is visible in chart K3
11 is given by the invariant half line s3 = 0,

y3 ≥ 0 and the half line y3 = 0, s3 ≥ 0. The flow on the sphere cannot leave Ω at these half lines. For the
line y3 = 0, s3 ≥ 0 this follows from y′

3 = 1.

To cover the part of Ω close to Q we change to the scaling chart K2
11 where we can trace γc

0 once it has
entered Ω. The dynamics in the scaling chart K2

11 is governed by

y′
2 = −y2 − z2 − y2

2 − y2ε21c − σ2
2z2y2ε21

z′
2 = y2

2

σ′
2 = 0.

(4.17)

On the invariant sphere σ = 0 this simplifies to

y′
2 = −y2 − z2 − y2

2 − y2ε21c

z′
2 = y2

2 .
(4.18)

The boundary of Ω in s̄ > 0 is given by parts of the lines y2 = 0, z2 ≤ 0 and z2 = −y2, y2 ≥ 0. The flow of
(4.18) cannot leave Ω at these parts of the boundary since

y′
2 = −z2

on the line y2 = 0 and
(y2 + z2)′ = −y2ε21c ≤ 0

on the line z2 = −y2. We conclude that Ω is indeed a compact forward invariant trapping region on the
sphere. This concludes the proof of assertion (i).

In chart K2
11 the equilibrium Q corresponds to the point Q2 = (0, 0)T . The linearization of (4.18) at Q2 has

eigenvalues λs = −1 − ε21c and λc = 0 with corresponding eigenvectors vs = (1, 0)T and vc = (1, −1 − ε21c)T .
Standard center manifold theory implies the the existence of an attracting (non-unique) center manifold
W c, which lies in the interior of Ω for ε21 > 0 and coincides with the line z2 = −y2 in the limiting case
ε21 = 0. The flow on the center manifold W c in Ω is directed towards the equilibrium Q2. There are no
equilibria in the interior of Ω such that we can exclude periodic orbits. The only equilibrium in the forward
invariant compact set Ω which is not repelling is the equilibrium Q2 ⊂ ∂Ω. On the sphere σ = 0, the
Poincare-Bendixson theorem applies, therefore all orbits within Ω must converge to the equilibrium Q2 along
the center manifold W c. Therefore, the continuation of the Na in s1 > 0 converges to Q2. We denote the
corresponding heteroclinic orbit by γc

0, which is shown in yellow in Figure 11. This proves assertion (ii).
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By collecting the results of this subsection we obtain.

Lemma 4.5. There exists a singular orbit γ0 of the blown-up extended system (4.6) connecting the initial
value O, via Pa, with the equilibrium Q.

Proof. Starting from the initial value O, we follow γf
0 and γs

0 as before. In the blown-up problem γs
0

terminates in the point Pa. From there we follow γc
0 which connects Pa and Q. We define the singular orbit

as γ0 := γf
0 ∪ γs

0 ∪ γc
0, see Figure 11.

Now we prove that the singular orbit γ0 perturbes to a smooth orbit γs connecting the initial condition O

and the equilibrium Q for 0 < s ≪ 1.

Theorem 4.6. There exists a constant s̃ > 0 such that for all ε21 ∈ [0, β1] and s ∈ (0, s̃] , there exists a
smooth orbit γs of (4.6) connecting the initial value O and the equilibrium Q. The corresponding orbit γ̄s in
blown-up space is O(s)-close to γ0 in Hausdorff distance.

Proof. The proof is carried out in the blow-up of system (4.6) extended by s′ = 0. In a first step we show
that the continuation of the slow manifold by the flow, which exist by Fenichel theory away from the fold,
converges to the equilibrium Q. For this purpose we define two sections in the entrance chart K1

11 close to Pa

as
Σin := {(z1, s1, σ1)T ∈ R3 : σ1 = a, |z1 + 1| < b, s1 < a} (4.19)

and
Σout := {(z1, s1, σ1)T ∈ R3 : σ1 < a, |z1 + 1| < b, s1 = a} (4.20)

with a, b > 0 small enough, see Figure 11. Away from the sphere σ = 0 the attracting branch Sa of the
critical manifold perturbes to an attracting slow manifold Sa

s for s ≪ 1 by Fenichel theory. In extended phase
space, this one-parameter family of slow manifolds can be viewed as a two-dimensional invariant attracting
slow manifold M. The manifold M is defined at least up to the section Σin. We extend the manifold M by
the forward flow of the blown-up vector field past Σin, the corresponding larger manifold is still denoted as
M. The results in [21] on the standard singularly perturbed fold point imply that M is attached to the orbit
γc

0. Therefore, we can track M across the sphere for s small. In the blown-up phase space the equilibrium
Q corresponds to a line of equilibria (0, 0, σ2)T , σ2 ∈ [0, s̃]. The linearization along this line of equilibria
has one negative and a double zero eigenvalue. Standard invariant manifold theory implies the existence of
a three-dimensional center-stable manifold W cs of this line of equilibria. Since the orbit γc

0 on the sphere
intersects W cs transversely, the manifold M also intersects W cs since it is a small smooth perturbation of γc

0
for s ≪ 1. This implies that all orbits in M converge to Q.

Viewed in chart K3
11 of the extended blown-up phase space, the line of initial conditions {(0, 0, s)T , s ∈ [0, s̃]}

corresponds to the line (0,
√

c, s√
c
)T , s ∈ [0, s̃]. All orbits starting on this line are exponentially attracted onto

the manifold M by Fenichel theory until they reach Σin. During the passage from Σin to Σout an additional
exponential contraction towards M occurs due to [21, Proposition 2.8]. Beyond the section Σout the evolution
of these orbits is governed by system (4.17) with σ2 ∈ [0, s̃]. Since σ2 acts as a regular perturbation parameter,
these orbits intersect W cs for s̃ sufficiently small. This implies the existence of a smooth perturbed orbit
γ̄s connecting the lines of equilibria corresponding to O and Q, respectively. The assertions of the theorem
follow by applying the blow-up transformation (4.7), i.e., γs = Φ(γ̄s).

In order to complete the argument in region B̄1, we use chart P12 which covers the region B̄12.
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Figure 12: Dynamics of the blown-up extended system (4.21).

4.2 Analysis in region B12

We insert the transformation (4.5) into (4.1) and obtain

y′ = c − sr1y − z − y2 − syz

z′ = sr1y2.
(4.21)

where s and r1 are both small. The goal is to construct the orbit connecting O to the equilibrium Q for
(s, r1)T , r1 > 0, s > 0 in a small neighborhood of the origin. For s = 0 we again obtain the critical manifold

z = c − y2

with the equilibrium Q = (0, c)T at the fold point.

Again we use the blow-up transformation (4.7) to resolve the degeneracy of the fold point and we obtain the
following result.

Lemma 4.7. In the blown-up space of system (4.21) extended by the equation s′ = 0 there exists for r1 = 0
a two-dimensional attracting critical manifold Sa (blue in Figure 12), which contains the line of equilibria
corresponding to the genuine equilibrium Q. The critical manifold Sa perturbes regularly to a slow manifold
Sa

r1
for r1 small enough. All orbits of the reduced flow on Sa approach the line of equilibria in the center

direction, i.e. with an algebraic rate, for all 0 < s ≤ 1/
√

β2.

Proof. We carry out the analysis in two directional charts

K2
12 : y = σ2y2, z = c + σ2

2z2, s = σ2 (4.22)
K3

12 : y = σ3y3, z = c − σ2
3 , s = σ3s3 (4.23)

covering the top s̄ > 0 and the front z̄ < c part of the sphere, respectively, see Figure 12. The parts of Sa

investigated in chart K2
12 and K3

12 are denoted by Sa
2 and Sa

3 , respectively.

18



As before we start the analysis in the entrance chart K3
12. By inserting (4.23) into (4.21) and desingularizing

by dividing out a factor σ3 we obtain

y′
3 = 1 − y2

3 − y3s3c + σ2
3s3y3 + r1(s3y3 + 1

2s3y3
3)

s′
3 = 1

2r1s2
3y2

3

σ′
3 = −1

2r1σ3s3y2
3 .

(4.24)

Note that system (4.24) is of standard slow-fast type with singular perturbation parameter r1 and corre-
sponding layer problem

y′
3 = 1 − y2

3 − y3s3c + σ2
3s3y3

s′
3 = 0

σ′
3 = 0.

(4.25)

For r1 = 0 we find the two-dimensional critical manifold

S3 = {(y3, s3, σ3)T ∈ R3 : 1 − y2
3 − y3s3c + σ2

3s3y3 = 0}, (4.26)

which for s3 = 0 reduces to the two lines of equilibria y3 = ±1.

Remark 4.8. Note that here the variable σ3 changes the geometry of the critical manifold S3 and r1 is the
singular perturbation parameter. In terms of the original system (1.14) this means that - loosely speaking -
ε2 changes the geometry and ε1 is the singular perturbation parameter. We will see that these roles will be
switched when we study the dynamics in region B3.

The eigenvalue of the linearization of the layer problem (4.25) is λ = −2y3 − s3(c − σ2
3). At the line s3 = 0,

y3 = 1 we obtain
λ = −2 < 0

and we conclude that the line s3 = 0, y3 = 1 is part of the attracting branch Sa
3 of the critical manifold,

which extends regularly into s3 > 0, since s3 acts as a regular perturbation parameter in (4.26).

The reduced flow on Sa
3 is given by

ṡ3 = 1
2s2

3y2
3

σ̇3 = −1
2σ3s3y2

3 .

(4.27)

For s3 = 0 the reduced flow along Sa
3 is stationary, whereas for s3 > 0 the variable s3 increases and σ3

decreases, see Figure 12.

For the remaining analysis of Sa close to the top of the sphere, we change to the scaling chart K3
12 where the

dynamics is governed by
y′

2 = −z2 − y2
2 − y2c − σ2

2y2z2 − r1y2

z′
2 = r1y2

2

σ′
2 = 0,

(4.28)

which is again a slow-fast system with singular perturbation parameter r1. Note that system (4.28) has a
line of equilibria (independent of r1) at y2 = z2 = 0 which corresponds to the genuine equilibrium Q.
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The layer problem is given by
y′

2 = −z2 − y2
2 − y2c − σ2

2y2z2

z′
2 = 0

σ′
2 = 0,

(4.29)

with critical manifold

S2 = {(y2, z2, σ2)T ∈ R3 : −z2 − y2
2 − y2c − σ2

2y2z2 = 0}. (4.30)

For σ2 = 0, i.e., on the sphere, the critical manifold has the simple form

z2 = −y2(y2 + c)

with a fold point at y2 = − c
2 and non-vanishing eigenvalue λ = −2y2 − c. We conclude that z2 =

−y2(y2 + c), y2 ≥ 0 is part of the attracting branch Sa
2 of the critical manifold and extends regularly into

σ2 > 0 since σ2 is a regular perturbation parameter in (4.30). The critical manifold Sa
2 is uniformly normally

attracting for y ≥ 0 and σ2 ≥ 0 small enough since for σ2 = 0 the fold point at y2 = − c
2 is bounded away

from the half space y2 ≥ 0. The reduced flow on Sa
2 is given by

ż2 = y2
2

such that orbits along Sa
2 with y2(0) > 0 converge to the line of equilibria y2 = z2 = 0 corresponding to

Q in a center-like manner, i.e. with an algebraic rate. By Fenichel theory we conclude that there exists
a two-dimensional attracting invariant slow manifold Sa

r1
for 0 < r1 ≪ 1 with slow flow converging to the

reduced flow on Sa as r1 → 0. Since no new equilibria occur for r1 > 0 all orbits of the slow flow converge to
a point on the line of equilibria corresponding to Q.

Based on Lemma 4.7 we can now construct an ε̃2-family of singular orbits connecting the line of initial values
corresponding to O with the line of equilibria corresponding Q.

Lemma 4.9. There exists a family of singular orbits γε̃2
0 , ε̃2 ∈ [0, 1/

√
β2] of the blown-up extended system of

(4.21) connecting the line of initial values with the line of equilibria corresponding to O and Q, respectively.

Proof. We define the fast fibers connecting the line of initial conditions

O3 = (0,
ε̃2√

c
,
√

c)T , ε̃2 ∈ [0, 1/
√

β2]

with
(y3, s3, σ3)T = (1,

ε̃2√
c
,
√

c)T ∈ Sa
3

as γε̃2,f
0 . The orbits under the reduced flow along the critical manifold Sa connecting

(y3, s3, σ3)T = (1,
ε̃2√

c
,
√

c)T ∈ Sa
3

with the line of equilibria
Q2 = (0, 0, ε̃2)T ∈ R3 : ε̃2 ∈ [0, 1/

√
β2]}

are defined as γε̃2,s
0

The ε̃2-family of singular orbits is therefore given by

γε̃2
0 := γε̃2,f

0 ∪ γε̃2,s
0 ,
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see Figure 12.

In the following result we prove that the singular orbits γε̃2
0 perturb to smooth orbits connecting O and Q for

0 < r1 ≪ 1.
Theorem 4.10. There exists a constant r̃ > 0 such that for all ε̃2 ∈ (0, 1/

√
β2] and r1 ∈ (0, r̃], there exists a

smooth orbit γε̃2
r1

of (4.21) connecting the initial value O with the genuine equilibrium Q. The corresponding
orbit in blown-up space γ̄ε̃2

r1
is O(r1)-close to its corresponding singular orbit γε̃2

0 in Hausdorff distance.

Proof. The existence of the singular orbits in Lemma 4.9, standard Fenichel theory, Lemma 4.7 and arguments
similar to the proof of Theorem 3.3 imply that the forward solution with initial value O converges to Q

for 0 < r1 ≪ 1. We denote this solution by γ̄ε̃2
r1

which by construction is O(r1)-close to the singular orbit
γ̄ε̃2

0 for all ε̃2 ∈ (0, 1/
√

β2] and 0 < r1 ≪ 1. The assertions of the theorem follow by applying the blow-up
transformation (4.7), i.e., γε̃2

r1
= Φ(γ̄ε̃2

r1
).

Remark 4.11. Note that ε̃2 = 0 is not included in Theorem 4.10, since this corresponds to the original
parameters ε1 = ε2 = 0. In this case we do not observe dynamics because y = 0 is a line of equilibria, as
already mentioned in the rough classification in the beginning of Section 2.

This concludes the analysis in region B̄1. It remains to investigate the dynamics in region B̄3.

5 Analysis in Region B3

The analysis in region B̄3 is carried out in chart P2. Inserting (2.9) into (1.14) we obtain

y′ = r2ε̃1(c − y − z) − y2 − ryz

z′ = y2.
(5.1)

For r = 0 this results in the same limiting system as in chart P1, see (3.2) and Figure 6, with non-hyperbolic
critical manifold

y = 0.

Rescaling y with (3.3), as before, we obtain (after dividing out a factor of r)

ỹ′ = ε̃1(c − rỹ − z) − ỹ2 − ỹz

z′ = rỹ2.
(5.2)

System (5.2) is of standard slow-fast type with singular perturbation parameter r. In the following we will
omit the “˜”.

The corresponding layer problem is given by

y′ = ε1(c − z) − y2 − yz

z′ = 0.
(5.3)

which for ε1 > 0, resembles (actually is identical to) the situation in region B̄2. Indeed, the critical manifold
is given by

S = {(y, z)T ∈ R2 : ε1(c − z) − y2 − yz = 0} (5.4)

and is normally attracting (repelling) for all y > −ε1 (y < −ε1)), see Figure 13a and compare with Figure 7c.

In the limit ε1 → 0 normal hyperbolicity is lost at the origin since for ε1 = 0 the critical manifold consists of
two lines

y = 0 and z = −y
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(b) ε1 = 0.

Figure 13: Singular dynamics of (5.2).

which intersect at the origin. The linearization of the layer problem 5.3 at these lines has eigenvalue λ1 = −z

and λ2 = −y, respectively. Hence, the critical manifold S is not normally hyperbolic at the origin for ε1 = 0,
see Figure 13b.

To regain normal hyperbolicity we once again enlarge phase space by adding the equation ε′
1 = 0 and

blow-up the degenerate equilibrium (y, z, ε1)T = (0, 0, 0)T of this extended system. The suitable blow-up
transformation is

Φ : [0, ∞) × S2 → R3

(σ, ȳ, z̄, ε̄1) 7→


y = σȳ

z = σz̄

ε1 = σ2ε̄1,

(5.5)

which uses the same weights as the analysis of the slow passage through a transcritical bifurcation, see [22].

Lemma 5.1. In the blown-up space of system (5.2) extended by the equation ε′
1 = 0 there exists for r = 0 a

two-dimensional attracting critical manifold Sa (shown blue in Figure 14), which contains the line of equilibria
corresponding to the genuine equilibrium Q. The critical manifold Sa perturbes regularly to a slow manifold
Sa

r for r > 0 small enough. All orbits of the reduced flow on Sa approach the line of equilibria in the center
direction, i.e., with an algebraic rate, for all 0 < ε1 ≤ β3.

Remark 5.2. For better visibility we have changed the orientation in Figure 14, i.e. we look towards the
origin from the z̄ = 1 side of the sphere.

Proof. Again it will be convenient to work in directional charts, which we denote by K2
3 and K3

3. The blow-up
transformation in these charts is given by

K2
3 : y = σ2y2, z = σ2z2, ε1 = σ2

2 (5.6)
K3

3 : y = σ3y3, z = σ3, ε1 = σ2
3ε13, (5.7)

covering the top ε̄1 > 0 and the front z̄ > 0 part of the sphere, respectively, see Figure 14. The parts of Sa

investigated in chart K2
3 and K3

3 are denoted by Sa
2 and Sa

3 , respectively. Since we have blown-up the initial
value O, we start the analysis in the scaling chart K2

3, where the dynamics is governed by

y′
2 = c − σ2z2 − y2

2 − y2z2 − rσ2y2

z′
2 = ry2

2

σ′
2 = 0.

(5.8)
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Figure 14: Dynamics of the blown-up extended system (5.2).

System (5.8) is of standard slow-fast type with singular perturbation parameter r. The corresponding layer
problem is given by

y′
2 = c − σ2z2 − y2

2 − y2z2

z′
2 = 0

σ′
2 = 0

(5.9)

For r = 0 we find the critical manifold

S2 = {(y2, z2, σ2)T ∈ R3 : c − σ2z2 − y2
2 − y2z2 = 0}, (5.10)

which simplifies on the sphere σ2 = 0 to z2 = c
y2

− y2.

As already indicated in Remark 4.8 we note the following

Remark 5.3. In system (5.8) r is the slow-fast parameter and σ2 changes the geometry of the critical
manifold. Translated to the original parameters, i.e., undoing the blow-up transformations (2.9) and (5.6),
this implies that in region B3 we have ε2 as slow-fast parameter and ε1 changes the geometry of the critical
manifold.

The eigenvalue of the linearization of the layer problem (5.9) is λ = −2y2 − z2. We conclude that the curve
z2 = c

y2
− y2, y2 > 0 on the sphere σ2 = 0 is part of the normally attracting branch of the critical manifold

Sa
2 , which again extends regularly into σ2 > 0, since σ2 acts as a regular perturbation parameter in (5.10).

The reduced flow on Sa
2 is given by

ż2 = y2
2 ,

hence z2 increases for all y2 ̸= 0, see Figure 14.

For the remaining analysis of Sa away from the sphere, we change to the exit chart K3
3 where the dynamics is

governed by
y′

3 = ε13(c − rσ3y3 − σ3) − y2
3 − y3 − ry3

3

σ′
3 = rσ3y2

3

ε′
13 = −2rε13y2

3 .

(5.11)
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The layer problem is now given by
y′

3 = ε13(c − σ3) − y2
3 − y3

σ′
3 = 0

ε′
13 = 0,

(5.12)

with critical manifold
S3 = {(y3, σ3, ε13)T ∈ R3 : ε13(c − σ3) − y2

3 − y3 = 0}. (5.13)

On the invariant plane ε13 = 0, the critical manifold S3 corresponds to the lines y3 = 0 and y3 = −1. The
eigenvalue of the linearization of the layer problem (5.12) is λ = −2y3 − 1, hence the line y3 = 0, ε13 = 0 is
part of the normally attracting branch Sa

3 of the critical manifold. As before this line extends regularly into
ε13 > 0 to a smooth manifold Sa

3 .

The reduced flow on Sa
3 is given by

σ′
3 = σ3y2

3

ε′
13 = −2ε13y2

3 ,
(5.14)

such that σ3 increases and ε13 decreases for y3 > 0 on Sa
3 . All orbits on Sa

3 with σ3, ε13 > 0 approach the
line of equilibria y3 = 0, σ3 =

√
c corresponding to Q (which is contained in Sa

3 ) in a center-like manner,
i.e., with an algebraic rate. For completeness note that on the invariant plane ε13 = 0 the critical manifold
corresponds to the line y3 = 0 with stationary reduced flow. We conclude that there exists a two-dimensional
attracting invariant slow manifold Sa

r for 0 < r ≪ 1 with slow flow converging to the reduced flow on Sa as
r → 0. Since no new equilibria occur for r > 0, all orbits of the slow flow converge to a point on the line of
equilibria corresponding to Q.

Based on Lemma 5.1 we can now construct an ε1-family of singular orbits connecting the line of initial values
corresponding to O with the line of equilibria corresponding to Q.

Lemma 5.4. There exists a family of singular orbits γε1
0 , ε1 ∈ [0, β3] of the blown-up extended system of

(5.2) connecting the line of initial values with the line of equilibria corresponding to O and Q, respectively.

Proof. We define the fast fibers connecting the line of initial conditions

O2 = (0, 0,
√

ε1)T , ε1 ∈ [0, β3]

with
(y2, z2, σ2)T = (

√
c, 0,

√
ε1)T ∈ Sa

2

as γε1,f
0 . The forward orbits under the reduced flow along the critical manifold Sa connecting

(y2, z2, σ2)T = (
√

c, 0,
√

ε1)T ∈ Sa
2

with the line of equilibria
Q3 =

(
0, c,

ε1

c2

)T

∈ Sa
3 , ε1 ∈ [0, β3]

are denoted as γε1,s
0 . The ε1-family of singular orbits is therefore given by

γε1
0 := γε1,f

0 ∪ γε1,s
0 ,

see Figure 14.

The following theorem assures that the singular orbits γε1
0 perturb to smooth orbits connecting O and Q for

0 < r ≪ 1.
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Theorem 5.5. There exists a constant r0 > 0 such that for all ε1 ∈ (0, β3] and r ∈ (0, r0], there exists a
smooth orbit γε1

r of (5.2) connecting the initial value O with the genuine equilibrium Q. The corresponding
orbit in blown-up space γ̄ε1

r is O(r)-close to its corresponding singular orbit γε1
0 in Hausdorff distance.

Proof. Combining Lemma 5.1 and Lemma 5.4 it follows from standard Fenichel theory with slow-fast
parameter r applied to the blown-up extended system of (5.2) and arguments similar to the proof of Theorem
3.3 imply that the singular orbits γε1

0 perturb to smooth orbits γ̄ε1
r converging to Q, which are O(r)-close for

all ε1 ∈ (0, ε3] and r > 0 small enough. The assertions of the theorem follow by applying the blow-up map
(5.5), i.e., γε1

r = Φ(γ̄ε1
r ).

Remark 5.6. Note that ε1 = 0 (actually ε̃1 = 0 since the theorem is stated in chart P2) is not included
in Theorem 5.5, since this corresponds to the original parameter ε1 = 0. In this case we do not observe
dynamics because y = 0 is a line of equilibria, as already mentioned in the rough classification in the beginning
of Section 2.

We conclude with the proof of the main result, i.e., Theorem 1.4.

Proof of Theorem 1.4. It follows from Theorems 3.3, 4.6, 4.10, 5.5 that in each of the regions B11, B12, B2,
B3 there exists a different slow-fast structure of (1.14) with a corresponding singular orbit γ0 which perturbs
to a genuine orbit for ε1, ε2 small. The error estimates in ε1 and ε2 for each case are obtained by undoing the
rescalings of the blow-up transformations as in (3.11).

6 Summary and Outlook

In this article, we conducted an asymptotic analysis of the Robertson model, a prominent example of stiffness
in ODEs characterized by three reaction rates k1, k2, and k3 of widely differing orders of magnitude. We
focused on the scenario where k1, k3 ≪ k2. By rescaling the problem in terms of the small parameters
(ε1, ε2) := (k1/k2, k3/k2), we transformed the original equations into a two-parameter singular perturbation
problem. To deal with the singular structures associated with the two small parameters, we introduced
suitable blow-up transformations in parameter space. This allowed us to systematically explore the behaviour
of the system in a neighbourhood of the singular limit (ε1, ε2) = (0, 0). Our analysis revealed four distinct
scaling regimes with different singular structures. Within each regime, we applied GSPT and further blow-ups
in phase space to investigate the dynamics and the structure of the solutions. This combined approach
enabled us to capture the various multi-scale structures of the model, see Figure 15, which visualizes the
main results from Sections 3, 4, and 5. In each region we identified a specific type of singular orbit connecting
the initial value O with equilibrium Q, which perturbs to a genuine orbit (shown in red) for ε1, ε2 small.

The asymptotic results derived from our analysis are in excellent qualitative and quantitative agreement with
numerical simulations, compare Figure 16 with Figure 15, e.g., the maximal value of the y-component: As
we move counter clockwise in Figure 16, this value is shrinking from ymax ≈ 2 · 10−2 to ymax ≈ 2 · 10−6.
Our analysis predicts ymax = √

ε1c + O(ε1) in B11, B12, and B2 and ymax = √
ε1c + O(√ε1ε2) in B3, which

agrees well with the numerical values. In addition we observe in Figure 16 that the time it takes for z to
increase becomes longer as we move counterclockwise, i.e., in Region B11 this happens as y reaches its peak
while in Region B3 this happens when y has almost decayed to zero, which fits with the GSPT analysis in B3.

Overall, this work provides a thorough understanding of the dynamics and detailed asymptotics of the
Robertson model. This case study highlights the potential of combining GSPT with blow-up in parameter
space for analyzing multi-parameter singular perturbation problems. We believe that this approach is
applicable to more complicated problems and has the potential to lead to a framework for the analysis of
multi-parameter singular perturbations.
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Figure 15: Multi-scale structure and singular orbits of (1.14) in different regions of parameter space.

Figure 16: Numerical simulations of (1.14) in different regions of the parameter space for c = 1.
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