Planar chemical reaction systems with algebraic and non-algebraic limit cycles

> **Gheorghe Craciun** University of Wisconsin-Madison

> > Radek Erban University of Oxford

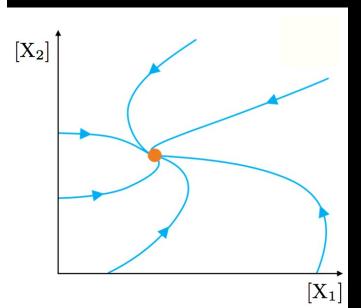
Chemical reaction networks and polynomial dynamical systems: mass action kinetics

 $\varnothing \xrightarrow{k_1} X_1 \xrightarrow{k_2} X_1 + X_2 \xrightarrow{k_3} \varnothing$

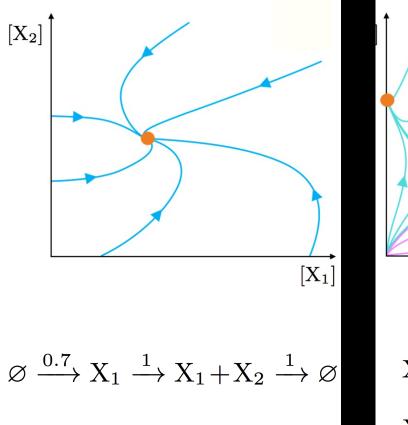
Chemical reaction networks and polynomial dynamical systems: mass action kinetics

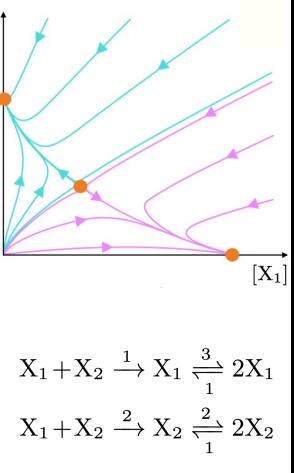
 $\varnothing \xrightarrow{k_1} X_1 \xrightarrow{k_2} X_1 + X_2 \xrightarrow{k_3} \varnothing$

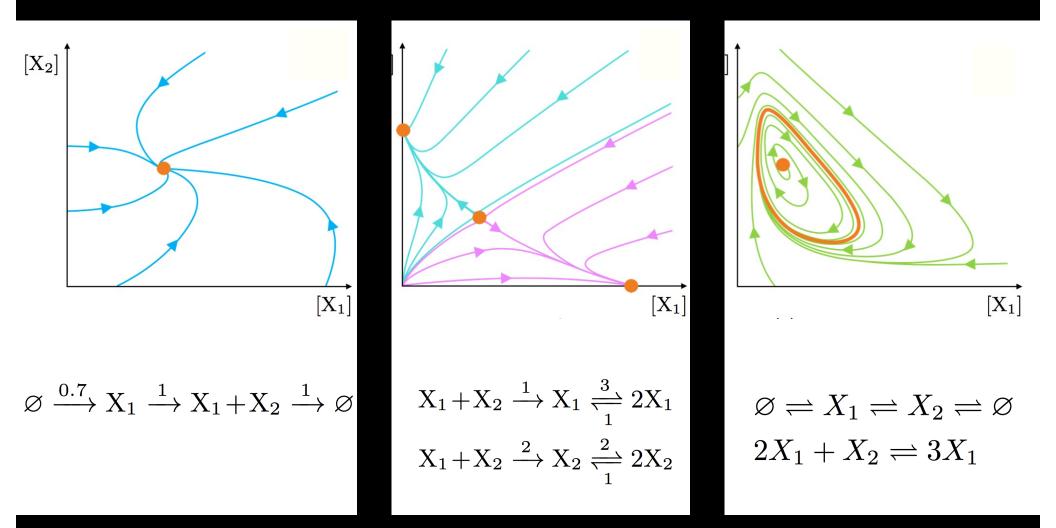
 $\frac{dx_1}{dt}$ $= k_1 - k_3 x_1 x_2$ dx_2 $= k_2 x_1 - k_3 x_1 x_2$ dt



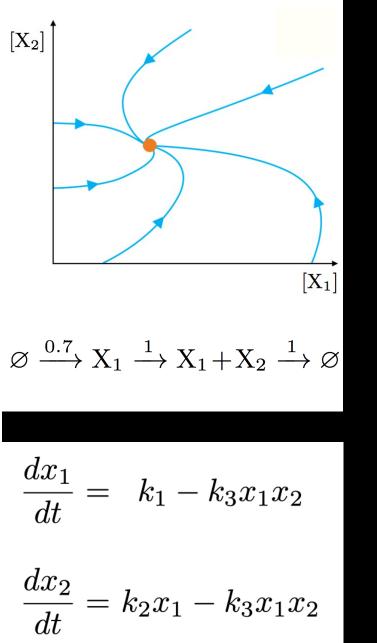
$$\varnothing \xrightarrow{0.7} X_1 \xrightarrow{1} X_1 + X_2 \xrightarrow{1} \varnothing$$







Polly Yu, G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem. 2018.



$$\frac{1}{|X_1|}$$

$$X_1 + X_2 \xrightarrow{1} X_1 \xrightarrow{3} 2X_1$$

$$X_1 + X_2 \xrightarrow{2} X_2 \xrightarrow{2} 2X_2$$

$$\frac{dx_1}{dt} = -k_1 x_1 x_2 + k_2 x_1 - k_3 x_1^2$$

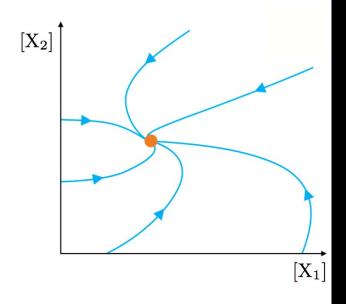
$$\frac{dx_2}{dt} = -k_4 x_1 x_2 + k_5 x_2 - k_6 x_2^2$$

$$\emptyset \rightleftharpoons X_1 \rightleftharpoons X_2 \rightleftharpoons \emptyset$$

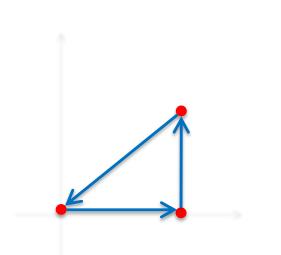
$$2X_1 + X_2 \rightleftharpoons 3X_1$$

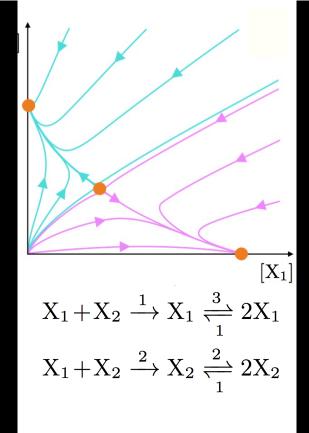
$$\frac{dx_1}{dt} = k_1 - k_2 x_1 - k_3 x_1 + k_4 x_2 + k_5 x_1^2 x_2 - k_6 x_1^3$$

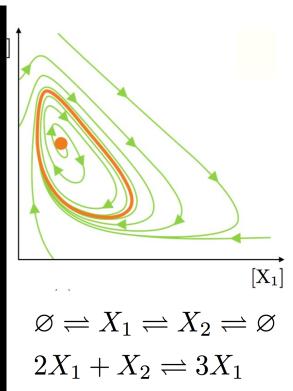
$$\frac{dx_2}{dt} = k_7 - k_8 x_2 + k_3 x_1 - k_4 x_2 - k_5 x_1^2 x_2 + k_6 x_1^3$$

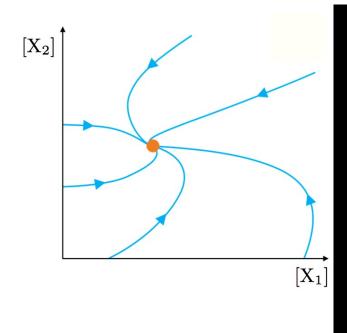


$$\varnothing \xrightarrow{0.7} X_1 \xrightarrow{1} X_1 + X_2 \xrightarrow{1} \varnothing$$

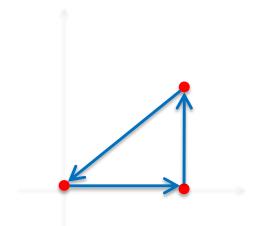


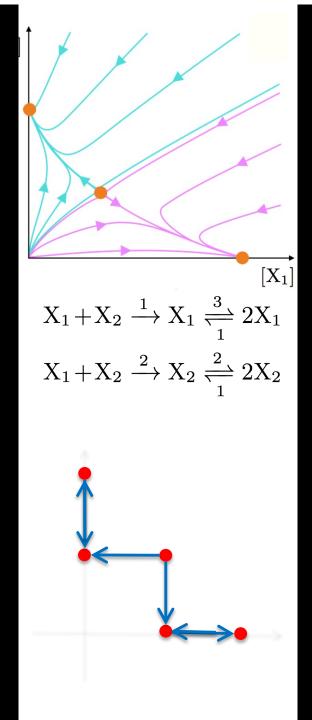


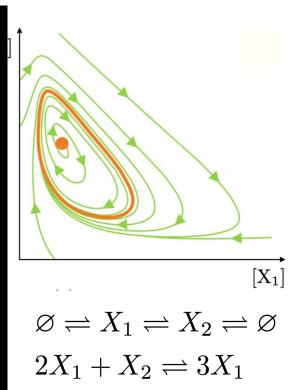


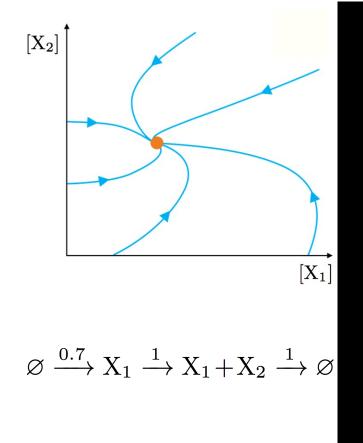


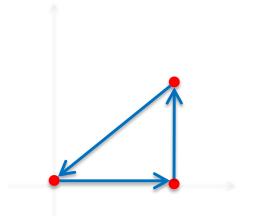
$$\varnothing \xrightarrow{0.7} X_1 \xrightarrow{1} X_1 + X_2 \xrightarrow{1} \varnothing$$

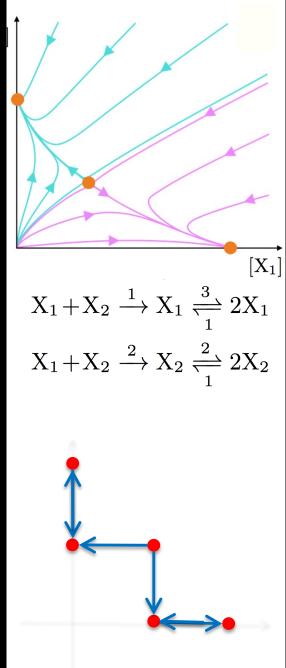


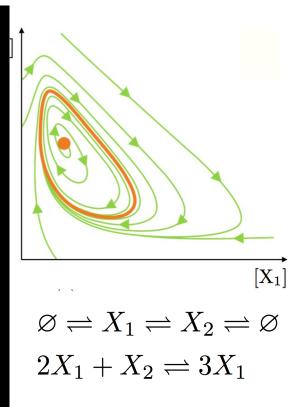


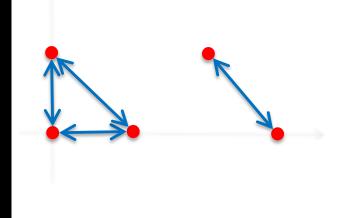












Reaction networks and polynomial dynamical systems

Reaction networks and polynomial dynamical systems

Remark. Any dynamics that can be obtained using polynomial dynamical systems on the positive orthant can also be obtained using mass-action systems.

In particular: if one could solve Hilbert's 16th problem for massaction systems, then this would solve the problem in general.

Polynomial dynamical systems in 2D: Hilbert's 16th problem

Polynomial dynamical systems in 2D: Hilbert 's 16th problem

Hilbert's 16th problem: What can be said about the number and location of limit cycles (isolated closed orbits) of a planar polynomial vector field with components of degree n?

Polynomial dynamical systems in 2D: Hilbert 's 16th problem

Hilbert's 16th problem: What can be said about the number and location of limit cycles (isolated closed orbits) of a planar polynomial vector field with components of degree n?

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x, y), \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = g(x, y)$$

Polynomial dynamical systems in 2D: Hilbert 's 16th problem

Hilbert's 16th problem: What can be said about the number and location of limit cycles (isolated closed orbits) of a planar polynomial vector field with components of degree n?

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x, y), \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = g(x, y)$$

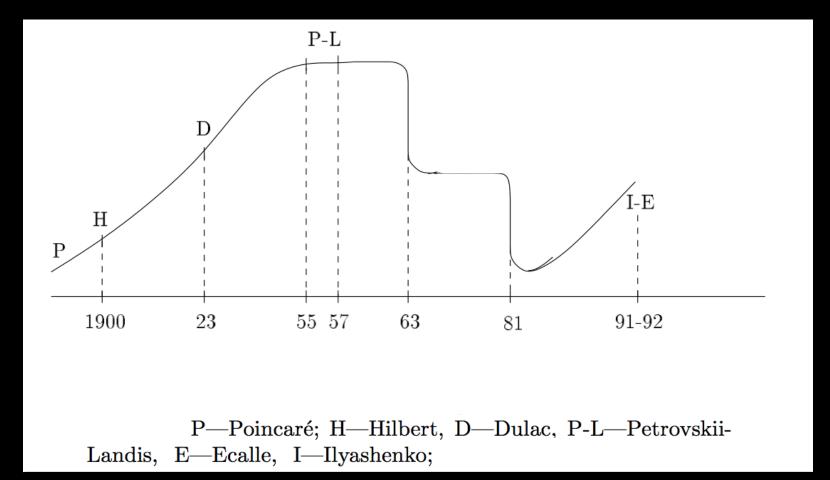
Problem 1. Is it true that a planar polynomial vector field has but a finite number of limit cycles?

Problem 2. Is it true that the number of limit cycles of a planar polynomial vector field is bounded by a constant depending on the degree of the polynomials only?

The bound on the number of limit cycles in Problem 2 is denoted by H(n) and known as the *Hilbert number*. Linear vector fields have no limit cycles; hence H(1) = 0. It is still unknown whether or not H(2) exists.

Yulij Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. AMS 2002.

A short history of Hilbert's 16th problem



Yulij Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. AMS 2002.

Reaction networks and limit cycles: some recent work

Erban, R., Kang, H.: Chemical systems with limit cycles. Bulletin of Mathematical Biology 85, 76 (2023)

Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

Banaji, M., Boros, B., Hofbauer, J.: Oscillations in three-reaction quadratic mass-action systems.
Studies in Applied Mathematics 152(1), 249–278 (2024)
Boros, B., Hofbauer, J.: Limit cycles in mass-conserving deficiency-one mass-action systems.
Electronic Journal of Qualitative Theory of Differential Equations 2022(42), 1–18 (2022)
Boros, B., Hofbauer, J.: Some minimal bimolecular mass-action systems with limit cycles. Nonlinear Analysis: Real World Applications 72, 103839 (2023)
Boros, B., Hofbauer, J.: Oscillations in planar deficiency-one mass-action systems. Journal of Dynamics and Differential Equations 36(Suppl 1), 175–197 (2024)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

We have (a) $W(n) \le M(n) \le S(n) \le H(n) \le S(n+2)$ for all $n \in \mathbb{N}$ (b) $S(n) \leq M(n+1)$ for all $n \in \mathbb{N}$.

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

$\begin{array}{ll} \textit{We have} & (a) \ W(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \textit{ for all } n \in \mathbb{N} \textit{ .} \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

 $\begin{array}{ll} \textit{We have} & (a) \ W(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \textit{ for all } n \in \mathbb{N} \textit{ .} \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

 $\begin{array}{ll} We \ have & (a) \ W(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \ for \ all \ n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \ for \ all \ n \in \mathbb{N} \ . \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Escher, C.: Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chemical Physics 63(3), 337-348 (1981)

Lloyd, N., Pearson, J., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Computers & Mathematics with Applications 44(3-4), 445–455 (2002)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	> 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
$\text{ as } n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

$\begin{array}{ll} We \ have & (a) \ W(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \ for \ all \ n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \ for \ all \ n \in \mathbb{N} \ . \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Escher, C.: Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chemical Physics 63(3), 337-348 (1981)

Lloyd, N., Pearson, J., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Computers & Mathematics with Applications 44(3-4), 445-455 (2002)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
<u>n</u>	W(n)	M(n)	S(n)	$\frac{(hot mass dettoh)}{H(n)}$
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

$\begin{array}{ll} \textit{We have} & (a) \ \textit{W}(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \textit{ for all } n \in \mathbb{N} \textit{ .} \end{array} \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Escher, C.: Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chemical Physics 63(3), 337-348 (1981)

Lloyd, N., Pearson, J., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Computers & Mathematics with Applications 44(3-4), 445-455 (2002)

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	W(n)	M(n)	S(n)	H(n)
2	= 0	= 0	≥ 3	≥ 4
3	≥ 3	≥ 3	≥ 6	≥ 13
4	≥ 6	≥ 6	≥ 13	≥ 28
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$	$\geq \mathcal{O}(n^2 log(n))$

 $\begin{array}{ll} \textit{We have} & (a) \ W(n) \leq M(n) \leq S(n) \leq H(n) \leq S(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S(n) \leq M(n+1) \textit{ for all } n \in \mathbb{N} \textit{ .} \end{array}$

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Escher, C.: Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chemical Physics 63(3), 337-348 (1981)

Lloyd, N., Pearson, J., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Computers & Mathematics with Applications 44(3-4), 445–455 (2002)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

We have (a) $W^a(n) \le M^a(n) \le S^a(n) \le H^a(n) \le S^a(n+2)$ for all $n \in \mathbb{N}$ (b) $S^{(a)}(n) \le M^{(a)}(n+1)$ for all $n \in \mathbb{N}$.

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

 $\begin{array}{ll} \textit{We have} & (a) \ W^a(n) \leq M^a(n) \leq S^a(n) \leq H^a(n) \leq S^a(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S^{(a)}(n) \leq M^{(a)}(n+1) \textit{ for all } n \in \mathbb{N} \,. \end{array}$

Nagy, I., Romanovski, V.G., Tóth, J.: Two nested limit cycles in two-species reactions. Mathematics **8**(10), 1658 (2020)

Llibre, J., Ramírez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. Journal of Differential Equations **248**(6), 1401–1409 (2010)

Escher, C.: Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Zeitschrift für Physik B Condensed Matter 35(4), 351-361 (1979)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

 $\begin{array}{ll} \textit{We have} & (a) \ W^a(n) \leq M^a(n) \leq S^a(n) \leq H^a(n) \leq S^a(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S^{(a)}(n) \leq M^{(a)}(n+1) \textit{ for all } n \in \mathbb{N} \,. \end{array}$

Nagy, I., Romanovski, V.G., Tóth, J.: Two nested limit cycles in two-species reactions. Mathematics **8**(10), 1658 (2020)

Llibre, J., Ramírez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. Journal of Differential Equations **248**(6), 1401–1409 (2010)

Escher, C.: Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Zeitschrift für Physik B Condensed Matter 35(4), 351-361 (1979)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

 $\begin{array}{ll} \textit{We have} & (a) \ W^a(n) \leq M^a(n) \leq S^a(n) \leq H^a(n) \leq S^a(n+2) \textit{ for all } n \in \mathbb{N} \\ & (b) \ S^{(a)}(n) \leq M^{(a)}(n+1) \textit{ for all } n \in \mathbb{N} \,. \end{array}$

Nagy, I., Romanovski, V.G., Tóth, J.: Two nested limit cycles in two-species reactions. Mathematics **8**(10), 1658 (2020)

Llibre, J., Ramírez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. Journal of Differential Equations **248**(6), 1401–1409 (2010)

Escher, C.: Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Zeitschrift für Physik B Condensed Matter 35(4), 351-361 (1979)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

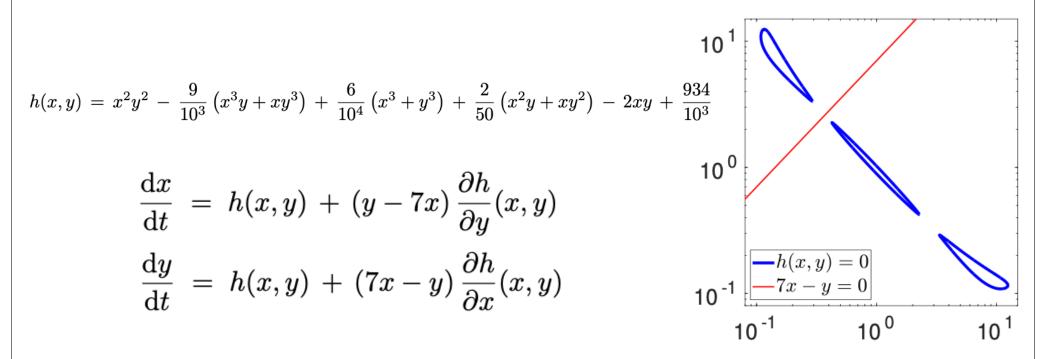
 $\begin{array}{ll} \text{We have} & (a) \ W^a(n) \leq M^a(n) \leq S^a(n) \leq H^a(n) \leq S^a(n+2) \ \text{for all } n \in \mathbb{N} \\ & (b) \ S^{(a)}(n) \leq M^{(a)}(n+1) \ \text{for all } n \in \mathbb{N} \,. \end{array}$

Nagy, I., Romanovski, V.G., Tóth, J.: Two nested limit cycles in two-species reactions. Mathematics $\mathbf{8}(10)$, 1658 (2020)

Llibre, J., Ramírez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. Journal of Differential Equations **248**(6), 1401–1409 (2010)

Escher, C.: Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Zeitschrift für Physik B Condensed Matter 35(4), 351-361 (1979)

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^{a}(n)$	$S^{a}(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$



5		~ 1		Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

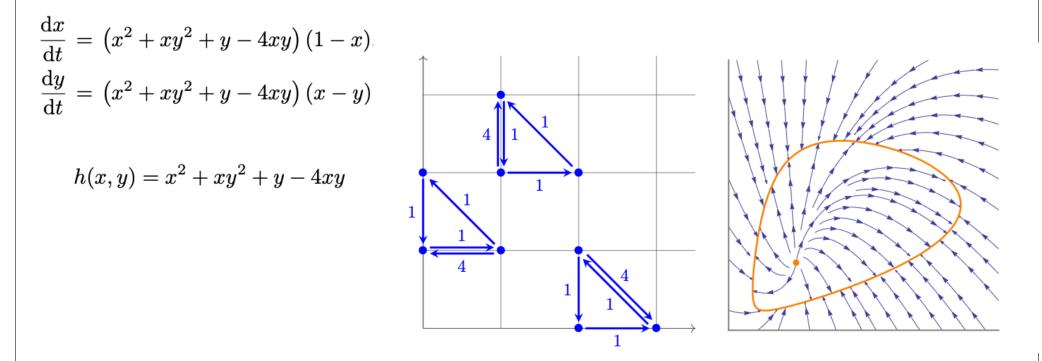
Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^{a}(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)\left(1 - x\right),$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)\left(x - y\right)$$

$$h(x,y) = x^2 + xy^2 + y - 4xy$$

Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

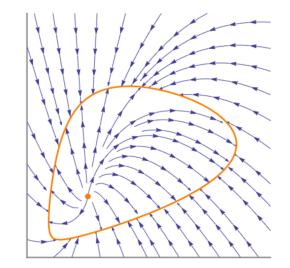


Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$\frac{(Hot Mass dettol)}{H^a(n)}$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)(1-x)$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)(x-y)$$

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= \left(x^2 + xy^2 + y - 4xy\right)\left(1 - x\right) - \varepsilon x \, y \, \frac{\partial h}{\partial y}(x, y) \,,\\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \left(x^2 + xy^2 + y - 4xy\right)\left(x - y\right) + \varepsilon x \, y \, \frac{\partial h}{\partial x}(x, y) \,,\end{aligned}$$

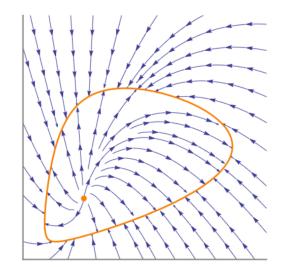


				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

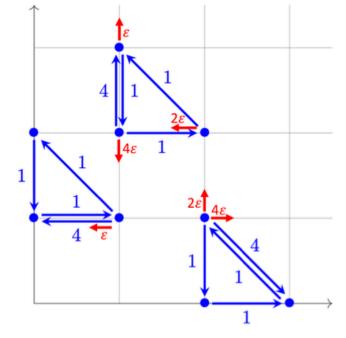
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)(1-x)$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)(x-y)$$

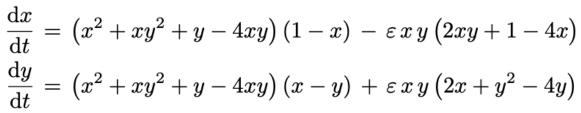
$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= \left(x^2 + xy^2 + y - 4xy\right)(1 - x) - \varepsilon x \, y \, \frac{\partial h}{\partial y}(x, y) \,,\\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \left(x^2 + xy^2 + y - 4xy\right)(x - y) + \varepsilon x \, y \, \frac{\partial h}{\partial x}(x, y) \,,\end{aligned}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)\left(1 - x\right) - \varepsilon x y \left(2xy + 1 - 4x\right)$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \left(x^2 + xy^2 + y - 4xy\right)\left(x - y\right) + \varepsilon x y \left(2x + y^2 - 4y\right)$$

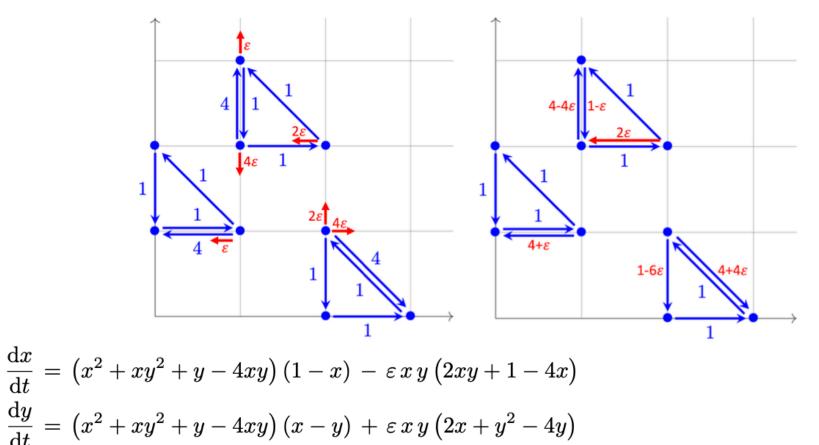


				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$



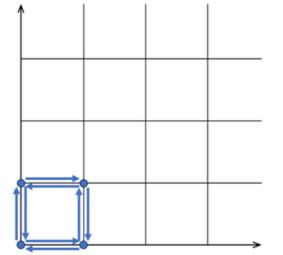


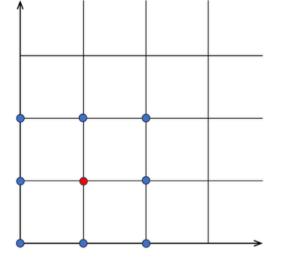
Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

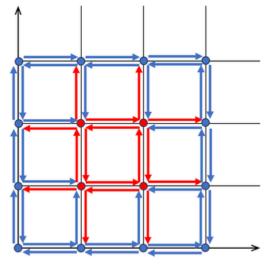


Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

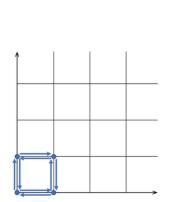
Dagraa	Weakly reversible	Source and target	Mass action	Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^{a}(n)$	$S^{a}(n)$	$H^{m{a}}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$

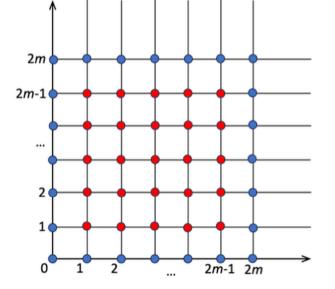


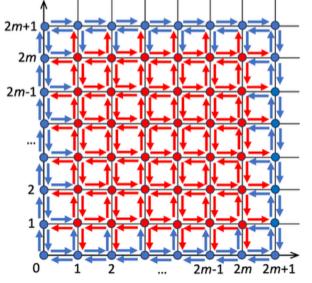




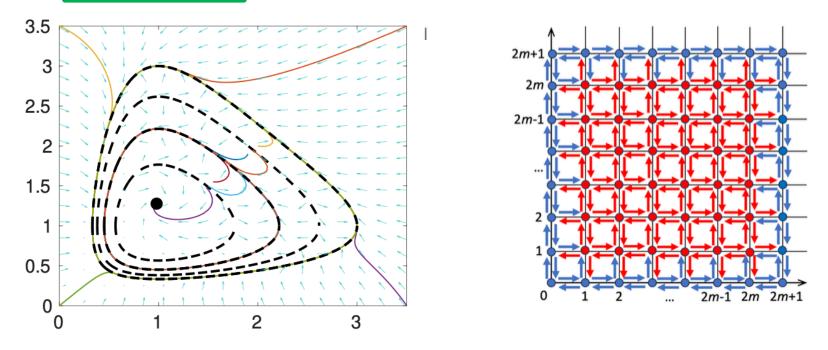
Degree	Weakly reversible	Source and target	Mass action	Fully general (not mass action)
n	$W^a(n)$	$M^{a}(n)$	$S^a(n)$	$H^a(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$







				Fully general
Degree	Weakly reversible	Source and target	Mass action	(not mass action)
n	$W^a(n)$	$M^a(n)$	$S^a(n)$	$H^{a}(n)$
2	= 0	= 0	≥ 1	≥ 1
3	≥ 0	≥ 1	≥ 1	≥ 2
4	≥ 1	≥ 1	≥ 3	≥ 4
as $n \to \infty$	$\geq \mathcal{O}(n)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$	$\geq \mathcal{O}(n^2)$



Theorem. There exists a reversible chemical system of order 4N + 2 that has N algebraic limit cycles for all $N \in \mathbb{N}$. In particular, we have $W^a(4N+2) \ge N$.

References

Gheorghe Craciun, Radek Erban, Planar chemical reaction systems with algebraic and non-algebraic limit cycles, available on arXiv.

References

Gheorghe Craciun, Radek Erban,

Planar chemical reaction systems with algebraic and non-algebraic limit cycles (2024) available on arXiv.

Erban, R., Kang, H.: Chemical systems with limit cycles. Bulletin of Mathematical Biology 85, 76 (2023)

Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

References

Gheorghe Craciun, Radek Erban,

Planar chemical reaction systems with algebraic and non-algebraic limit cycles, available on arXiv.

Erban, R., Kang, H.: Chemical systems with limit cycles. Bulletin of Mathematical Biology 85, 76 (2023)

Boros, B., Craciun, G., Yu, P.: Weakly reversible mass-action systems with infinitely many positive steady states. SIAM Journal on Applied Mathematics **80**(4), 1936–1946 (2020)

Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qualitative Theory of Differential Equations **30**, 363–379 (1981)

Póta, G.: Two-component bimolecular systems cannot have limit cycles: A complete proof. Journal of Chemical Physics **78**, 1621–1622 (1983)

Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bulletin des Sciences Mathematiques **127**, 222–230 (2003)

Escher, C.: Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chemical Physics 63(3), 337-348 (1981)

Lloyd, N., Pearson, J., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Computers & Mathematics with Applications 44(3-4), 445-455 (2002)

Carvalho, Y., Da Cruz, L., Gouveia, L.: New lower bound for the Hilbert number in low degree Kolmogorov systems. Chaos, Solitons & Fractals **175**, 113937 (2023)

Nagy, I., Romanovski, V.G., Tóth, J.: Two nested limit cycles in two-species reactions. Mathematics $\mathbf{8}(10)$, 1658 (2020)

Llibre, J., Ramírez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. Journal of Differential Equations **248**(6), 1401–1409 (2010)

Escher, C.: Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Zeitschrift für Physik B Condensed Matter 35(4), 351-361 (1979)

Christopher, C.: Polynomial vector fields with prescribed algebraic limit cycles. Geometriae Dedicata 88, 255–258 (2001)