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e A biochemical reaction can happen in the transformation of one
molecule to a different molecule inside a cell. Biochemical reactions
are mediated by enzymes, which are biological catalysts that can
alter the rate and specificity of chemical reactions inside cells.
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e A biochemical reaction can happen in the transformation of one
molecule to a different molecule inside a cell. Biochemical reactions
are mediated by enzymes, which are biological catalysts that can
alter the rate and specificity of chemical reactions inside cells.

e The key processes in biological and chemical systems are described
by biochemical reaction networks.

e A biochemical reaction network comprises a set of complexes
(reactants and products), and a set of reactions.

Complexes: {Ha, O, HyO}

A reaction: 2H5 4+ Oy — 2H50
S——r SN——

reactant product
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Mass-action kinetics and Euclidean embedded graph

e Standard deterministic mass-action kinetics says that the
rate at which a reaction occurs is proportional to the
concentrations of the reactant species.

. k
Reaction: X7 + X9 = X3+ X34
—— ~—
reactant product
x; : the concentration of species X;,

k : the reaction rate constant,

Reaction rate: kxqizs.
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Mass-action kinetics and Euclidean embedded graph

e Standard deterministic mass-action kinetics says that the
rate at which a reaction occurs is proportional to the
concentrations of the reactant species.

Reaction: X7 + Xo E> X3+ Xy
—— ——

reactant product

x; : the concentration of species X;,
k : the reaction rate constant,

Reaction rate: kxqizs.

e A reaction network can be regarded as a Euclidean embedded
graph G = (V, E), where V' C RY, is the set of vertices of the

graph, and F C V x V is the set of oriented edges of G.
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Example: The Lotka-Volterra systems can be considered as a reaction
network in XY-plane with 6 complexes and 3 reactions.

Yy
2Y
Y X+Y
X
0 X 2X

Figure: A reaction network of the Lotka-Volterra system.

Species: S ={X,Y},
Complexes: C = {X, X +Y,Y,2X,2Y,0},
Reactions: R ={X —-2X, X +Y —2Y,Y — 0}.
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@%X1L>X1+X2i>g

e
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Figure: Reaction networks and Euclidean embedded graphs.
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[Xz] [Xe]
.
[X4]
Xi+Xz 5 Xy i—lx 2X,
@%X1L>X1+X2i>@ X1+X2A2—)X2\i—‘2X2
1
(a) (b)

Figure: Reaction networks and Euclidean embedded graphs.
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[X2] [X2]
L 4
[Xq]
X1 +Xs 5 Xy %\ 2X;
@%X1L>X1+X2i>@ X1+X2A2—)X2\i—‘2)(2
1
(a) (b)

[Xe]

[X4]
g=X1=Xo=0
2X1 + X2 =3X;

Figure: Reaction networks and Euclidean embedded graphs.
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Weakly reversible

Let G = (V, E) be a Euclidean embedded graph.

@ The set of vertices is partitioned by its connected components
called linkage classes, and we identify them by the subset of
vertices that belong to that connected component.
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Weakly reversible

Let G = (V, E) be a Euclidean embedded graph.

@ The set of vertices is partitioned by its connected components
called linkage classes, and we identify them by the subset of
vertices that belong to that connected component.

@ A graph G = (V, E) is weakly reversible, if every edge in any
linkage class is part of an oriented cycle.

@ G Cyur G’ will denote that G is a weakly reversible subgraph of G’.
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Mass-action system

Let G = (V, E) be a Euclidean embedded graph.

o Let k = (ky_y )ysyea € Rfo be a vector of rate constants. We
call (G,k) a mass-action system, and its associated
dynamical system is given by

dx

— y /
ar E : kysyx? x (Y —y)
y—y'eE Y v .
reaction rate change of species
where ¥ = z{'z¥* - - - 27" with @ € R% is the vector of

concentrations of the chemical species in the system.

December 2024 7 /40



Invariant polyhedron

Given the mass-action system

dx
- = D k¥ ).
y—y' el

e The stoichiometric subspace is the vector space spanned by
the reaction vectors with § = span{y’ —y:y — vy’ € E}.

e For any positive vector &g € RZ, the set Sz, := (xg +5) NRY; is

known as the (affine) invariant polyhedron of x.
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Example: Recall a reaction network of the Lotka-Volterra system in
XY-plane. Given a rate constants vector k = (ky_y/)y—yea € RE,,
the mass-action system (G, k) is given by

X Foox, x+v By, v B

Then the associated dynamical system is

da - 1 -1 0\ kizy — kowixo
= k1xq <0) + koxq129 ( 1 ) + k3xo (_1) - <k2x1$2 — ksxo ’
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Dynamical Equivalence

Two mass-action systems (G, k) and (G’, k') are said to be
dynamically equivalent, if for every vertex y, € VU V’,

Y kysy@—yo) = Y Ky (¥ — o) (1)

Yo—yer Yyo—y' €L’

We let (G, k) ~ (G, k') denote that two systems (G, k) and (G', k') are
dynamically equivalent.
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Example: Figure 3 gives an example of two dynamically equivalent
mass-action systems.

1 .—)' L ]
Yy =(1,1) 1
1
Ys = (070) Yy = (17 0)
(a) G=(V,E) (b) G'=(V', E')

Figure: The mass-action systems in (a) and (b) are dynamically equivalent.
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Dynamical Inclusion

Let G and G’ be two E-graphs. Then the dynamics of G is said to be
included within the dynamics of G’, denoted by G C G’, if for any

k € R there exists k' € RIS such that (G, k) ~ (G, k).

We are now ready to pose the central question of this talk

Question: Given an E-graph G = (V, E), what are the necessary and
sufficient conditions on G such that there exists an E-graph G’ C., G,
and G C G’ (Here G, refers to the complete graph on the source
vertices of G)? [1]

[1]: J. Jin, G. Craciun, and P. Yu. “An efficient characterization of
complex-balanced, detailed-balanced, and weakly reversible systems”. In: STAM J.
Appl. Math. 80.1 (2020), pp. 183-205
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Endotactic Networks

o Intuition: Endo -“Inward pointing networks”

e Can be verified using the “parallel sweep test”.

. /' SN y \\\ l
p . \/ |/
= N Y, < i ———
. pE /' AN N / VN
N IEEN e
(a) (b) (©)

(a) and (b) are endotactic, but (c) is not endotactic.

G. Craciun, F. Nazarov, and C. Pantea, Persistence and permanence of mass-action and power-law dynamical

systems, SIAM J. Appl. Math., 73(1), 305-329.
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Necessary Conditions for the dynamics an
E-Graph G to be included in the dynamics of a
Weakly Reversible E-graph G4

[2]:S. Kothari, J. Jin, and Deshpande, A. “Realizations through Weakly
Reversible Networks and the Globally Attracting Locus”. In: arXiv preprint
arXiv:2409.04802 (2024)
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Necessary Conditions for the dynamics an
E-Graph G to be included in the dynamics of a
Weakly Reversible E-graph G4

G is endotactic. [2]

[2]:S. Kothari, J. Jin, and Deshpande, A. “Realizations through Weakly
Reversible Networks and the Globally Attracting Locus”. In: arXiv preprint
arXiv:2409.04802 (2024)
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Net reaction vector and graph

Let (G, k) be a mass-action system. For every vertex y € V', the net
reaction vector associated with y is defined as follows:

Wy = Z ky—y (Y —y).

y—y' eE

Let (G, k) be a mass-action system. The E-graph corresponding to
the net reaction vectors of (G, k), denoted by Gy (i), is defined as
follows:

@ All source vertices of Gyy () correspond to the source vertices of G.

@ For every source vertex y of Gyy (), there exists a corresponding
target vertex y and an edge y — ¢y € Gy (x) such that

@_y:w’gp

where w,, is the net reaction vector associated with y of G.
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Idea: Let (G, k) and (G', k') be two mass-action systems. Suppose
Gw (k) 1s the E-graph corresponding to the net reaction vectors of
(G, k). If G" is weakly reversible and (G, k) ~ (G', k'), then Gy (x) is
endotactic.

Let G = (V,E) and G' = (V', E') be two E-graphs. If G' is weakly
reversible and G C G’, then G is endotactic. Therefore, G being
endotactic is a necessary condition for its dynamics to be included in
the dynamics of a weakly reversible FE-graph.
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Sufficient Conditions for the Dynamics of E-Graph G to

be Included in the Dynamics of a Weakly Reversible
E-graph Gy

We start with the two-dimensional case:

Let G = (V, E) be a strongly endotactic 2D E-graph with a
two-dimensional stoichiometric subspace. Then there exists a weakly
reversible single linkage class E-graph G’ # G such that G C G’ if and
only if at least one of the following holds:

@ all source vertices of G lie on boundary of New(G).

@ there exists a source vertex y, on the boundary of New(G), such

that the net reaction vector corresponding to y, points strictly in
the interior of New(G).
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D. F. Anderson, J. D. Brunner, G. Craciun, M. D. Johnston, On classes of reaction networks and their

associated polynomial dynamical systems, J. Math. Chem., 58 (2020): 1895-1925.




Sufficient Conditions for an E-Graph G Dynamics to be

Included in the Dynamics of a Weakly Reversible
E-graph Gy

Higher dimensions !

This limitation is illustrated in following figure which presents a
counterexample where there is no weakly reversible E-graph whose
dynamics can include the dynamics generated by this network.

EiS
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Let G = (V, E) be an E-graph that has ¢ linkage classes, denoted by

Li,...,Ly, and p terminal strongly connected components, denoted by
Ty,...,T,. For every k € R|>E0|, every terminal strongly connected

component T; contains a vertex whose net reaction vector points
strictly in the interior of New(L;) with T; C L;. Then there exists a
weakly reversible E-graph G’ such that G C G'.
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Toric Locus, Disguised Toric Locus and
Globally Attracting Locus
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Complex-balanced system

e Let (G, k) be a mass-action system, a state xo € RZ is a positive
steady state if

Z ky—y g (Y —y) = 0.
y—y' €G
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Complex-balanced system

e Let (G, k) be a mass-action system, a state xo € RZ is a positive
steady state if

> kysyaly —y) =0.
y—y' €G

e A positive steady state g € RZ; is complex-balanced if for every
vertex y, € Vi, we have

Yo _ Yy
E, kyo—y Ty’ = E, ky—yo g -

Yo—y' €G Y=y G

outgoing flux on y incoming flux on y,
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Complex-balanced system

e Let (G, k) be a mass-action system, a state xo € RZ is a positive
steady state if

> kysyaly —y) =0.
y—y' €G

e A positive steady state g € RZ; is complex-balanced if for every
vertex y, € Vi, we have

Yo _ Yy
E, kyo—y Ty’ = E, ky—yo g -

Yo—y' €G Y=y G

outgoing flux on y incoming flux on y,

e If (G, k) has a complex-balanced steady state, then it is called a
complex-balanced system or toric dynamical system.
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Example: This system is complex-balanced. For example, at the
vertex (0,1), there is one reaction going into it with flux value 3, and
there are two reactions leaving this vertex, with sum of fluxes being
2+1=3.

T 4 X

Figure: An example of a complex-balanced system. The positive numbers on
any edge is the flux of that reaction y — ¥'.
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Toric locus

e Consider a E-graph G = (V, E), let V(G) C RE denote the set of
parameters k € REO, for which the dynamical system generated by
(G, k) is toric (i.e., complex-balanced).

[3]: F. Horn. “Necessary and sufficient conditions for complex balancing in
chemical kinetics”. In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186
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Toric locus

e Consider a E-graph G = (V, E), let V(G) C RE denote the set of
parameters k € REO, for which the dynamical system generated by
(G, k) is toric (i.e., complex-balanced).
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Toric locus

e Consider a E-graph G = (V, E), let V(G) C RE denote the set of
parameters k € REO, for which the dynamical system generated by
(G, k) is toric (i.e., complex-balanced).

e V(@) is called the toric locus of toric dynamical systems given by
the Euclidean embedded graph G.

e In [3], it shows that given an E-graph G = (V, E),
@ If G = (V, E) is weakly reversible, then V(G) # 0.

@ If G = (V,E) is not weakly reversible, then V(G) = (.

[3]: F. Horn. “Necessary and sufficient conditions for complex balancing in

chemical kinetics”. In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186
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Deficiency and Deficiency Zero Theorem

Let G = (V, E) be a reaction network with ¢ connected components
and the stoichiometric subspace S. Suppose that s = dim S, then the
deficiency of the network G is given by

d=|V|-4—-5>0.

Deficiency Zero Theorem

A mass-action system is complex-balanced for every set of positive rate
constants if and only if it is weakly reversible and deficiency zero.
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Example:t This system is weakly reversible and deficiency zero.

X+Y 2

;/WW BRAR

X

V]

R Unique globally
92X attractive equilibrium

()
A

Figure: An example of a weakly reversible and deficiency zero system. It is
complex-balanced for any positive rate constants

December 2024
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The dimension of the toric locus V(G)

Consider an E-graph G = (V, E) with ¢ connected components. Let s
be the dimension of the stoichiometric subspace S, then

dim(V(G)) = |E] = (V] =1 = s).

[4]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. “Toric dynamical
systems”. In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565
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The dimension of the toric locus V(G)

Consider an E-graph G = (V, E) with ¢ connected components. Let s
be the dimension of the stoichiometric subspace S, then

dim(V(Q)) = |E| = (|[V| =1—5s).

Let G = (V, E) be a weakly reversible E-graph. Then the codimension
of the toric locus V(G) C RE is & [4].

[4]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. “Toric dynamical
systems”. In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565
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Disguised Toric Systems

e Recall that the toric locus on an E-graph G is

K(G) := {k € RE, }the mass-action system generated by
(G, k) is toric}.

e A dynamical system of the form

dx
E - f(a:)v
is called disguised toric on G, if it is realizable on G for some
k € K(G) CRE, ie., it has a complex-balanced realization on

G =(V,E).

[5]: J. Jin, G. Craciun, and Deshpande, A. “A Lower Bound on the
Dimension of the Disguised Toric Locus”. In: In revision by SIAM Journal on
Applied Algebra and Geometry (2023)
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Disguised Toric Locus

Let G = (V,E) and G’ = (V', E') be two E-graphs.

(a) Define the set Kgisq(G,G’) as

Kaisg(G,G') == {k € R | the dynamical system (G, k)

is disguised toric on G'}.
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Disguised Toric Locus

Let G = (V,E) and G’ = (V', E') be two E-graphs.

a) Define the set K5, (G, G') as
g

Kaisg(G,G') == {k € R | the dynamical system (G, k)

is disguised toric on G'}.

(b) We define the disguised toric locus of G as

Kdisg(G) = U Kdisg(G7 GI)7
G'CGe

where G, represents the complete graph of G.
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The Globally attracting locus of G

Consider an E-graph G = (V, E). The globally attracting locus of G
is defined as follows:

Kgiobat (G) = {k IS R|>EO| | (G, k) has a globally attracting steady state

within each stoichiometric compatibility class}
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Flux vector

Let G = (V, E) be an E-graph.

o Let J = (Jy,—y; )yioy ek € RE, denote a flux vector, whose
component Jy, sy = ky, 5y, x¥% > 0 is called the flux of the
reaction y; — y;.
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o Let J = (Jy,—y; )yioy ek € RE, denote a flux vector, whose
component Jy, sy = ky, 5y, x¥% > 0 is called the flux of the
reaction y; — y;.

e A flux vector J is called a complex-balanced flux vector , if at
each vertex y, € V,
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Let G = (V, E) be an E-graph.

o Let J = (Jy,—y; )yioy ek € RE, denote a flux vector, whose
component Jy, sy = ky, 5y, x¥% > 0 is called the flux of the
reaction y; — y;.

e A flux vector J is called a complex-balanced flux vector , if at
each vertex y, € V,

Z Jy—y, = Z Jyo—y’

Y=yl Yo—y'€E

e Recall that o € RY, is a complex-balanced steady state , if for
every vertex y, € Vg,

Yo _ Yy
E: kyy—y ey’ = E: ky—y,

Yo—y' €G Y—YoEG
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Sufficient condition for ICyjopu(G) # 0

We now present the linear program designed to determine whether

Kaisg(G) # 0.

Linear program (P2): Given an E-graph G, consider its complete
graph G. = (V, E.). Find J = (Jy_y )y—y'cE € R! OI and
J = (Jysy ) y—yeE. € R' Cl satisfying for every y, € V,

> Ty Wiy = > Ty, (¥j — Yo); (2)

Yo—Y; €L Yo—Y,; €L
- /
>0 Juew= D youy (3)
Yo—yEL: Y —yo€Ee
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Theorem

Let G = (V, E) be an endotactic E-graph with a two-dimensional
stoichiometric subspace. Assume that the linear program (P2) has a
solution, then Kgopai(G) # 0[5, 6].

[5, 6]: J. Jin, G. Craciun, and Deshpande, A. “A Lower Bound on the
Dimension of the Disguised Toric Locus”. In: In revision by SIAM Journal on
Applied Algebra and Geometry (2023), J. Jin, G. Craciun, and Deshpande A. “On
the connectivity of the Disguised Toric Locus”. In: Accepted by Journal of
Mathematical Chemistry (2023)
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Thomas type models

Consider the network G shown in Figure below. This is commonly used
to model the oxidation of uric acid by oxygen in the presence of the
enzyme uricase. In this context, the species X and Y represent uric
acid and oxygen, respectively.

Y X+Y Y X+Y

) e

L -

0 X 0 X
(a) ()

Figure: (a) An E-graph G represents the Thomas type model. (b) The weakly
reversible E-graph G’ includes the dynamics of the network G in (a).
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We now consider the linear program (P2), which has a solution as
follows:

Joox = Josy = Ixivox = Ixivoy =1,
Jx 0= Jy—0 = Josxty = 2,
Josx = Josy =3, Ixtvox = JIxsvosy =1, Ixo0 = Jyo0 = 2.
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We now consider the linear program (P2), which has a solution as
follows:

Joox = Josy = Ixivox = Ixivoy =1,
Jx 0= Jy—0 = Josxty = 2,

Josx = Josy =3, Ixtvox = JIxsvosy =1, Ixo0 = Jyo0 = 2.

We obtain that Kgisq(G,G") # 0. Further, we have
Kaisg(G) € Kgiopat(G), therefore we conclude Kgiopai(G) # 0.

December 2024
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Modified Selkov models

Consider the network G shown in Figure below. This network is an
example of a modified Selkov model, commonly used to model
glycolysis, a multi-step anaerobic process in which glucose is broken
down into pyruvate.

3Y 3Y
\.X +2Y \ X +2Y
;3\ §\
X X
(a) (b)

Figure: (a) An E-graph G represents the modified Selkov network. (b) The
weakly reversible E-graph G’ includes the dynamics of the network G in (a).
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We now consider the linear program (P2), which has a solution as
follows:

Jy 3y = Iy xioy = Jysx = Ix oy ox = 1,
/ _ _ _ _
Jx oy sy = Ixoxray = 23y oy = 3, Ix oy ox = 1,
Jy3y = Jyosx = Ixqov o3y = Ixoxtoy =2, Jayy = 3.
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We now consider the linear program (P2), which has a solution as
follows:

JY—>3Y JY—>X+2Y - JY—)X JX+2Y—>X 1
Jx oy sy = Ixoxray = 23y oy = 3, Ix oy ox = 1,

Jy3y = Jyosx = Ixqov o3y = Ixoxtoy =2, Jayy = 3.

we obtain that Kg;sq(G, G') # (0. Further we get that
Kaisg(G) € Kgiopai(G), therefore we conclude Kgiopai(G) # 0.

December 2024
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@ Necessary conditions for the dynamics of an E-graph to be
included in the dynamics of a weakly reversible E-graph.
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@ Necessary conditions for the dynamics of an E-graph to be
included in the dynamics of a weakly reversible E-graph.

e Sufficient conditions for the dynamics of an E-graph to be included
in the dynamics of a weakly reversible E-graph.

e Two dimensional networks.

e Higher dimensional networks.
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@ Necessary conditions for the dynamics of an E-graph to be
included in the dynamics of a weakly reversible E-graph.

e Sufficient conditions for the dynamics of an E-graph to be included
in the dynamics of a weakly reversible E-graph.

e Two dimensional networks.

e Higher dimensional networks.

e Toric Locus, Disguised Toric Locus, Globally Attracting locus.
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