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Differential Equation Models

▶ A Dynamical system/ODE model is a system of the form:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗,

▶ x: state variables
▶ y: output variables,
▶ u: input variables,
▶ λ: parameters,
▶ x(0): initial conditions,
▶ f and g are rational function.

▶ We assume y(0), y′(0), y′′(0), . . . can be measured and that u
is also specified/known.
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Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Parameter Identifiability Problem

▶ Given model:

Σ :=


x′ = f(x,λ,u)

y = g(x,λ,u)

x(0) = x∗.

▶ Parameter Identifiability Problem: Can we determine the
values of the parameters from the input/output data?

▶ I.e., Is it possible to determine the values of the parameters λ
from a solution of the system?

▶ globally identifiable: unique values for parameters

▶ locally identifiable: finitely many values for parameters

▶ unidentifiable: infinitely many values for parameters



Example

Σ =


x ′ = λ2

1

y = x
x(0) = λ2

▶ The initial condition x(0) = λ2 immediately implies that λ2 is
globally identifiable.

▶ From x ′ = λ2
1 we obtain x = λ2

1t + C , where C is a constant.

▶ By the initial condition x(0) = λ2 we obtain C = λ2, hence

y = λ2
1t + λ2.

▶ So

λ2
1 =

y − λ2

t
,

hence, λ1 locally identifiable.
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Existing Approaches

▶ Power series

▶ Differential Algebra: Take derivatives of the system

Σm :=



x′ = f(x,λ,u)
...

x(m) = f(m)(x,λ,u)

y(0) = g(x(0),λ,u(0))

y′(0) = g′(x(0),λ,u(0)
...

y(m)(0) = g(m)(x(0),λ,u(0))

x(0) = x∗.

▶ ”Make” Σm into a polynomial system and use computational
algebra techniques, e.g., Gröbner Bases/Rosenfeld-Gröbner.
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A Probabilistic Algorithm for ODE Identifiability (SIAN)

▶ Plug in random values of λ̂ to λ and solve the ODE system Σ
for the values y(0), y(0)′, y′′(0), ..., y(m)(0)

▶ To check if λi is globally identifiable we can check whether

λi − λ̂i ∈ GB(Σm),

where GB(Σb) is a Gröbner basis (and the membership can
be checked via reduction).
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From ODE to PDE

▶ Motivation (at least): Many Biological systems are modelled
by PDEs

▶ There is little work on PDE identifiability. Existing literature
mostly includes case studies rather than a systematic study.

▶ Generalisation to a PDE system:

Σ :=


∂tx = f(x,λ,u, ∂i

t∂
j
ξx), i + j ≤ m

y = g(x,λ,u)

x(0) = x∗

Boundary Conditions

▶ In practice, boundary conditions can be non-algebraic, which
can make theory/computations hard.
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Algebraic Definition of PDE Identifiability

▶ Differential ring:

R = C(λ)[∂ i
t∂

j
ξx, ∂

i
t∂

j
ξy, ∂

i
t∂

j
ξu | i , j ≥ 0]

▶ Differential ideal associated to the model Σ:

I = ⟨∂ i
t∂

j
ξ(∂tx− f), ∂i

t∂
j
ξ(y − g) | i , j ≥ 0⟩ ⊆ R

▶ I is a prime ideal, hence let the field of fractions be F = R/I .

Definition
Let x̂, ŷ, û be the image of x, y,u in R/I . A parameter λ ∈ λ (or a
rational function of parameters) is identifiable if

λ ∈ C(∂i
t∂

j
ξŷ, ∂

i
t∂

j
ξû).



Algebraic Definition of PDE Identifiability

▶ Differential ring:

R = C(λ)[∂ i
t∂

j
ξx, ∂

i
t∂

j
ξy, ∂

i
t∂

j
ξu | i , j ≥ 0]

▶ Differential ideal associated to the model Σ:

I = ⟨∂ i
t∂

j
ξ(∂tx− f), ∂i

t∂
j
ξ(y − g) | i , j ≥ 0⟩ ⊆ R

▶ I is a prime ideal, hence let the field of fractions be F = R/I .

Definition
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Testing PDE Identifiability

Definition
Let x̂, ŷ, û be the image of x, y,u in R/I . A parameter λ ∈ λ is
identifiable if

λ ∈ C(∂i
t∂

j
ξŷ, ∂

i
t∂

j
ξû).

Theorem
Let I ⊆ R be the differential ideal corresponding to a PDE model,
with characteristic set S. A parameter λ in S is identifiable if the
polynomials in S, considered as polynomials in variable λ with
monomial coefficients in R, have linearly independent coefficients.

▶ One can check the linear independence of the monomial
coefficients by checking non-singularity of certain Wronskians.
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The Procedure

1. Construct a differential ideal from the model equations.

2. Using Rosenfeld-Gröbner algorithm, compute the
characteristic set

Fj(u, u̇, ü, . . . , , y , ẏ , ÿ , . . . ) = 0.

3. Collect the coefficients of Fj as rational functions in terms of
the parameters.

4. Compute the Wronskian Wrj of the coefficients.

5. Check if Wrj are non-singular by

6. Compute the determinant det of Wrj (which is a polynomial)

7. Compute the normal form of the coefficients of det wrt Fj

8. Obtain a sufficient condition C for normal forms not to be zero

9. Using initial/boundary conditions check if C holds.
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2. Using Rosenfeld-Gröbner algorithm, compute the
characteristic set
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3. Collect the coefficients of Fj as rational functions in terms of
the parameters.

4. Compute the Wronskian Wrj of the coefficients.

5. Check if Wrj are non-singular by

6. Compute the determinant det of Wrj (which is a polynomial)

7. Compute the normal form of the coefficients of det wrt Fj

8. Obtain a sufficient condition C for normal forms not to be zero

9. Using initial/boundary conditions check if C holds.



The Procedure

1. Construct a differential ideal from the model equations.
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Case Study: Nutrient Reaction–Diffusion

−d
∂c(x , t)

∂x2
c(x , t)−dc0

∂c(x , t)

∂x2
+
∂c(x , t)

∂t
c(x , t)+c0

∂c(x , t)

∂t
−λc(x , t),

▶ Initial Conditions:

c(R, t) = 1, c(x , 0) = 1, 0 ≤ x ≤ R

▶ Boundary Conditions:

∂c(0, t)

∂t
= 0.
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Case Study: Nutrient Reaction–Diffusion

▶ plugging in each of the above into the PDE, we obtain ODEs,
and then using the initial conditions one can prove that the
above expressions cannot be zero.



Case Study: Fisher’s Equation

Σ :=



∂n(x ,t)
∂t − d ∂n(x ,t)

∂x2
− rn(x , t)(1− n(x ,t)1

k ),

{
−∞ < x < ∞
0 < t

Boundary Cond: n(x , t) →

{
k x → −∞
0 x → +∞

Initial Conds: n(x , 0) = n0(x),

n0(x) =
ke−αx

1+e−αx

{
K x → −∞
0 x → +∞
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Case Study: Fisher’s Equation

▶ This can be refuted using the fact that the initial condition
does not depend on t.



Case Study: Fisher’s Equation

This cannot happen because the latter expression must be zero
according to the initial condition.



Case Study: Lotka Volterra Equation

Σ :=



∂u(x ,t)
∂t − d1

∂u(x ,t)
∂x2

− u(x , t)(a1 − b1u(x , t)− c1v(x , t)),
∂v(x ,t)

∂t − d2
∂v(x ,t)
∂x2

− v(x , t)(a2 − b2u(x , t)− c2v(x , t))

−∞ < x < ∞, 0 < t

Boundary Cond.s: u(x , t) →

{
a1
b1

x → −∞
0 x → +∞

v(x , t) →

{
a2
c2

x → −∞
0 x → +∞

Initial Cond.s:

u0(x) =
(a1/b1)e−αux

1+e−αux

{
a1/a2 x → −∞
0 x → +∞

v0(x) =
(a1/b1)e−αux

1+e−αux

{
a1/a2 x → −∞
0 x → +∞
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