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x' = f(x, A, u)

= qy=g(xAu)

x(0) = x*,

x: state variables

y: output variables,

u: input variables,

A: parameters,

x(0): initial conditions,

f and g are rational function.
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> We assume y(0),y’(0),y”(0),... can be measured and that u
is also specified /known.
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Given model:
x' = f(x, A, u)
£i={y=gxAu
x(0) = x*.

Parameter ldentifiability Problem: Can we determine the
values of the parameters from the input/output data?

l.e., Is it possible to determine the values of the parameters A
from a solution of the system?

globally identifiable: unique values for parameters
locally identifiable: finitely many values for parameters

unidentifiable: infinitely many values for parameters



Example

Mathematical
Institute




Example ey
Mathematical
Institute

x'=\2
Y = y=x
X(O):/\Q

» The initial condition x(0) = A2 immediately implies that Ay is
globally identifiable.
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x'=\2
Y = y=x
X(O):/\Q

» The initial condition x(0) = A2 immediately implies that Ay is
globally identifiable.

» From x' = )\% we obtain x = A%t%— C, where C is a constant.

» By the initial condition x(0) = A2 we obtain C = X2, hence

y = Mt+ X\



Example

x'=\2
Y = y=x
X(O):/\Q

» The initial condition x(0) = A2 immediately implies that Ay is
globally identifiable.
» From x' = )\% we obtain x = A%t%— C, where C is a constant.

» By the initial condition x(0) = A2 we obtain C = X2, hence
y =X\t + X

> So
y— A2

2\ =
1 t

)

hence, A1 locally identifiable.
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Existing Approaches

» Power series

» Differential Algebra: Take derivatives of the system

ym.—=

x' = f(x, A, u)

(m) — (m)(x A u)
y(0) = g( (0), A, u(0))
’ g'(x(0), A, u(0)

= g™ (x(0), A, u(0))

> "Make” ¥™ into a polynomial system and use computational
algebra techniques, e.g., Grobner Bases/Rosenfeld-Grobner.
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A Probabilistic Algorithm for ODE Identifiability (SIAN)

> Plug in random values of X to A and solve the ODE system ¥
for the values y(0),y(0),y"(0), ..., y(™(0)
» To check if \; is globally identifiable we can check whether

A — X € GB(X™),

where GB(X") is a Grobner basis (and the membership can
be checked via reduction).
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» Motivation (at least): Many Biological systems are modelled
by PDEs

» There is little work on PDE identifiability. Existing literature
mostly includes case studies rather than a systematic study.

> Generalisation to a PDE system:

Oex = f(x, A, u,0}0/x), i+j<m

y= g(X, A, u)
x(0) = x*

Boundary Conditions

» In practice, boundary conditions can be non-algebraic, which
can make theory/computations hard.
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Algebraic Definition of PDE ldentifiability

» Differential ring:
R = C(\)[0;04x, 0,0Ly, otu | i,j > 0]
> Differential ideal associated to the model X:
» [ is a prime ideal, hence let the field of fractions be F = R/I.

Definition
Let X,y, G be the image of x,y,u in R/I. A parameter A € X (or a
rational function of parameters) is identifiable if

X € C(0}0Ly, 0joLa).
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Testing PDE lIdentifiability

Definition
Let X,y, (G be the image of x,y,u in R/I. A parameter A € A is
identifiable if ‘ .

A € C(9;01y, 0,040).

Theorem

Let | C R be the differential ideal corresponding to a PDE model,
with characteristic set S. A parameter \ in S is identifiable if the
polynomials in' S, considered as polynomials in variable A with
monomial coefficients in R, have linearly independent coefficients.

» One can check the linear independence of the monomial
coefficients by checking non-singularity of certain Wronskians.
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1. Construct a differential ideal from the model equations.

2. Using Rosenfeld-Grobner algorithm, compute the
characteristic set
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3. Collect the coefficients of F; as rational functions in terms of
the parameters.
4. Compute the Wronskian Wr; of the coefficients.
5. Check if Wr;j are non-singular by

6. Compute the determinant det of Wr; (which is a polynomial)
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1. Construct a differential ideal from the model equations.
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Using Rosenfeld-Grobner algorithm, compute the
characteristic set

Fi(u,0,d,...,,y,y,y,...)=0.
Collect the coefficients of F; as rational functions in terms of
the parameters.
Compute the Wronskian Wr; of the coefficients.
Check if Wr; are non-singular by
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Compute the normal form of the coefficients of det wrt F;
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Using Rosenfeld-Grobner algorithm, compute the
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Fi(u,0,d,...,,y,y,y,...)=0.
Collect the coefficients of F; as rational functions in terms of
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Compute the normal form of the coefficients of det wrt F;

Obtain a sufficient condition C for normal forms not to be zero
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1. Construct a differential ideal from the model equations.

© 0N o ok

Using Rosenfeld-Grobner algorithm, compute the
characteristic set

Fi(u,0,d,...,,y,y,y,...)=0.
Collect the coefficients of F; as rational functions in terms of
the parameters.
Compute the Wronskian Wr; of the coefficients.
Check if Wr; are non-singular by
Compute the determinant det of Wr; (which is a polynomial)
Compute the normal form of the coefficients of det wrt F;
Obtain a sufficient condition C for normal forms not to be zero
Using initial /boundary conditions check if C holds.
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Oc(x, t) Oc(x

Ox2 c(x, t)—dcg Oc(x, 1)

5 —Xc(x, t),

t) n dc(x, t)

—d Ox? ot (

X, t)+C0

» Initial Conditions:
c(R,t)=1, ¢(x,00=1,0<x<R

» Boundary Conditions:

0c(0, t)

ot =0
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> restart:

:Setting up the PDE:
> eq := diff(c(x,t) ,t)-d*diff (c(x,t),x$2)-lambda*c(x,t)/(c_O+c(x,t))

,_i - 6)71 7M
eqi= 5 c(x1) d[ . c(x, t)] c 0+c(x, 1) (

;Clearing out the numerators. This is our input-output equation (called IO-equation below):

> numer (eq) ;

—d [aaT e(x, r)] (1) —d [;T e(x, t)] co+ (% o(x, r)) c(x )+ (% o(x, r)) cO—he(x 1) (

;Creating variables for the monomials of the input-output equation

> Ml := simplify(diff(c(x, t), x, x)*c(x, t)):
M2 := simplify(diff(c(x, t), x, x)):
M3 := simplify(diff(c(x, t), t)):
M4 := c(x,t):
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| Creating the Wronskian of the monomials

> with(VectorCalculus) :with(LinearAlgebra) :

L Wr := simplify(Determinant (Wronskian ([M1,M2,6M3 ,M4],x))):

| Setting up differential algebra to study the Wronskian

> with(DifferentialAlgebra) :
R := DifferentialRing(blocks = [c], derivations = [x,t], arbitrary =
[lambda, c_0, d]):

| RG := RosenfeldGroebner([eq], R):

Does the Wronskian vanish? Let us find out by computing the remainder modulo the IO-equation and listing the

| coefficients of the result as a polynomial in the parameters

> cf := coeffs(expand(numer (simplify(NormalForm(Wr, RG))) [1]), [lambda, c O,
d]) :

> for i from 1 to nops([cf]l) do print(cf[i]); print(\n) od;

3 (% c(x, t)]: ( (')if)f_lv c(x, t)):c(x, 1)673 (% c(x, t))l ( E?f c(x, t)]:c(x, 1)6
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3 [(::T c(x, 1) )V((.\: 7)°

3)
Let us try to get useful consequences of the vanishing of the coefficients (we chose just 10 of those to run the
_computation faster).
> Equations (RosenfeldGroebner ([cf[-1],cf[1..10]],R));
0 0
= (x| el 4
ar 0] [ e 0]| @

» plugging in each of the above into the PDE, we obtain ODEs,
and then using the initial conditions one can prove that the
above expressions cannot be zero.



Case Study: Fisher's Equation

on(x, on(x, n(x,t)1 —00 < X < 0
Gek — 25— m(x, 1)(1 - 250 )’{0<t

k _
Boundary Cond: n(x,t) — { X e

0 x—+o00
Initial Conds:  n(x,0) = np(x),

no(x) = ke—ox | K x— —00
0 ™™ 10 x — +0
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> eq;
0 2 . —
m n(x,t) —d [*aavl n(x, r)) + 1 nx1) ( kk+;1(x, ) (
;Creaﬁng variables for the monomials of the input-output equation
> Ml := simplify(n(x, t)~2):|
M2 := simplify(diff(n(x, t), x, x)):
_ M3 := simplify(n(x, t)):
_Creating the Wronskian of the monomials
> with(VectorCalculus) :with(LinearAlgebra) :
Wr := simplify(Determinant (Wronskian([M1,6,M2,6M3],x)))
& o N FE a 2 Ry
Wr:=— —n(x, t —n(x, t) | n(x, )" —2 —n(x, 1) (—nx,t]nx,r)+2 —n(x,
(0| [ et =2 (5 x| (e ) o

I)J [% n(x, t))5+ [% n(x, f)) [%”(»‘2 f)] n(x, ’)l
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_Setting up differential algebra to study the Wronskian
> with(DifferentialAlgebra) :
> R := DifferentialRing(blocks = [n], derivations = [x,t], arbitrary = [d,r,
k1) :
> RG := RosenfeldGroebner ([eq], R); Equations(RG) ;
RG = [regular_differential_chain]

J 0 ,
d [07 n(x, t)] k— (7 n(x, t)) k—rn(x, )"+ rn(x, f) k]
[ or
"Does the Wronskian vanish? Let us find out by computing the remainder modulo the IO-equation and listing the
_coefficients of the result as a polynomial in the parameters
> cf := coeffs(expand (numer (simplify(NormalForm(Wr, RG))) [1]),[k, r, d]);
0

cf = =2 (% n(x, t)] (% n(x, t) ):n(x, 1) +2 (& n(x, t) )3 [E n(x, t) ) (% n(x, t)] n(x, @

f)3 — (% n(x, t)) (% n(x, t)) n(x, t):, —[ E)?&v n(x, f)) n(x, t)4 +2 [% n(x, f)) (% n(x,
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> Equations (RosenfeldGroebner ([cf[-1] ,cf[1..4]]1,R));

0 0
=y n(x, 1) } r n(x, t) ”
;So if dn/dt <>0 and dn/dx<>0, then we have identifiability.
_CASE 1. If dn/dx=0, then the PDE become the folling ODE:
> eqt := simplify(diff(n(t),t))- r*n(t) + (1/k)*(n(t))"2;
n(t) =
ko

eqt == % n(t) —rn(t) +

» This can be refuted using the fact that the initial condition
does not depend on t.
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_-------CASE 2. dn/dt=0:
> egx := simplify(-d*diff (n(x),x$2) - r*n(x)+(1/k)*(n(x))"2);
d n(x):
eqx ==—d | — n(x) | —rn(x) + ——
¢ [ i )] () + 5

;But at t=0, IC leads to describing n(x,t=0) in terms of exp:
> IC:=n(x)=simplify((k*exp(-a*x))/(l+exp(-a*x)));

—ax
IC == n(x) = Lﬂ,
1+e
"> ICdiff:=simplify(diff (IC,x));
—ax
1Cdiff = di n(x) = ,L
¥ (1+e™)"

: Which can be plugged into (20), leading to:

> eqnx:=simplify(eval (eqgx,IC)) ;

k((da—2r+1)e ™+ (—r+1)e " —da —r) e ™
(1+e )

eqnx =
This cannot happen because the latter expression must be zero
according to the initial condition.
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au((gxt’t) —dp 6%(;2’” — u(x,t)(a1 — bru(x, t) — av(x,t)),
)

2et) _ 2050 y(x, t)(a2 — bau(x, t) — cav(x, t)
—co<x<oo, 0<t

El Ly
Boundary Cond.s: u(x,t) — < o X >
0 x— 400

a2

v(x,t) — { @

0 x— 4o

X — —0

Initial Cond.s:
uo(x) = (ar/br)e—cux | a1/az x — —00
e 10 x — +oo
vo(X) _ (a1/by)e—oux 31/32 X — —O0
1emaw 0 x— 4+
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> restart: with(DifferentialAlgebra): with(LinearAlgebra):
sys := [
diff(u(x, t), t) - dl * diff(u(x, t), x$2) - u(x, t) * (al - bl *
u(x, t) - cl1 * v(x, t)),
diff(v(x, t), t) - d2 * diff(v(x, t), x$2) - v(x, t) * (a2 - b2 *
u(x, t) - c2 * v(x, t)),
yl(x, t) - u(x, t),
y2(x, t) - v(x, t)
1;

-2 I _ _ . o —a [
sys = [ o u(x, t) —dl [ o u(x, t)] u(x, t) (al —blu(x,t) —clv(x, 1)), o v(x, t) —d2 ( o

v(x, t)] —v(x, 1) (a2 —Db2u(x,t) —c2v(x, 1)), vI(x, 1) —u(x, 1), y2(x, 1) —v(x, 1) }

=> R := DifferentialRing(blocks = [[u, v], [yl, y2]], derivations = [x, t],
_ arbitrary = [al, bl, cl1, d1, a2, b2, c2, d2]):
> RG := RosenfeldGroebner (sys, R);
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> IOeqgs

y2(x, t)] a2 — % V2(x, 1) —vI(x, t) y2(x, t) b2 —y2(x, t): c2+y2(x, t) a2

> Ms1

=> Ms2

:= Equations (RG[1]) [-2..-1];
10eqgs = L vi(x, 1) | dl — o yI(x, 1) —yI(x, r):bl —vI(x, t)y2(x,t) cl +yI(x, t)al, | —
o or @

:= map2 (coeff, IOegs[1l],

VI 1), —¥1(x% ) 3 1) 32(x, 1), o v (x, 1)

0
o
al
o

Msl =

:= map2 (coeff, IOegs[2],

¥2(x, 1), =¥I(x, 1) ¥2(x, 1), =p2(x, 1), —= 32(x, 1)

Ms2 =

j> with (VectorCalculus) :

> wrl
Wr2

:= Wronskian(Msl, x):
Wronskian (Ms2, x):

[al, bl, c1,

[a2, b2, c2, d2],

L

X
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> R2 := DifferentialRing(blocks = [[yl, y2, u, v]], derivations = [x, t],

| arbitrary = [al, bl, cl1, d1, a2, b2, c2, d2]):

> RG2 := RosenfeldGroebner (sys, R2):

Equations (RosenfeldGroebner (sys, R2)) ;

: 0 2 , @ _0
[dl (K u(x, t)] v u(x, 1) —u(x, t)" b1 —u(x, t) v(x, t) cl +u(x, t) al, d2 [ o v(x, f)) o |

v(x, 1) —u(x, 1) v(x, 1) b2 — v(x, 1) 2 + v(x, 1) a2, yI(x, 1) — u(x, 1), v2(x, 1) — v(x, f)}

:> NF1 := NormalForm(simplify(Determinant (Wrl)), RG2):
|> cfs := coeffs(expand(numer (NF1)) [1], [al, bl, cl, dl1, a2, b2, c2, d2]):

> for cf in cfs do print(cf); print() od;

8 [% u(x, t) )3 (% u(x, l)j (% v(x, r)) u(x, t)yv(x, 1) — 8 ( (')Er]fl u(x, l)] (% u(x, 1) ): (% v(x,

r)) u(x, 1) v(x, 1) +2 (% u(x, 1)): (% u(x, f)) [% v(x, 1))-14(.\', 1) —2 ( 0‘;’;\’ u(x, 1)) (%




Case Study: Lotka Volterra Equation ¥R

Mathematical
Institute

> Equations (RosenfeldGroebner ([cfs[-1] ,cfs[1..10]],R2)) ;
0 0 0
HE u(x, t), o v(x, t)], [v(x, 1) ], [; u(x, t) H l
| Case 2. v(x, 1) =0.

al e
In contrastw the boundary condition v _’W when x = infinity.

0
Case 3. e u(x, 1)=0

Contradicts because in this case u only depends on t, but the boundary conditions says u(x,0) varies (exponentially)
_with respect to alpha*x but we assume alpha non zero.

0
—v(x, 1) =0
o V)
Therefore u=u(x) and v=v(x) and are given by the initial conditions u(x, 0) and v(x, 0),
which are exponential functions. This means that We cannot say anything about identifiability.

0
Case 1. m u(x, t)=0,



